
39

consists of a binary function symbol F. Hence by 11.2 and 11.3, it will suffice to

construct a model M' of PO such that M is definable in an inessential extension

ofM'.

Let Λ/j = |Λ/| U {1,2,3}, where 1,2,3 are objects not in |M|. Let M2 be

the set of ordered pairs (x,i) where x € | M\ and i 6 {1,2,3}. Let M^ be the set of

ordered triples (x,y,z) such that ι,y,z€ | M\ and F^j(x,y) = z. Let \M' \ = Λ/1 U

A/2 U M,. We define < «^, as follows. If x € Λ/,, w < .,, x is false for all w. If

<j,z> 6 M2, then w <„, <x,i> holds for w = a: and w = i. If <x,y,z> e M ,̂

then w < ,̂ <x,y,z> if w is one of <£,!>, <y,2>, <2,3>, a:, y, z, 1, 2, or 3.

Clearly M' is a partially ordered set.

For x,y,z € | M ' \ we have

,y,2:€ \M\ fe ΞwBa y B ί j < j & y

/ < j, & 2 < y, & 3 < z+ & j, < u & 2/1 < u & 2, < u).

(In proving the second equivalence from right to left, one should first note that

we must have x^y^z, e Λ/2 and u e Mo.) It follows easily that M is definable in

M", where M" is an inessential expansion of M' formed by adding three new

constants to represent 1, 2, and 3.

It follows that PO is undecidable. It also follows that a theory whose

language consists of one binary relation symbol and which has no axioms is

undecidable.

Many other strongly undecidable structures can be constructed by these

methods. However, the proof that M is definable in M' often requires a very

detailed analysis of M and M'.

12. Relative Recursion

Let Φ be a set of total functions. We generalize the notion of computable

to allow us to use the values of the functions in Φ at any arguments we wish in

the course of the computation. Following Turing, we picture the computation as

40

taking place as follows. For each Fin Φ, we are given an object called an oracle

for F. During the computation, we may ask the oracle for F(ΐ) for any ~x which

we have computed. The oracle supplies the value, which may then be used in

the rest of the computation. A function which can be computed using oracles for

the functions in Φ is said to be computable in Φ or relative to Φ. (Turing used

this terminology because the oracle produces a value of the function without the

use of an algorithm. However, one should not consider an oracle as a mystical

object. We can think of it as an infinite set of file cards on each of which a value

of the function is printed; we get the value at a particular set of arguments by

searching through the file.)

We now extend the notion of recursive in a similar way. For each Fin Φ,

we introduce a new type of instruction, called an F-instruction. This

instruction has the format

where *,,... ,s,,,j are distinct. If the machine executes this instruction when

x,,...,j. are in TIL ,...,ΐi» respectively, it replace the number in Tίj by F(J,,...,JT)

and increases the number in the counter by 1. The Φ-machine is obtained from

the basic machine by adding all F— instructions for all F in Φ. We define the

notion of a program computing a function for this machine as for the basic ma-

chine. A function is recursive in Φ or relative to Φ if it is computed by some

program for the Φ— machine. Note that if Φ is empty, recursive in Φ is the same

as recursive.

12.1. PROPOSITION. If Φ C Φ, then every function recursive in Φ is recursive

in Φ. D

12.2. PROPOSITION. Every function recursive in Φ is recursive in some finite

subset of Φ.

Proof. Any program for the Φ-machine can contain F-instructions

for only a finite number of F in Φ. D

41

We will now show that all of the results we have proved remain true if

recursive is replaced by recursive in Φ_, in some cases under the assumption that

Φ is finite. In most cases, no change is required in the proofs. We shall run

quickly through these results, except where the presence of Φ makes a significant

difference.

First, the results of §4 may be extended from the basic machine to the

Φ—machine. This leads to the following'fesult.

12.3. TRANSITIVITY THEOREM. If every function in Φ is recursive in Φ, then

every function which is recursive in Φ is recursive in Φ.

Proof. Let G be recursive in Φ and let P be a program for the

Φ—machine which computes it. If P contains a F—instruction, then F is

recursive in Φ; so we may replace the instruction by the macro for the Φ—ma-

chine with the same format. We thus obtain a program for the macro

Φ—machine which computes G; so G is recursive in Φ by 4.2. o

12.4. COROLLARY. If every function in Φ is recursive in Φ and every

function in Φ is recursive in Φ, then the same functions are recursive in Φ and in

Φ. D

The proof in §5 that the class of recursive functions is recursively closed

extends to the relative case. We also have the following result.

12.5. PROPOSITION. Every function in Φ is recursive in Φ.

Proof. A function Fin Φ is computed by the program consisting of

the one instruction F(ϊl, ..., ΐk) -* 20. α

The extensions of the results of the next few sections depend only on the

fact that the class of functions recursive in Φ is recursively closed and includes Φ.

All of the results of §6 extend; i.e., all of the symbols proved recursive are

recursive in Φ. In addition, names of functions and relations in Φ are recursive

in Φ by 12.5. The results of §7 extend.

12.6. PROPOSITION. If Φ consists of the contractions of the functions

42

in Φ, then the same functions are recursive in Φ and in Φ.

Proof. By 12.4 and the contraction formulas. G

In §8 we run into a problem; if Φ is too large, we cannot assign codes to

all of the F-instructions for the Φ-machine. We shall therefore now suppose

that Φ is finite. By 12.6, we may suppose that Φ is a finite sequence //,, ..., H

of reals. To the /^-instruction Hr(2ί) -» ϋj we assign the code <3,i,j,r>.

Except for this, codes are defined as before.

We can now extend §8 straightforwardly. Since the functions and

relations defined there now depend on Φ, we add a superscript Φ to their names.

Thus Tfc (e$,y) means that e is the code of a program P for the Φ—machine, and

y is the code of the P-computation from ?. Then 7\ is recursive in Φ. Note,

however, that we do not need a u , since the old U still serves.

The Normal Form Theorem now becomes {e} (x) ~ U(μyT^ (e,3,y))

We say that e is a Φ—index of F if F(x) ~ {e} (x) for all j. Then a function has

a Φ—index iff it is recursive in Φ.

Results which mention indices can be relativized to Φ only for finite Φ,

since it is only for finite Φ that Φ—index is defined. Sometimes a result may not

mention indices, but its proof may use indices. In this case, all we can

immediately say is that the result holds when relativized to a finite Φ. In some

cases we can then extend the result to all Φ by using 12.2.

An example where such an extension is possible is 8.3. Our extension

says that the class of functions recursive in Φ is the smallest recursively closed

class which includes Φ. We can immediately say this is true for finite Φ. Now

let Φ be arbitrary and let Φ be a be a recursively closed class including Φ. We

want to show that if F is recursive in Φ, then Fis in Φ. Now F is recursive in a

finite subset of Φ. Since Φ includes this finite subset, F is in Φ.

We now consider how 7\ depends on Φ. When the definitions of §8 are

relativized to Φ, the H appear explicitly only in the definition of Reg. The

43

definition of this function has a new clause for each r

Reg(j,e,x,n+l) = Hr(Reg((i)vc,x,n)} if (ί)Q = 3 fc (ί)3 = r & (ί)2 = j.

This means that in the definition of T^ (f,x,y), #Γ appears only in contexts

H (X) where A" designates a number appearing in a register during the

P-computation from ί and hence < y. Thus we may replace H (X) by

If Φ is //p...,// , we write Φ(z) for HJz),...,H (z). The above can be

summarized as follows: there is a recursive relation TV _ such that
Λ , Til

(1) Γφ(e,j,y) -

Thus if {e} (ί) 2 2 with computation number y, and Φ(y) = Φ'(y), then

13. The Arithmetical Hierarchy

We are now going to study the effect of using unbounded quantifiers in

definitions of relations. From now on, we agree that n designates a non— zero

number. The results of this section are due to Kleene.

A relation R is arithmetical if it has an explicit definition

(1) RCx)~QyΓ..QynPCx,yΓ...,yn)

where each Qy^ is either 3w. or V y . and P is recursive. We call βy,...βyn the

prefix and P(x,y^,...,y^ the matrix of the definition. We are chiefly interested

in the prefix, since it measures how far the definition is from being recursive.

We shall first see how prefixes can be simplified. As z runs through all

number, (Z)^(Z) runs through all pairs of numbers. It follows that

and

Using these equivalences, we can replace two adjacent universal quantifiers in a

prefix by a single such quantifier, and similarly for existential quantifiers. For

example, a definition

