
26

G(x) i f y = 0 ,

- H({f}(y~ I2χ), y'-!> *) otherwise.

Then we use the Recursion Theorem to obtain a recursive F with an index /such

that F(y,x) ~ L(y,j,/). Clearly F satisfies (2); so the function defined by (2) is

recursive.

9. Church's Thesis

We have already remarked that it is clear that every recursive function is

computable. The statement that every computable function is recursive is

known as Church's Thesis. It was proposed by Church about 1934 and has since

come to be accepted by almost all logicians. We shall discuss the reasons for

this.

Since the notion of a computable function has not been defined precisely,

it may seem that it is impossible to give a proof of Church's Thesis. However,

this is not necessarily the case. We understand the notion of a computable

function well enough to make some statements about it. In other words, we can

write down some axioms about computable functions which most people would

agree are evidently true. It might be possible to prove Church's Thesis from

such axioms. However, despite strenuous efforts, no one has succeeded in doing

this (although some interesting partial results have been obtained).

We are thus reduced to trying to give arguments for Church's Thesis

which seem to be convincing. We shall briefly examine these arguments.

The first argument is that all the computable functions which have been

produced have been shown to be recursive, using, for the most part, the

techniques which we have already described. Moreover, all the known

techniques for producing new computable functions from old ones (such as

definition by induction or by cases) have been shown to lead from recursive

functions to recursive functions.



27

Another argument comes from various attempts to define computable

precisely. We have seen two of these: the definition by means of the basic

machine and the definition by means of recursively closed classes (see Proposition

8.3). There are many others, some similar to these two and some quite different.

In every case, it has been proved that the class of functions so defined is exactly

the class of recursive functions. This at least shows that the class of recursive

functions is a very natural class; and it is hard to see why this should be so unless

it is indeed the class of computable functions.

Now let us consider how we might generalize the basic machine to produce

a new computable function. Since the registers can contain an arbitrarily large

finite number of arbitrary numbers, and since so much information can be coded

in a single number, it seems pointless to increase the amount of memory. We

therefore need to add new instructions. For each new instruction, we must, of

course, have an algorithm for executing that instruction. Essentially that means

that the functions Reg and Count of §8, when extended to allow for the new in-

structions, must be computable. Since these function control just one step in the

computation, they should be relatively simple computable functions. We might

therefore agree (perhaps on the basis of the above arguments) that Reg and

Count must be recursive. But then we could repeat the remaining definitions of

§8 and show that every function computed by the new machine is recursive.

We could elaborate on all of these arguments. However, most people

become convinced of Church's Thesis only by a detailed study of recursion

theory. The most convincing argument is that all of the results of recursion

theory become quite reasonable (or even obvious) when recursive is replaced by

computable.

We shall henceforth accept Church's Thesis. It will be used in two ways.

First, there are many natural and interesting questions about computable

functions. We use Church's Thesis to convert these into precise mathematical



28

questions. Here there seems to be no way to proceed without Church's Thesis.

Second, we sometimes use Church's Thesis to prove a function is recursive by

observing that it is computable and using Church's Thesis to conclude that it is

recursive. This type of use is non-essential; we could always use the methods

we have developed to prove that the function is recursive. One of the best ways

to convince oneself of Church's Thesis is to examine many such examples and see

that in every case the function turns out to be recursive.

10. Word Problems

The initial aim of recursion theory was to show that certain problems of

the form "Find an algorithm by which ..." were unsolvable. We shall give a few

examples of such problems.

Let us first see how to obtain a non—recursive real F. By 8.1, it is enough

to make F different from each {e}. We shall do this by making it different from

{e} at the argument e. (This idea, known as the diagonal argument, was used

first by Cantor to prove that the set of real numbers is uncountable.) In more

detail, we define

F(e) ~ (e}(e) + 1 if (e}(e) is defined,

~ 0 otherwise.

It follows from this construction that the set P defined by

P(e) <—> (e}(c) is defined

is not recursive; for otherwise, the definition of F would be a definition by cases

using only recursive symbols, and hence F would be recursive. Thus, using

Church's Thesis, we have our first unsolvable problem: find an algorithm for

deciding if (e}(e) is defined.

Consider the following problem, called the halting problem: Find an

algorithm by which, given a program P and an a:, we can decide if the

computation of P from x halts. Let P be a program which computes the re-


