
20

show that F is recursive iff F is recursive. We cannot use the preceding equation

as an explicit definition; for we cannot fill in ... until we know the value of the

argument y. However, we have the explicit definitions

) ~ μz(Seq(z) & Λ(z) = y & (Vi < y)((z). = ^i.3))),

Given a total function G, we may define a total function F by induction

on y as follows:

We shall show that if G is recursive, then F is recursive. By the above, it is

enough to show that Fis recursive. But Fhas the inductive definition

7(0,3) ~ <>,

7(rf 1,3) = 7(Λ3) * < G(%,x), ^ ,3) >.

An inductive definition of this sort is called a course-of— values inductive

definition.

8. Indices

We are now going to assign codes to some of the elements in the operation

of the basic machine. This will lead to some of the most important theorems of

recursion theory.

First, a general remark on coding. Suppose that we want to code the

members of /. We may be able to identify each member b of / with a finite

sequence αlv..,α,. of objects which have already been coded. We can then assign

to b the code <jp...,̂ >, where x is the code of a .

We begin by assigning codes to the instructions for the basic machine.

We assign the code <Q,i> to the instruction INCREASE ϊi; the code <l,i,n> to

the instruction DECREASE Iz>; and the code <2,n> to the instruction GO TO

n. If P is a program consisting of N instructions with codes £j,...,g^p we assign

the code <x^...,x*j> to P.

We define

21

Ins(x) *-> z = <0,(j)1> V j= <l,(x)v(x)2> V j= < 2,(z)1>,

Prog(x) «-» Seq(x) fe (Vi < lh(x))(Ins((x) .) & (((*) -)0 = 1 - ((x) -)2

Thus /Λ5 is the set of codes of instructions and Prog is the set of codes of

programs.
p

The action of the machine in executing A ̂ (described near the end of §3)

with inputs 1 is called the P-computation from ί. If e is the code of P, then P

mentions 1i only for i < eby (2) of §8; so the contents of ΐi are significant for

this computation only for i < e + k. At any step in this computation, the

register code of the machine is <r^r,,...,r , tj >» where r is the number in ΊLi.

If the computation stops after m steps, it has successive register codes ΓQ, ..., rm-

We then assign the code r = <*0,rlv..,r > to ^e computation. By (2) of §8, r

is larger than any number which appears in a register during the computation.

The output of the computation is ί/(r), where ί/is the recursive real defined by

"ω = (w wiV
We define functions Count and Reg such that if e is the code of P and x =

<1>, then after n steps in the P-computation from 1, Couni(e,x,n) will be in the

counter and Reg(j,e,x,ri) will be in Ίij. We define these functions by a

simultaneous induction on n. Writing t for (e}nounκe n xγ

Count(e,x,ϋ) = 0,

^ if j < 1h(x) & jφ 0,

= 0 otherwise,

= (ί)2 if (t)0

= Count(e,x,ri) + 1 otherwise,

= Reg(j,e,x,n) + 1 if (ί)Q = 0 & j = (t)p

22

= Reg(ic,x,n) - 1 if (ί)Q = 1 & j = (ί)p

= Reg(j,e,x,n) otherwise.

We define

Step(c,x,n) «-» Count(e,x,n) > lh(e) & (Vi < n)(Count(e,x,ϊ) < lh(e)).

Then in the above notation, Step(e,x,n) means that the P-computation from $

takes n steps.

If 1 is a fc-tuple, T£e&y) mean that € is the code of a program P and y is

the code of the P-computation from ί. Thus

& Seq(y)

(Vt
p

If e is the code of a program P, ί is a fc— tuple, and A » has an output when

applied to the inputs 1, then (e}(ί) is that output; otherwise {e}(ΐ) is undefined.

Clearly

This equation is called the Normal Form Theorem.

We say that e is an index of Fif F(~x) ~ {e}(~x) for all 'x.

8.1. PROPOSITION. A function is recursive iff it has an index.

Proof. If F is recursive and e is the code of a program which

computes F, then e is an index of F. The converse follows from the Normal

Form Theorem, α

8.2. ENUMERATION THEOREM (KLEENE). For each fc, {e}(xj,...,xj is a recur-

sive function of e,̂ ,...,̂ .

Proof. By the Normal Form Theorem. D

By the Normal Form Theorem, (c}(~x) is defined iff there is a y such that

TΛe$,y). By the meaning of T^ this y is then unique; and {e}(x) = U(y). We

call y the computation number of (e}(5). Since y is greater than every number

appearing in a register during the P-computation from 1, it is greater than the x^

and {c}(~x)

23

Recall that the results of the last three section depended only on the fact

that the class of recursive functions was recursively closed. Thus every

recursively closed class contains U and the T^ and hence, by the Normal Form

Theorem, each of the functions {e}. Hence by 8.1:

8.3. PROPOSITION. The class of recursive functions is the smallest

recursively closed class, o

The importance of 8.3 is that it gives us a method of proving that every

recursive function has a property P; we have only to show that the class of

functions having property P is recursively closed.

We define

Clearly {e}(~x) ~ z iff { e } C x) z zfor some s; in this case, {e} (~x) = zfor all 5 > y,s o

where y is the computation number of {e}(x). Thus {e} may be thought of ass

the 5th approximation to {e}. If { e } (ί) is defined, each x. is < s; so {el is a
S I S

finite function.

8.4. PROPOSITION. The relations Pand Q defined by

P(e,s,j,z) «-» {e} s(x) ~ z

and Q(e,s,j) <-* {e}c(x) is defined
s

are recursive.

Proof. We have

P(e,5,x,z) ~ (3y < s)(T^e^y) & U(y) = z),

Q(e,s$) *-» (By < s)Tk(e^y). α

We shall now use indices to extend 6.5 to partial functions.

8.5. PROPOSITION. Let Rγ...,Rn be recursive relations such that for every

3, exactly one of βj(:r),...,fin(z) is true. Let Fj,...,Fn be recursive functions,

and define a function F by

24

Then F is recursive.

Proof. Let JJ. be an index of F* Using 6.5, define a total recursive

function (7 by

= /„ **»Φ

We can then define Fby F(ί)~{ <?(*)}(!). α

8.6. PARAMETER THEOREM. If F is a (fc+m)-ary recursive function, there is

a recursive total function 5 such that

(1) {^^p..,)̂}^^^,.,)̂

for all z,ylv..,ym-

Proof. To simplify the notation, we suppose that m = 1 and write

y for JΛ. Suppose that 1 is a fc— tuple. Let the program P consist of y

INCREASE 'Z(ίH-l) instructions followed by the macro of a program P which

computes F. Then P computes the function G defined by G(~x) ~ F(x,y). If we
y

take S(y) to be the code of the program for the basic machine which by 4.1 is

equivalent to P , then (1) holds.

It remains to give a definition of 5 which shows that it is recursive. First

we define

if (*)(, = 2,

= i otherwise.

If i is the code of an instruction /, F(i,y) is the code of the instruction obtained

from / by increasing every instruction number by y. Let e be the code of P.

Then we define S(y) = S^y) * 52(y), where

S^y) = μz(Sc(i(z) & lh(z) = y & (Vi < y)((z)i = <0,fcf !>))

and

25

52(y) = μz(Seq(z) & lh(z) = lh(c) & (Vt < lh(z))((z)i = F ((e) f y))) . o

An implicit definition of a function F has the form F("r) Ξ _ where

now _ may contain F as well as previously defined symbols and the variables

in ί. Of course, this is not really a definition of F; it merely tells us to search for

an F which satisfies the equation F(x) ~ _ . Thus F(z) ~ F(x) is satisfied by

every F, and F(j) ~ F(ϊ) + 1 is satisfied only by the function whose domain is

the empty set.

Let us rewrite our implicit definition as F(x) ~ G(F,ΐ). We would like to

show that if G is recursive, then this has at least one recursive solution.

Unfortunately, G is not a function in our sense because of the argument F. We

therefore replace F as an argument to G by an index of F.

8.7. RECURSION THEOREM (KLEENE). If G is recursive, there is a recursive

function Fwith an index /such that F(x) ~ G(x,f) for all x.

Proof. Since (y}(x,y) is a recursive function of j,y, the Parameter

Theorem implies that there is a recursive total function S such that {S(y)}(x) Ξ

{y}(ΐ,y) for all x and y. Define a recursive function H by

fifty) 2 GftSfo))

and let h be an index of H. Let F = {5(Λ}}, /= S(Λ), so that F has index /

Then

F\Z) ~ {S(h)}Cx) - {Λ}ftΛ) 2 ί/ftA) = σfts(ft)) 2 σft/) D
The Recursion Theorem is often useful for showing that functions are

recursive. For example, suppose that we define

(2) F(0,j) ~ G(x),

where G and H are total recursive functions. This is a legitimate definition by

induction on y; it uniquely defines a function F, which is total. Our previous

methods will not show that Fis recursive, since they allow F(y,x) but not F(y,"2x)

on the right side. We define a recursive L by

26

G(x) i f y = 0 ,

- H({f}(y~ I2χ), y'-!> *) otherwise.

Then we use the Recursion Theorem to obtain a recursive F with an index /such

that F(y,x) ~ L(y,j,/). Clearly F satisfies (2); so the function defined by (2) is

recursive.

9. Church's Thesis

We have already remarked that it is clear that every recursive function is

computable. The statement that every computable function is recursive is

known as Church's Thesis. It was proposed by Church about 1934 and has since

come to be accepted by almost all logicians. We shall discuss the reasons for

this.

Since the notion of a computable function has not been defined precisely,

it may seem that it is impossible to give a proof of Church's Thesis. However,

this is not necessarily the case. We understand the notion of a computable

function well enough to make some statements about it. In other words, we can

write down some axioms about computable functions which most people would

agree are evidently true. It might be possible to prove Church's Thesis from

such axioms. However, despite strenuous efforts, no one has succeeded in doing

this (although some interesting partial results have been obtained).

We are thus reduced to trying to give arguments for Church's Thesis

which seem to be convincing. We shall briefly examine these arguments.

The first argument is that all the computable functions which have been

produced have been shown to be recursive, using, for the most part, the

techniques which we have already described. Moreover, all the known

techniques for producing new computable functions from old ones (such as

definition by induction or by cases) have been shown to lead from recursive

functions to recursive functions.

