DECIDABILITY QUESTIONS
FOR THEORIES OF MODULES

F. PoINT

§0. Introduction.

Which finite rings with identity have a decidable theory of unitary left mod-
ules? This question has been raised by S. Burris and R. McKenzie in their paper on
decidable varieties with modular congruence lattices. They showed that if a locally
finite variety with modular congruence lattice does not decompose as a product
of a discriminator variety and an affine variety, then it interprets the theory of all
finite graphs. Then, they reduced the problem of classifying the decidable locally
finite affine varieties to the problem of classifying the finite rings which have a
decidable theory of modules.

First, we will see how this question arises in the context of decidable locally
finite varieties. Then, we will restrict our attention to the decidability question
for theories of modules. We will establish a connection between the decidability
of the theory of modules over a finite-dimensional algebra and the representation
type of that algebra.

This leads to the following questions: what are the relationships

o between the theory of R-modules and the theory of finitely generated
R-modules?

o between theories of modules which are Morita equivalent?

§1. Locally finite varieties.

A variety is a class of L-structures, where the language L only contains func-
tion symbols, defined by some set of equations (or equivalently closed under prod-
ucts, substructures and homomorphisms). A variety is locally finite if every finitely
generated algebra is finite.

S. Burris and R. McKenzie proved a decomposition theorem for decidable
locally finite varieties with modular congruence lattice. They show that it de-
composes as the product of a discriminator variety and an affine variety. (See
(B,M]).

R. McKenzie and M. Valeriote generalized their decomposition theorem for
decidable locally finite varieties. Before stating the result of McKenzie and Vale-
riote, we make this notion of decomposition precise.
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DEFINITION. V = A ® B means that V is generated by A and B and that
there exists a term 7(z,y) such that A = 7(z,y) = z and B | 7(z,y) = y.
If M €V, there exist unique up to isomorphism A € A, B € B such that M = A x

B.
IfY = A® B, then V is decidable iff A and B are decidable. (See [B,M].)

THEOREM 1. (See [M,V].) IfV is a locally finite decidable variety, then there
are three subvarieties of V, A, S and D such that V = A® S D where A is an
affine variety, S is a strongly abelian variety and D is a discriminator variety.

This theorem reduces the question of classifying the decidable locally finite
varieties to classifying the decidable locally finite discriminator, strongly abelian
and affine varieties. M. Valeriote settled the question for decidable locally finite
strongly abelian varieties.

A. Strongly abelian varieties.

DEFINITION. An algebra A is strongly abelian if for every term t and tuples
@,b,¢,d, € from A such that length(@) = length(¢) and length(b) = length(d) =
length(€), then

(t(a, ) = t(C,d) = t(a,e) = t(c,€)).

EXAMPLE. Any algebra which language only contains unary functions and
constants is strongly abelian.

Valeriote in his thesis characterized the decidable locally finite strongly abelian
varieties.

DEFINITION. Let W be a multi-sorted unary variety.
W is linear if for all non constant terms s(z),t(y) where z and y are of the same
sort, there exists w(z) such that
either W = t(z) = w(s(z))
or W = s(z) = w(t(z)).

THEOREM 2. (See [V].) A locally finite strongly abelian variety is decidable
iff it is bi-interpretable with a multi-sorted linear unary variety.

B. Discriminator varieties.

DEFINITION. A discriminator variety V is a variety such that there is a class
K included in V and a ternary term t(z,y, z) such that V is generated by K and

for every A € K,
z ifz=y

z if #y.

tA(z,y,2)

EXAMPLES. Boolean algebras (K consists of the Boolean algebra with 2 ele-
ments), rings satisfying zm = z.
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THEOREM 3. (See (W], [B,W].) Every finitely generated discriminator variety
with finite language is decidable.
A finitely generated discriminator variety V is decidable iff Th(K) is decidable
where K is the class of simple algebras in V.

Burris and Werner used the sheaf representation of a discriminator variety
and a generalization of a technique of Ershov for bounded Boolean powers of a
finite structure.

Recent progress has been made by Burris, McKenzie and Valeriote concerning
the question of which are the decidable locally finite discriminator varieties. The
first observation is that the class of simple elements is definable and so decidable.
Therefore by theorem 1, it can be decomposed as the product of a discriminator
variety, a strongly abelian variety and an affine variety. By a result of Burris on
undecidability of iterated discriminator variety, no discriminator term can appear
(see [B]). They settled the question for homogeneous discriminator varieties where
the class of simple elements is strongly abelian. (See [B,M,V].)

Added in proof: Valeriote and Willard settled the question for K an affine
variety. The corresponding discriminator variety V is decidable if and only if K is
polynomially equivalent to a variety of left modules over a finite semi-simple ring.
(See [V,W].)

C. Affine varieties.

An affine variety A is polynomially equivalent to a variety of unitary left R-
modules and there exists a term t(z,y, z) such that ¢(z,y,2) = ¢ — y + z (see
[F,M]). If A is locally finite, then R is finite.

The problem of classifying the decidable locally finite affine varieties effectively
reduces to the problem of determining which are the finite rings R for which the
variety of unitary left R-modules is decidable. (See [B,M].)

We will examine this question in more details, but first let us come back to
theorem 1.

McKenzie and Valeriote show that if the locally finite variety V does not
decompose as A® S® D then it interprets the class of all (finite) graphs. (Actually
they interpreted BP! which is a subclass of the class of Boolean pairs: (A, S) €
BP1 if A is atomic and the atoms of A are included in S). Which finishes the
proof by the result of Lavrov who proved that the set of sentences true in all graphs
and the set of sentences which become false in some finite graph are recursively
inseparable (see [L]).

Now we are going to make a digression to point out the connection between
having few models and being decidable for strongly abelian varieties.

DEFINITION. Let K be a class of L-structures and let I(K,\) be the number
of non isomorphic models in K of cardinality \. Then K has few models if there
exists A > |L| such that I(K,\) < 2*.

A consequence of the proof of McKenzie and Valeriote is that if V is a locally
finite variety which has few models, then V decomposes as 4 ® S ® D. We may
eliminate D since any non trivial discriminator variety contains an algebra whose
complete theory is unstable.
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For the strongly abelian varieties, we have the following theorem:

THEOREM 4. (See [H,V].) Let V be a strongly abelian variety. Then V has few
models iff V is bi-interpretable with a multi-sorted unary variety which is linear
and has the ascending chain condition.

So for a strongly abelian locally finite variety, the properties of having few
models and being decidable coincide.

Let R be a countable ring and Mg be the variety of all unitary left R-modules.
Baldwin and McKenzie showed that if (Mg, A) < 2* for some ), then every left
R-module is w-stable. (See [Ba,M].) This implies that every left module is a
direct sum of indecomposable submodules that are finitely generated (see [G]).
If the ring R is an Artin algebra (in particular if either R is finite or if R is
a finite-dimensional algebra) then this implies that there are only finitely many
indecomposable modules. (See [Prl].) (An Artin algebra is a ring which is finitely
generated as a module over its center and its center is an artinian ring).

So we see that having few models has some relationships with being decidable.
But in case of modules as we shall see, it is a too strong property.

From now on, we will concentrate on the following question: for which finite
rings R is the theory of unitary left R-modules decidable?

§2. Locally finite affine varieties.

Let R be a ring with unity 1. Let L = {+,—,0,r;7 € R}, r is viewed as a
unary function symbol. Let T be the theory of unitary left R-modules.

Baur gave the first example of a finite ring R = Z/p°Z[z]/(z?) for which T is
undecidable (p is any prime number). (See [Bal].) So the theory of Z[z]-modules
is undecidable. (The theory of Z-modules is decidable; see [Sz].)

THEOREM 5. (See [Ba).) The theory T of pairs of abelian groups of exponent
p° is undecidable.

The idea of the proof is to interpret in a finite extension of T the word problem
for a finitely presented semi-group on two generators.

Let R = 7/p°2[z]/(z?).
COROLLARY. T§ is undecidable. (See [Bal].)

PROOF. Let M |= Tg. Define Ay, = (ker z,im z). Then Ay |= T. Let
(A, B) = T. Let B, be an isomorphic copy of B. Set M = A x B,. Define z.a =0
for all a € A, z.b, = b where b, is sent to b by the isomorphism between B; and B.
So we have a faithful interpretation of T in Tg.

COROLLARY. (See [Bal].)

1. The theory of pairs of k[z]-modules is undecidable, where k is a finite
field.

2. The theory Ty, ) of k[z,y]-modules is undecidable, where k is a finite
field.
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Let C = {(V,W, f) : V,W are k-vector spaces, V 2 W, f € End(V)}. Then
Th(C) is undecidable. (This follows from the point 1 of the Corollary above.)
Let & be a field.

DEFINITIONS. Let A be a k-algebra i.e., A is a ring with unity and a left
k-module satisfying:
r(z.y) = (r.z).y ==z.(ry) forall z,y € A,r€k.
Let J be the Jacobson radicalof Ai.e.,J = (\{M : M is a maximal left ideal of A}.
Aislocal if AJJ = k.
A is left artinian if A has the descending chain condition on left ideals.

PROPOSITION 1. (See [P1].) Let A be a commutative artinian ring. Let T be
the set of maximal ideals of A and A; the localization of A by I,I € I. Suppose
that A is a k-algebra over some field k. Then T, is decidable iff each T}, is
decidable, for all I € T.

PROPOSITION 2. (See [P1].) Let A be a local artinian commutative k-algebra.
Suppose that characteristic of k # 2 or that k is finite.
Then, either

1. A has a residue ring isomorphic to k(z,y, z)/I,, where I, is the two-

sided ideal generated by all monomials of degree 2, and T, is undecid-
able.

2. A has a residue ring isomorphic to k(z,y)/(z?,zy — yz,y%z,y3) and T
is undecidable.

3. A is isomorphic to B, ,, = k(z,y)/I where I is the two-sided ideal
generated by z.y, y.z, z*, y™ with n +m > 5.

4. Let_E be a quadratic extension of k and A = AQk. Then A is isomorphic
to B, ,, = k(z,y)/I.

5. A is isomorphic to B, = k(z,y)/I, where I, is generated by z2, y2,
Ty —yz.

6. A is isomorphic to B,, = k(z,y)/I,, where I,, is generated by
z2,y2,2.y,y.2.

7. A is isomorphic to B,(n) = k(z)/I; where I, is the two-sided ideal
generated by z".

In cases 5, 6 and 7, T, is decidable.

The idea of the proof of cases 1 and 2 is the following one:
Let T be the theory of pairs (V,W) of k[z]-modules with V 2 W. We show
that there exists a finite extension T* of T such that in any model M of T* we
can define a pair (V, W) of k[z]-modules with V 2 W, where the action of z is
definable and every model of T is of that form.
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This proof is inspired by the proof of Drozd of wildness of these algebras
(see [D1]). He showed that there is an exact and faithful embedding of the finite-
dimensional elements of C into the class of finitely generated modules over each of
these algebras.

Since there is a link between the representation type of a finite-dimensional
algebra and the decidability of the theory of modules over it, for sake of complete-
ness, we shall give the definition of the various kinds of representation types for a
finite-dimensional k-algebra. (If k is not algebraically closed, tensor up with the
algebraic closure of .)

DEFINITION. (See [R1].) Let R be a finite-dimensional k-algebra and let R-
mod be the class of finitely generated left R-modules. Assume k is algebraically
closed.

1. R is of finite representation type if there are only finitely many inde-
composable elements (up to isomorphism) in R-mod.

2. R is of tame representation type provided R is not of finite representa-
tion type and for any dimension d there is a finite number of embedding
functors F; : k[z]-mod — R-mod such that all but a finite number of
indecomposable finitely generated R-modules of dimension d are of the
form F;(M) for some i and for some indecomposable finitely generated
k[z]-module M.

In case there exists (independently of d) a finite number of such em-
bedding functors F;, then R is domestic.

If R is tame, not domestic but there is a finite bound on the number
of functors needed, then R is of finite growth.

If R is tame, not domestic and not of finite growth, then R is infinite
growth.

3. R is of wild representation type if there is a functor from k(z,y)- mod
which preserves and reflects indecomposability and isomorphism.

(See also [Pr1]. This definition can be phrased for an arbitrary k-algebra.)

REMARKS.

1. Let R be a finite-dimensional algebra over an algebraically closed field
k. Then either R is of finite representation type or else there are in-
finitely many d;’s such that there are infinitely many pairwise non iso-
morphic indecomposable R-modules of dimension d;, for all i. (Those
indecomposable are indexed by the elements of k). (See [N,R].)

2. Every finite-dimensional k-algebra of infinite representation type is ei-
ther tame or wild but not both. (See [D2].)
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EXAMPLES. Let & be the algebraic closure of k.

1. Then k® By(n) is of finite representation type.
(The indecomposable finitely generated modules are isomorphic to
k[z]/(z)™, m < n.

2. Then k ® B, and kE® B, , are of tame domestic representation type.
(See [G,P2].)

3. Then k® B, m,n+ m > 5, are of tame, infinite growth representation

type. (See [G,P1].)

Using the classification of Ringel of the representation type of local k-algebras,
k an algebraically closed field, one shows:

PROPOSITION 3. (See [P1].) Let R be a local, complete k-algebra with k
an algebraically closed field. If R is of wild representation type and R is not a
residue ring of the group algebra of the generalized quaternion algebra, then Ty is
undecidable.

Recent work by A. Marcja, M. Prest and C. Toffalori showed undecidability
results for wild classes of modules over group rings of the form Z/p*Z[G], where
G is a p-group. (See [M,P,T].) Their notion of a wild class is the following: for
some field K one can interpret in it a class of K(z,y)-modules including the
finite-dimensional K (z,y)-modules in such a way that finite-dimensional K (z,y)-
modules are interpreted in structures of the class which are “finite-dimensional”
in some sense (e.g. finitely generated).

Now we come to the decidability proofs which go deeper in the structure of
the models.

First we are going to recall some notions of module theory.

DEFINITIONS. A module M is pure-injective (p.i.) if every system of equations
with parameters in M which is finitely satisfiable in M, has a solution in M. A
p.p.-formula ¢(y, b) is a formula of the form

00

where A is a matrix with coefficients in R and b are parameters from a module
M. Ifb=0, theset {y € M : M k= ¢(y,0)} is a (p.p. definable) subgroup of M;
¢(y,0) asserts the solvability of a finite system of linear equations with parameter
Y.

An invariant sentence is of the form (p,v) > k, where k € N — {0}, ¢, are p.p.
formulas without parameters, ) — ¢ and (p,v¥) > k means that the subgroup
defined by v has index > k in the subgroup defined by ¢.
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To prove decidability of Tg, you may expect to use the result of Ziegler
which roughly says that if you know the space of pure-injective indecomposable
R-modules with its topology, then T}y is decidable.

THEOREM 6. (See [Z).) Let R be a ring which is finitely presented as an R-
module with decidable word problem. Suppose that there is a recursive enumera-
tion of all those conditions of the form \;(¢;, ;) € [m,n) which are satisfied by
some pure-injective indecomposable R-module, where n,m € NU {+o00},m # +oo
and (p;) a recursive enumeration of all the p.p. formulas. Then Tf, is decidable.

Going back to Proposition 2, one has for cases (5) and (6):
(a) Tp,, is decidable iff T, is decidable.

(b) Tp,, is decidable since it is interpretable in the theory of quadruples
(i.e., the theory of a vector space and four subspaces).

THEOREM 7. (See [Ba2].) The theory of k-vector spaces with four subspaces
is decidable, whenever the theory of k[x]-modules is decidable.

THEOREM 8. (See [E,F].) Let k be a recursive field with decidable word prob-
lem and a splitting algorithm (i.e., an algorithm which determines for any element
of k[z] its irreducible factors). Then the theory of k[z]-modules is decidable.

In his proof of decidability of the theory of quadruples, Baur described the
N,;-saturated models and used the description of finitely generated indecomposable
models given by Gelfand and Ponomarev (see [G,P2]).

This case is the cutting line. The theory of a vector space and five subspaces
is undecidable, and the theory of a vector space and three subspaces is of course
decidable (the proof in this case is much simpler). (See [Ba3].)

Extending the result of Baur on quadruples, Prest proved:

THEOREM 9. (See [Pr2].) Let A be a quiver without relations, the underlying
diagram of which is extended Dynkin. Then the theory of modules over the path
algebra k[A] is decidable.

DEFINITIONS.
1. A quiver A is a finite directed graph with no oriented cycles.

2. The basis of k[A] as a k-vector space is the set of all oriented paths of
A which includes the path of length zero at each vertex. The product
of two basis elements is composition of paths when defined and zero
otherwise.

The paths of length zero compose as “local identities”.
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The theory of quadruples over the field k can be translated into the theory of
modules over the path algebra of the quiver:

or over the algebra

and vice-versa.

Roughly, the decidability proof of Prest for k[A] is done taking the proof that
k[A] is of tame domestic representation type, replacing indecomposable finitely
generated modules by pure-injective indecomposable modules (to prove that he
obtains all of them he uses the density of the set of regular indecomposable mod-
ules) and showing that the functors respects p.p. definable subgroups. So the fact
that the topology of the space of indecomposable pure-injective modules over k|[z]
is given explicitly transfers to the space of indecomposable pure-injective modules
over k[A].

Gabriel established the connection between finite-dimensional algebras and
path algebras with relations (a relation is a linear combination of sums of paths
with same starting point and same end point which is declared to be zero).

THEOREM 10. (See [Ga).) Over an algebraically closed field, any finite-
dimensional algebra is Morita equivalent to a path algebra over a quiver with
relations.

THEOREM 11. (See [P,Pr].) Over sufficiently decidable rings, decidability of
the theory of modules is a Morita invariant.

Do there exist a transfer theorem linking the representation type of a finite-
dimensional algebra R and the decidability of Tg?

A more modest question is: since the representation type concerns the class of
finitely generated modules or of finitely presented modules, do we have T = T4,
where T,’;"’ is the theory of finitely presented R-modules? (If R is artinian, then
TL? = T4, where T4 is the theory of finitely generated R-modules.

PROPOSITION 4. (See [P,Pr].) If R is of finite representation type, then
Tp = TE™.
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THEOREM 12. (See [P,Pr].) If R is the path algebra over a quiver without
relations, of infinite representation type, then Tg # TH"".

THEOREM 13. (See [P,Pr].) Let R be a noetherian local k-algebra of infinite
representation type. Then Tg # T4"".

COROLLARY. Let R be a finite-dimensional commutative k-algebra of infinite
representation type. Then Ty # T,{"".

The motivating idea is the following: Let R =12, let 0 =
Ju(pv=0Av#0)AVvIw(v = pw).
2, |= o and if an abelian group satisfies o, it is infinitely generated. Thus,
Ty # T Replacing p by = — @, a € k, we have the same result for R = k[z] i.e.,
Ty # TS
k[.’l:] k[z]

Returning to Proposition 2 and the decidability question for T with R a

commutative artinian local k-algebra, we have

(a) in cases (1), (2) of Proposition 2, both T and T4*" are undecidable;
(b) in cases (5), (6), both T and T4?" are decidable. (See [P2).)

For (a), we use a theorem of Slobodskoi (see [S]) that the word problem for
the class of finite groups is undecidable. This implies that the theory of finite-
dimensional vector-spaces with two endomorphisms is undecidable. This implies
that the theory of pairs of finite-dimensional k-vector spaces with an endomor-
phism is undecidable (see [Pr1], Corollary 17.7).

For (b), we use the fact that the theory of finitely generated k[z]-modules is
decidable and the proof of Prest of Baur’s result on the theory of quadruples.

To finish, we would like to make some comments about case (3) of Proposition
2. In that case, there are 2% pure-injective indecomposable R-modules (see [Prl]).

Let R = k(a,b)/(a™,b™, ab, ba) with n + m > 5. The finitely generated inde-
composable modules have been described by Gelfand and Ponomarev (see [G,P1]).
They are of two types: string and band.

Let us give an example of each type (suppose n = 2,m = 3).

A string module M(C) where C = b-2ab—2ab~1:

b b

The points represent isomorphic copies of an one dimensional k-subspace V/,



276 F. POINT

M is the direct sum of those and the actions of a and b are represented by the
arrows.

A band module M(C) where C = b-1ab-lab=1:

The boxes represent isomorphic copies of a g-dimensional k-subspace V and
M is the direct sum of those; f is an automorphism of V such that (V, f) is an
indecomposable k[z,z~1]-module. The actions of a and b are represented by the
arrows.

An analogous case is the case of the dihedral algebra:

R = k(a,b)/(a?,b%, (ab)", (ba)™).

The finitely generated indecomposable have been described by Ringel (see
[R2]). They are of two types: string and band.

We give an example of each type (with the same interpretation of the dia-
grams).

A string module M(C') where C = ab-1ab:

a b a b
oO——O0—»—0—+—O0O0—=—0

A band module M(C) where C' = a~1b~1ab:

f € Aut(V) and (V, f) is an indecomposable k[z,z-1]-module.

Now we would like to give an idea of a tentative decidability proof of the
theory of R-modules in both cases. (See [P3].)

A word will be a finite or infinite one-sided sequence of letters belonging to
{a,a=1,b,b-1}. Let W, be the set of words beginning by an a or a-1.

In any R-module, one can attach to an element z an ordered pair of two
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partial order on the words (see [R2]) and so on the pairs of words.

An element z is maximal in M if one cannot decompose  into a sum of 2

elements z,, z, which have a strictly smaller pair of words associated to them.

NOTATION. Let (D,C) € W, x W,. We write D from the right to the left and
we replace each letter by its inverse. We denote this new sequence by D-. D-~C

is the concatenation of D- and C.

1.

[Bal]
[Ba2]

[Ba3]

The strategy of the proof in both cases is the following:

We show that each module is elementarily equivalent to a direct sum of
pure-injective indecomposable modules containing a maximal element.

. We give two criteria of independence:

Let z,y be two maximal elements belonging to a pure-injective module.

(a) Suppose that for all (e, 8) € k2—{(0,0)}, the pair associated with
az + By is (D,C) and that ar + By is maximal. Suppose that
D-~C is not an infinite periodic two-sided word. Then z and y
belong to distinct summands of M.

(b) Let (F, E) be the pair of words associated with y and (D, C) be
the pair of words associated with z.
Suppose that F-~F # D-~C, then = and y belong to distinct
summands of M.

We describe the pure-injective indecomposable modules containing a
maximal element. There are 2 types of them, the string ones associated
with a word (finite, one-sided infinite, two-sided infinite), the band ones
associated with a finite word of even length and an indecomposable
k[z,z~1]-module where the automorphism z is given by the action of
the word.

. Then we show that we only need invariant sentences of a certain kind

(i.e., those associated with a pair of finite words) to distinguish, up to
elementary equivalence, between two pure-injective non-periodic inde-
composable modules containing a maximal element.
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