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Abstract. Extending the effective version of Puiseux's theorem, we
compute the roots of polynomials inside all fields of the form fc((x))Γ,
where k is real closed and Γ divisible. We use this computation to
prove that every real closed field has an integer part, that is, a discrete
subring which plays for the field the same role as Z plays for R.

Puiseux's theorem in its detailed form allows one to compute the roots of
a polynomial, inside the field of "Puiseux series"; Lemma 3.6 and Remark 3.7
below generalize this computation to the case of a field fc((x))Γ, where k is a real
closed field and Γ a divisible ordered abelian group, even if Γ is non-archimedian.

Two applications are given: the truncation lemma of F. Delon (see 3.5
below), and the existence of an "integer part" in every real closed field (see
1.4 below). Another proof of these results appears in [MR], but without the
generalization of Puiseux's theorem which is one of the chief interests of this
paper. The first author has developed extensions and other applications of such
computations in [M].

§1. Definitions, remarks.

1.1. Let us denote by K the real closure of a totally ordered field K.

1.2. We say that a subring Z of a ring A is an integer part of A if it is
discrete and if for any x € A, there is z <E Z such that z < x < z -f 1. We call
this unique element z the integer part of x and write z = [x].

1.3. S. Boughattas showed in [B] that on the one hand, every totally ordered
field has an ultrapower endowed with an integer part, and on the other hand,
there are ordered fields without integer parts. In fact, he has for every integer
p, a p-real closed field with no integer part. We show that these examples are
optimal, in the sense that every real closed field has an integer part.

1.4. In fact, we will prove a stronger result:

Let A be a convex subfield of K = K. Then any integer part Z of A can be
extended to an integer part ZK of K.
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§2. Convex valuation in a totally ordered field.

The following results are classical results of valuation theory (cf. [K], [KW],
[R]). Let AT be a (totally) ordered field and v a convex valuation on K. We
denote by k the residue field and by Γ = v(K) the abelian totally ordered group
of valuations. When y £ K and υ(y) = 0, y will be the residue image of y in k.

2.1. PROPOSITION. If K is real closed, then k is real closed and Γ is divisible.
Moreover, k can be embedded in K, and there exists a cross section, i.e., a family
{x~* : 7 G Γ} C K+ that satisfies

V7,7' € Γ [V(XΊ) = 7 and x7 - x7' = aΛ+V],

2.2. The field of formal series fc((x))Γ: Given an ordered field k and an

ordered abelian group Γ, we let fc((x))Γ = {0} U {Σt <μ o,iXΊi : μ is an ordinal,

(7t)«<μ a strictly increasing family of Γ, (αj), <μ a family of elements from A;*}.
Then fc((x))Γ is a field with the usual sum and with the product induced

by x7 x7 = x7"1"7 . Moreover, the order on k can be extended to an order on
fc((x))Γ thus: XΊ > XΊ> > k iff 7 < 7' < 0. In addition, if k is real closed and Γ is
divisible then fc((x))Γ is real closed. The map d : fc((x))Γ —> Γϋ {oo}, defined by
d(s) = 70, is a convex valuation on fc((x))Γ with valuation group Γ and residue
field isomorphic to k.

The following result is a version of the theorem: "any henselian subfield of
fc((x))Γ is real closed" [R]. In the following L will be a subfield of fc((x))Γ such
that d(L) = Γ and k C L.

2.3. DEFINITION. Let y be algebraic over L with d(y) = 0. We say that y

satisfies condition (H) if there is a polynomial P(X) = Σfc=o AkXk G L[X] such
that

(i) P(y) = 0 and P is primitive (i.e., min d(Ak) = 0),

(ii) P'(y) ̂  0 (where 7 is the image of P in k[X]).

2.4. PROPOSITION. Let y G L with d(y) = 0. Then there is yi , . . . ,y*

belonging to L such that y = y\ + + y* and yi/xd^ satisfies the condition
(H) over L(yι,... , y, _ι) for all i.

Proof. See [MR].

§3. Integer part in subfields of fc((x))Γ, closure under truncation.

In the following k will be a real closed field and Γ a totally ordered abelian

group.

3.1 DEFINITION. Let s = Σi<μα«'χ7< € &((X))Γ An initial segment of s

(abbreviated by I.S.) is any element £}t <λ a,-x7i with λ < μ. We use (s)<7 to
denote the I.S. £}i<λ a, xΎ< of s where i < λ, 7; < 7, and 7λ > 7. Note that

(s)Ί = 0 when 7 < 70- We say that the subfield L of fc((x))Γ is closed under

truncation if every I.S. of any element of L also belongs to L.

3.2. LEMMA. Assume that k has an integer part Z. Then every subfield
L D k of fc((x))Γ which is closed under truncation, has an integer part ZL D Z.
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Proof. Let ZL = aiχ Γi £ L : 7* < 0 and (7^ = 0 It is

easy to see that ZL is a discrete subring of L. Let y £ L and let y' be the initial
segment of y such that every exponent of y' is strictly negative. Let αj0 be the
term of y with exponent 0. Then if we let [y] = y' + [α;0] - 1 or y = y' + [α J
(depending on y), we get [y] G ZL, and [y] is the integer part of y. D

Next we will study preservation of closure under truncation by field exten-
sions.

3.3. LEMMA. Let s = Σi<aiXai and t = be two elements

of k((x))Γ and (s t)<£ a strict IS. of s t. Then there is a unique strictly
increasing subsequence (α j0 , . . . , α jn ) of (α j ), <μ and a unique strictly decreasing
subsequence (βi0, . . . , /3jn) of (βj)j<v such that α^ + β^ > S and

(E) (s t)<6 = *•(*)<„,„ +(*)</»,„ •((*)<«,, -(«)<„,. )+• •+(*)<*„ •(«-(«)<««,. )•

Subsequently we will say that (s <)<$ is written in form (E).

Exp(^)

(s

(D (2) (n+2)

δ = t + (t)<A (*)<An [5 -

Proof. Let Exp(θ) denote the set of exponents of the series s. Since (s *)<$
is a strict I.S. of s - 1, there exist α 6 Exp(θ) and β G Exp(tf) with α + β > δ.
Let αj0 be the smallest exponent of s satisfying this property, and let βj0 be
the smallest exponent β of t such that e*j0 + β > S. If α + β < δ for all
α € Exp(θ) and for all β G Exp(t) such that α > e*, 0 and β < βj0, then
(•s * t)<6 = t ($)<αio + (t)<βj0 ' ( 5 — ( s)<α, 0 ) and Lemma 3.3. holds. In the other
case let α^ the smallest exponent α of s strictly larger that e*j0 such that there
is β G Exp(t), β < βj0, with α + β > δ, and let βjl be the smallest exponent
β < βj0 of t such that α^ + β > δ. If α + β < δ for all exponents α > α^ of s
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and all β > βjl, then

(s - *)<, = t (s)<aiQ + (*)<Λo ((s)<ail - (s)<aiQ) + (t)<βjι - (3 - (*)<βίι)

and Lemma 3.3. holds again.

Going on inductively, we build two sequences (βjt) and («•,). Since Exp(ί)
is a well-ordered set, the strictly decreasing sequence (βjt) is finite, hence so is
the sequence (αj,). The uniqueness of the sequences (/9j|){L0 and (<*t,)}L0 is easy
to prove. So Lemma 3.3. is proved. D

NOTES. (1) (s £)<$ is the sum of the terms αjδja^ '+A' of s t whose
exponents (α, , βj) are in the area a + β < δ (see the picture).

(2) We can see from the picture that (E) is in fact the expression of (s £)<$
as an exact and finite Riemann sum over this area.

(3) Note that in (E), βjn is the smallest exponent of t such that there is an
α € Exp(s) with β + a > δ.

3.4. LEMMA. Let L be a subfield of k((x))Γ closed under truncation and
let y 6 fc((#))Γ be such that every I.S. of y belongs to L. Then L(y) remains
closed under truncation.

Proof. In the following, H will be any subfield of fc((α?))Γ, and s =

Σ«<μ α«χQίS * — ΣJO bjχP> will be any two elements of H.
FACT 1. If every I.S. of s and t belongs to ff, then every I.S. of s t again

belongs to H. Fact 1 follows from Lemma 3.3.

FACT 2. Let t' = (t)<βx be a strict I.S. oft. Then there is a unique exponent
7 < <*o + β\ of Exp(s) + Exp(t) and two finite sequences as in Lemma 3.3 with

(a) (S t)^ = t' (s)<αiι +(t)<ftil i(s)<αh -(*)<««> ) + • + W<ftn -(*-(*)<αίn )•

(b) For any exponent 7' of Exp(s) + Exp(t) the form (E) of (s i)<Ί uses only
strict I.S. oft1.

Proof. Let 7 be the smallest element of the set {δ G Exp(<s t) : V; < λ (αo +

βj < ̂ )} Since Exp(s) + Exp(ί) is a well-ordered set, 7 exists and 7 < αo + β\.

Let (θf»ι){Uo anc^ (/^ji)ίί=o ^ne ^wo sequences for (θ £)<7 given by Lemma 3.3.
By the definition of 7, we get V; < λ (αo + βj < 7 < ΛO + β\) Thus by the
definition of c*i0 and βj0, α, 0 = α0 and βjo = β\. Hence (s)<α, 0 = (θ)<αo = 0

and (t)<βjo = (0<^λί whence (a) holds. Moreover, let 7' < 7 be an element
of Exp(s) + Exp(t). Then by definition of 7, there exists j < λ such that
7' < OίQ + βj. Hence if we denote by (αrJJ/ΪLo and (/?^)j!L0 the two sequences
given by Lemma 3.2 for (s t)<y, we get α'io = αo, ̂ 0 = βj < β\; and since the
sequence (/?j,)/!L0 is decreasing, (t)<βjl is a strict initial segment of t1 and (b)
holds.

FACT 3. If every I.S. of s belongs to H then every I.S. of l/s again belongs

to if.

Proof. If not, let t1 = (l/s)<0λ be the shortest I.S. of l/s which does not
belong to H. Then by Fact 2 applied to t = l/s
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where C is a finite sum of finite products of I.S. of s and strict I.S. of t'. Thus
C G H and t1 G H, contradicting the definition of t'.

Lemma 3.4 follows obviously from Facts 1 and 3. D

3.5 LEMMA (F. Delon). Let L be a subfield ofk((x))Γ such that k C L and

d(L) = Γ. If L is closed under truncation then so is L.

Remark. This lemma has for us an eventful history. We gave a proof in which
D. Marker pointed out an important error. In order to correct it, we proved Facts
4 and 5 below, from which the lemma follows if you know Ribenboim's theorem as
stated in 2.3. But we did not know it, and it is only after F. Delon outlined for us
a proof of 3.5 based on her work [D] that we completed the proof presented below,
which is different from Delon's proof, since it provides an explicit computation
that does not follow from Delon's work; see Remark 3.7 below.

Proof of 3.5: It is a straightforward consequence of Proposition 2.4 and
Lemma 3.6 below. D

3.6. LEMMA. Let L be a subfield of k((x))Γ closed under truncation with

k C L and d(L) = Γ. Let y be any element of L satisfying d(y) = 0 and the

statement (H). Then any I.S. of y belongs again to L.

Proof. We shall prove Lemma 3.6 by way of contradiction: if it fails, there
is an I.S. of y that does not belong to L. Let y' = (y)</?λ be the shortest I.S.
of t satisfying this property. Let P(X) = Xn + An-ιXn~l + + AQ be given
by hypothesis and let K be the set of exponents k φ 0 of P such that d(A^) = 0
(note that /c has at least one element). We have to make a distinction between
two cases and get a contradiction in each of them.

First case. Assume that there exists a convex subgroup ΓQ of Γ such that
Exp(y') is cofinal in Γ0 (in other words Vα,/? G Exp(y') Ξty G Exp(y') (a +
β < τ)) Let (Afc)<r0 denote the largest initial segment of Ak such that
Exp((Ajfc)<r0) C ΓQ (this definition is available since ΓQ is a convex subgroup)
and let Q(X) = ΣLo(^*)<Γ0^* € L[X] (recall that L is closed under trun-
cation). Q is not constant since Vk G /c d(Ak) = 0. So P(X) = Q(X) + R(X)

where R(X) = Σ£=o(^ - (^*)<Γ0)** = ΣLo **** with <W > Γo Hence
d(R(y)) > min(d(Bfc)) > Γ0. Moreover, Taylor's formula gives Q(y) = Q(y' +
y") = Q(y') + T, where d(T) > Γ0. So 0 = P(y) = Q(y') + T + R(y) = Q(y') + S
with Exp(Q(y')) C Γ0 and d(S) > Γ0. Therefore Q(y') = 0, contradicting the
choice of y'.

Second case. Assume the negation for the hypothesis of the first case: i.e.,
Ξα, β € Exp(y') Vft € Exp(y') (βj <a + β).

We prove first two facts:

FACT 4. Let 0n Exp(y) denote the set {α0 +<*! + ••• + <*„: Vi, αj G Exp(y)}.
Let 7 be the smallest element of the set Δ = {S G Θn Exp(y) : Vj < λ, βj < δ}.
Then

(a) Vk>l,(yk)<Ί = y'.Bk + Ck
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where Bk and Ck belong to the ring generated by the strict I.S. of y'. Moreover

(b) If 7' < 7 belongs to 0n Exp(y), then (y*)<y belongs to the ring gener-
ated by the strict I.S. of y'.

Proof of Fact 4- First, we can see that Δ is not an empty set; indeed by
hypothesis there are a and β belonging to Exp(y') such that Vj < λ, βj < a + β,
hence Δ contains an element of 02 Exρ(y) (since d(y) = 0 => Θ2 Exp(y) C
0n Exp(y)). So, since 0n Exp(y) is a well-ordered set, 7 is well defined. Since
Vfc < n, Exp(y*~1) C 0n Exp(y), by the same argument as in Fact 2(a), we can
easily prove that there are a sequence 7 > αi > > αm > 0 of Exp(y) and a
sequence 0 < 71 < < 7m < 7 of 0n Exp(y) such that, Vfc, 1 < k < n:

(1)

(y*)<7 = (y y*-1)^ = (y)< y (y^'k n + (y)<βl [(y*-1)^ - (y*1)^] +
••• + (y)<βm [(y*-1)<7-(y*-1)<7m]

By definition of 7, (y)<7 = y', moreover Vz, (y)<a, is a strict initial segment of
y'. Hence we get, Vfc < n:

(2) (y*)<7 = y' (y*-1)<7l + yi - [(y*'1)^ - (y*'1)^] +
+ ym [(yfc-1)<Ύ-(yfc-1)<^]

where y\ , . . . , ym are strict I.S. of y'. Now we are able to end the proof of Fact
4 by induction on fc:

(i) fc = 1. By definition of 7, (y)<7 = y', then Fact 4(a) holds with C\ = 0
and BI = 1; moreover for any 7' in 0n Exp(y), strictly less than 7, there is βj in
Exρ(y') such that 7' < βj, so (y)<y is a strict I.S. of y;, then Fact 4(b) holds.

(ii) Assume that Fact 4 holds for fc — 1. Recall (2) above. By induction
hypothesis (yfc"1)<7 = y' #*-ι + C*-ι, and Vί < m, 7,- < 7, then (y*~1)<7ί

belongs to the ring generated by the strict I.S. of y'. Let Bk = (y*~1)<7i —
ym Bk-ι and

ck = yι [(yk~l)<π - (y*-1)^] + - + [ft-i - (yk~l)<^
then (2) becomes

(yk)^ = y' Bk + Ck

where Bk and Cjt belong to the ring generated by the strict I.S. of y'. So Fact 4(a)
holds. Fact 4(b) holds using the same argument as in Fact 2(b) and induction
hypothesis.

FACT 5. Consider the truncation of P(y) at the exponent 7 given by Fact
4. Then 0 = (P(y))<7 = y'A + B, where A, B G L. Moreover d(A) > 0 and we

Proof of Fact 5.
(i) First suppose that fc G K. Lemma 3.3 with s — Ak and t = yk gives

(1) (Ak y*)<7 = y* (A*)<aio + (y*)<Ao ((At)<βtl - (Ak)<aίo ) +

(yk)<βin (Ak-(Ak)<aίj.
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By the definition of α;0 , βjQ and since d(Ak) = 0, we have αj0 = 0 and (yk)<βjo =

(y*)<7 So (1) becomes

(2) (Ak - y*)<7 = (y*)<7 - (Ak)<ail + - - - + (yk}<βjn (Ak - (Ak)<Qin ).

Since the sequence (/?,-,) is decreasing, all I.S. of y* in (2) are I.S. of (y*)<7. By
Fact 4(b) they belong to the ring generated by the strict I.S. of y'. Hence they
belong to L. Therefore we can write:

(3) (Ak y*)<7 = (y*)<7 (Ak)<aiί + C

where C G L. Now Fact 4 gives

(4) (Ak y*)<7 = (y'Bfc + Ck) (40<βil + C = y' - Bjb(^fc)<«il + S'kJ

with Si € I. So (Afc y*)<7 = y'-Sfc + S*, where Skj S'k G L. Moreover d(Sk) = 0
and S * = 5 fc Zfc = 1* fc(y)*"1

(ii) We now consider k ^ 0 and k £ K. By Lemma 3.3 we get

(1) (Λfc y*)<7 = y* (Afc)<αio + (

We have d(Ajt) + 7 > 7? and in this case, αj0 = d(Ak) and ^9j0 < 7.
Therefore exactly as in (i) we get (Ak -yk)<^ = y' Sk + S'k, where Sk, S'k G L.

But then d(5*) = d(Bk) + d(Ak) > 0, or Sk = 0. Note that (A0)<7 € L.

(iii) Let A = ££=0 Sk and 5 = ^^=0 S£. Then (i) and (ii) give us
(P(y))<7 = ΣLo(^yfc)<τ = y' A + J5, where A,B G_ I, and d(A) >
min(d(5fc)) > 0. Moreover, (i) and (ii) yield A = Σkz* kAk(y)h~l. So Fact
5 holds.

We next prove that A ^ 0. Observe that £^€K kAk(y)k~l = P'(y). By

hypothesis, P'(y) ^ 0. Thus 1^0, hence A ^ 0. Finally, y; = -B/A G i,
contradicting the choice of y'. So Lemma 3.6 is proved in this case too. D

3.7. Remark. The above proof computed y' from its strict initial segments;
this computation actually holds for every I.S. y' of y, and together with Proposi-
tion 2.4 and Lemma 3.4, it provides a computation, as effective as can be in the
most general case, of any roots of a polynomial inside fc((x))Γ. This is developed
in [M].

§4. Every real closed field has an integer part.

Let K be closed, A a convex subring, and Z an integer part of A. Let v be
the convex valuation given by A. Then the residue field k can be embedded in K
in such a way that Z becomes an integer part of k. Let Γ = v(K), {XΊ : 7 G Γ}
as in 2.2, and denote by HQ the subfield generated by k and {XΊ : 7 G Γ}.

4.1. LEMMA. Let H be a real closed subfield of K, HQ C H, and assume
f : H — > k((x))τ with the following properties:
(a) the restriction of f to HQ is Id
(b) f is an injective homomorphism of ordered fields
(c) ifye
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(d) f(H) is closed under truncation.

Then for any y € K - H, f can be extended to f : H(y) -> fc((x))Γ which
satisfied the conditions (a), (b), (c), (d).

Proof. By hypothesis we may identify H with f(H) in fc((-X'))Γ. Let us say
that the series Σi<α

 α»χ7< € H is a development at order a of y with respect
to H, if v(y — Σt <α α tx

7') > 7, for all z < a. By 2.3, since HQ C H, y has a
development at any finite order with respect to H. Let S(y) denote the set of all
the developments of y with respect to H. S(y) is totally ordered by the relation
"initial segment of." Let /'(y) € fc((x))Γ be the least upper bound of S(y) for
the relation "I.S. of". We can see that /'(y) £ H. Moreover, we have:

FACT. Vz G H (z < y & f ( z ) < /'(y)).

Proof, z < y =* υ(z) > v(y). If υ(z) > v(y), then d(z) > d(f(y)) and thus
f ( z ) < /'(y). In the other case v(z) = v(y). Then y — z = axa + y', where a > 0
and v(y') > a = υ(y — z) > v(y) = v(y). Let z1 = (z)<a+ι + αxα, then since
H is closed under truncation, z' 6 H, and z1 is the development of y at order a.
with respect to H. We get

z < (*)β+ι 4- (α/2)xα < (*)<«+! -f αxα + s

for any s such that v(s) > a. Hence z is strictly smaller than every element of
5(y), and finally z < f(y).

Thus we can extend /' to an isomorphism of H (y) onto L where L is the field
generated over H by /'(y) in fc((x))Γ. In addition, by the construction of /'(y)

all strict I.S. of /'(y) belong to H. Thus L and L are closed under truncation,
by Lemmas 3.4 and 3.5. D

4.2. COROLLARY. Under the same hypotheses as in 4.1, there is f : K —*
fc((x))Γ with the properties (a), (b), (c)} (d).

Proof. Transfinite iteration of 4.1, beginning with H = HQ. D

From Lemma 3.2 applied to the image of the application / given by 4.2, we
have finally:

4.3. THEOREM. K has an integer part ZK D Z.

4.4. COROLLARY. Every real closed field admits an integer part.

Proof: Apply the preceding theorem with Z = Z C K. D

Acknowledgments: Thanks to D. Marker who pointed out an error, and
to F. Delon who allowed us to correct it.
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