§12. ITERABILITY

We now discharge our obligation to show that various of the structures we encountered in $\S 11$ are iterable. We shall concentrate on proving Lemma 11.1, which states, in the language of $\S 11$, that \mathcal{N}_{η} is reliable for all η. The other iterability lemmas from $\S 11$ are proved in almost the same way. A complete proof of these lemmas will be given in the paper [S?a].

As we observed in $\S 11$, it is enough to show
Theorem 12.1. Let \mathcal{N}_{η} be the η th " \mathcal{N}-model" of the construction of §11. Let $0 \leq k \leq \omega$ and suppose $\mathfrak{C}_{k}\left(\mathcal{N}_{\eta}\right)$ exists. Then $\mathfrak{C}_{k}\left(\mathcal{N}_{\eta}\right)$ is k-iterable.

Proof. The proof of theorem 12.1 will take up all of this final section of the paper. Let

$$
\mathcal{T}=\left\langle T, \operatorname{deg}, D,\left\langle E_{\alpha}^{\mathcal{T}}, \mathcal{P}_{\alpha+1}^{*} \mid \alpha+1<\theta\right\rangle\right\rangle
$$

be a k-bounded, k-maximal iteration tree on

$$
\mathcal{P}_{0}=\mathfrak{C}_{k}\left(\mathcal{N}_{\eta}\right) .
$$

The assumption of k-maximality is not necessary, but it simplifies the notation a bit, and we have never used non-maximal trees anyway. We let \mathcal{P}_{α} be the α th model of \mathcal{T}. Suppose that $\mathcal{T} \upharpoonright \lambda$ is simple for all $\lambda<\theta$, and that θ is a limit ordinal. We shall show that \mathcal{T} has a cofinal wellfounded branch.

For $\gamma<\eta$ such that Case 1 applied in the definition of $\mathcal{M}_{\boldsymbol{\gamma}+1}$ from $\mathcal{M}_{\boldsymbol{\gamma}}$, that is, such that $\mathcal{N}_{\gamma+1}$ is equal to \mathcal{M}_{γ} expanded by a new predicate for a last extender, we let F_{γ}^{*} be the background extender for the last extender of $\mathcal{N}_{\gamma+1}$. Thus F_{γ}^{*} is $\nu+\omega$ strong, where $\nu=\nu^{\mathcal{N}_{\gamma+1}}$. Set

$$
\left.\mathbb{C}=\left(\left\langle\mathcal{N}_{\gamma} \mid \gamma \leq \eta\right\rangle,\left\langle F_{\gamma}^{*}\right| \gamma<\eta \text { and } F_{\gamma}^{*} \text { defined }\right\rangle\right)
$$

Our strategy for the proof of theorem 12.1 is straightforward. We shall associate to \mathcal{T} a tree \mathcal{U} which will be an iteration tree on V in the sense of [MS]. As such the models of U will be well founded by results methods of [MS]. The tree ordering of U will be the same tree ordering, T, as \mathcal{T}, and we will define embeddings π_{α} from the models of \mathcal{U} to those of \mathcal{U}. Thus the models of the tree \mathcal{T} will also be well founded, which is what we need to show.

Since \mathcal{U} is not a fine structure iteration tree it doesn't make sense to ask that $\vec{\pi}$ be a tree-embedding in the sense of section 5 . However, if we let R_{α} be the α th model of U then the embeddings π_{α} will be embeddings from the α th model \mathcal{P}_{α} of \mathcal{T} into $Q_{\alpha}=\mathfrak{C}_{j}(\mathcal{S}) \in R_{\alpha}$ where \mathcal{S} is on the sequence of models of $i_{0}^{\mathcal{U}}(\mathbb{C})$ and $j=\operatorname{deg}(\alpha)$. If we modify the definition of a tree-embedding for this case by asking that π_{α} be a $\left(\operatorname{deg}^{\tau}, Y_{\alpha}\right)$-embedding into Q_{α} instead of into R_{α} then $\vec{\pi}$ will satisfy this definition.

We must also maintain a certain amount of agreement between π_{α} and the π_{β} 's for $\beta<\alpha$. We now state some definitions which allow us to describe this agreement.

Definition 12.1.1. Let \mathcal{M} be a premouse, and $\omega \lambda \leq \mathrm{OR}^{\mathcal{M}}$. Then the λ-dropdown sequence of \mathcal{M} is the sequence $\left\langle\left\langle\beta_{0}, k_{0}\right\rangle, \ldots,\left\langle\beta_{i}, k_{i}\right\rangle\right\rangle$ defined as follows:
(1) $\left\langle\beta_{0}, k_{0}\right\rangle=\langle\lambda, 0\rangle$.
(2) $\left\langle\beta_{i+1}, k_{i+1}\right\rangle$ is the lexicographically least pair $\langle\beta, k\rangle$ such that $\lambda \leq \beta$, $\omega \beta \leq \mathrm{OR}^{\mathcal{M}}$, and $\rho_{k}\left(\mathcal{J}_{\beta}^{\mathcal{M}}\right)<\rho_{k_{i}}\left(\mathcal{J}_{\boldsymbol{\beta}_{1}}^{\mathcal{M}}\right)$.
If there is no such pair $\langle\beta, k\rangle$ then $\left\langle\beta_{i+1}, k_{i+1}\right\rangle$ is undefined. Let i be the largest integer such that $\left\langle\beta_{i}, k_{i}\right\rangle$ is defined.

Notice that if $\left\langle\left\langle\beta_{e}, k_{e}\right\rangle \mid e \leq i\right\rangle$ is the λ-dropdown sequence of \mathcal{M}, then $k_{e}<\omega$ for all $e \leq i$ and

$$
\left\langle\beta_{e}, k_{e}\right\rangle<_{\text {lex }}\left\langle\beta_{e+1}, k_{e+1}\right\rangle
$$

for all $e<i$. Moreover every ordinal of the form $\rho=\rho_{k}\left(\mathcal{J}_{\beta}^{\mathcal{M}}\right)$ for $k \in \omega$, $\beta \omega \leq \mathrm{OR}^{\mathcal{M}}$, and $\rho \leq \lambda \leq \beta$ is in the set $\left\{\rho_{k_{e}}\left(\mathcal{J}_{\boldsymbol{\beta}_{e}}^{\mathcal{M}}\right) \mid e \leq i\right\}$.

Now we prepare to define the (j, ξ)-resurrection sequence for an extender E, where E is on the extender sequence of $\mathcal{M}=\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right)$, the j th core of one of the models of our construction \mathbb{C}. We are allowing the possibility that $E=\dot{F}^{\mathcal{M}}$. The idea is just to trace E back to its origin as the last extender of some \mathcal{N}_{γ} with $\gamma \leq \xi$.

Let $\lambda=\operatorname{lh} E$, and suppose that $\left\langle\left\langle\beta_{0}, k_{0}\right\rangle \cdots\left\langle\beta_{i}, k_{i}\right\rangle\right\rangle$ is the initial segment of the λ-dropdown sequence of \mathcal{M} consisting of those pairs $\langle\beta, k\rangle$ on the sequence such that $\langle\beta, k\rangle \leq_{\text {lex }}\langle\alpha, j\rangle$, where $\omega \alpha=\mathrm{OR}^{\mathcal{M}}$. Our first goal is to show that there is a unique $\gamma \leq \xi$ such that $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}=\mathfrak{C}_{k_{1}}\left(\mathcal{N}_{\gamma}\right)$. Fix α such that $\omega \alpha=O R^{\mathcal{M}}$ and let $\kappa=\rho_{k_{1}}\left(\mathcal{J}_{\beta_{1}}^{\mathcal{M}}\right)$.

Claim 1. Let $\langle\gamma, e\rangle \leq_{\text {lex }}\langle\xi, j\rangle$ and suppose $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$ is an initial segment of $\mathscr{C}_{e}\left(\mathcal{N}_{\gamma}\right)$. Then for all $\langle\tau, n\rangle$ such that $\langle\gamma, e\rangle \leq_{\text {lex }}\langle\tau, n\rangle \leq_{\text {lex }}\langle\xi, j\rangle, \mathcal{J}_{\beta_{2}}^{\mathcal{M}}$ is an initial segment of $\mathfrak{C}_{n}\left(\mathcal{M}_{\tau}\right)$.

Proof. Let $\kappa=\rho_{k_{i}}\left(\mathcal{J}_{\mathcal{\beta}_{i}}^{\mathcal{M}}\right)$, which is the minimum value of $\rho_{k}\left(\mathcal{J}_{\beta}^{\mathcal{M}}\right)$ for pairs $\langle\beta, k\rangle$ satisfying $\langle\lambda, 0\rangle \leq_{\text {lex }}\langle\beta, k\rangle \leq_{\text {lex }}\langle\alpha, j\rangle$. Notice that $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$ is k_{i}-sound, since $k_{i} \leq j$ if $\beta_{i}=\alpha$. It will suffice then to show that $\rho_{n}\left(\mathcal{N}_{\tau}\right) \geq \kappa$ whenever $\langle\gamma, e\rangle \leq_{\text {lex }}\langle\tau, n\rangle \leq_{\text {lex }}\langle\xi, j\rangle$. (We leave the details here to the reader.) So suppose $\mu<\kappa$ and $\mu=\rho_{n}\left(\mathcal{N}_{\tau}\right)$ for some such $\langle\tau, n\rangle$. Let μ be the minimal value of such a $\rho_{n}\left(\mathcal{N}_{\tau}\right)$. Then $\mathfrak{C}_{n}\left(\mathcal{N}_{\tau}\right)$ is an initial segment of $\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right)=\mathcal{M}$ by 8.1. The minimality of κ implies $\mathfrak{C}_{n}\left(\mathcal{N}_{\tau}\right)$ is a proper initial segment of $\mathcal{J}_{\lambda}^{\mathcal{M}}$. This contradicts that there is a subset of μ which is definable over $\mathscr{C}_{n}\left(\mathcal{N}_{\tau}\right)$ but not a member of $J_{\kappa}^{\mathcal{M}}$.

CLAIM 2. If $\langle\gamma, e+1\rangle \leq_{\text {lex }}\langle\xi, j\rangle$ and $\mathcal{J}_{\beta i}^{\mathcal{M}}$ is a proper initial segment of $\mathfrak{C}_{e+1}\left(\mathcal{N}_{\gamma}\right)$,
then $\mathcal{J}_{\boldsymbol{\beta}_{\boldsymbol{i}}}^{\mathcal{M}}$ is a proper initial segment of $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$.
Proof. By the 1st claim $\rho_{e+1}\left(\mathcal{N}_{\gamma}\right) \geq \kappa$. But $\beta_{i}<\left(\kappa^{+}\right)^{\mathcal{C}_{e+1}}\left(\mathcal{N}_{\gamma}\right)$ since $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}$ has projectum κ. By 8.1, $\mathcal{J}_{\boldsymbol{\beta}_{\mathbf{i}}}^{\mathcal{M}}$ is a proper initial segment of $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$.

Claim 3. There is a unique $\gamma \leq \xi$ s.t. $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}=\mathfrak{C}_{k_{1}}\left(\mathcal{N}_{\gamma}\right)$.
Proof. Let $\langle\gamma, e\rangle$ be $\leq_{\text {lex }}$ least such that $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$ is an initial segment of $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$.
Suppose first that $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}=\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$. If $e \leq k_{i}$, then since $\mathcal{J}_{\boldsymbol{\beta}_{i}}^{\mathcal{M}}$ is $\boldsymbol{k}_{\boldsymbol{i}}$ sound, $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}=\mathfrak{C}_{k_{i}}\left(\mathcal{N}_{\gamma}\right)$ as desired. To see that $e \leq k_{i}$, suppose toward a contradiction that $k_{i}<e$. For $t, u \leq e$ set

$$
\rho_{t}^{u}=\rho_{t}\left(\mathscr{C}_{u}\left(\mathcal{N}_{\gamma}\right)\right)
$$

It will be enough to see that $\rho_{k_{1}}^{k_{1}}=\rho_{e}^{e}$, since this implies that $\mathfrak{C}_{k_{i}}\left(\mathcal{N}_{\gamma}\right)=\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)=$ $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}$, contrary to the minimality of $\langle\gamma, e\rangle$. So suppose we have t s.t. $k_{i} \leq t<e$ and $\rho_{t+1}^{t+1}<\rho_{t}^{t}$. We may assume t is the largest such. Now the reader can easily check 1 that for any $u, \rho_{u+1}^{u}=\rho_{u+1}^{u+1}$, and $\rho_{u+1}^{u}<\rho_{u}^{u} \Rightarrow \rho_{u+1}^{u+1}<\rho_{u}^{u+1}$. Thus we have $\rho_{t+1}^{t+1}<\rho_{t}^{t+1} \leq \rho_{k_{1}}^{t+1}$. As $\mathfrak{C}_{t+1}\left(\mathcal{N}_{\gamma}\right)=\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$ by the maximality of t, $\rho_{e}^{e}=\rho_{t+1}^{t+1}<\rho_{k_{1}}^{t+1}=\rho_{k_{1}}^{e}$. But $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)=\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$, so this contradicts the fact that $\left\langle\beta_{i}, k_{i}\right\rangle$ is the last term of this restriction of the λ-dropdown sequence of \mathcal{M}, so that $\rho_{e}\left(\mathcal{J}_{\beta_{i}}^{\mathcal{M}}\right)<\rho_{k_{i}}\left(\mathcal{J}_{\beta_{i}}^{\mathcal{M}}\right)$ is impossible if $k_{i}<e \leq j$. If $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}=\mathcal{M}$ then we must verify that $e \leq j$ in order to apply this fact. Now if $\gamma=\xi$, then $e \leq j$ by the choice of $\langle\gamma, e\rangle$, and if $\gamma<\xi$, then $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)=\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right)$ and it is easy to see that this is impossible.

Next, suppose $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$ is a proper initial segment of $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right)$. From Claim 2, we see that $e=0$, so that $\mathcal{J}_{\beta_{1}}^{\mathcal{M}}$ is a proper initial segment of \mathcal{N}_{γ}.

If γ is a limit, then the definition of \mathcal{N}_{γ} guarantees that $\mathcal{J}_{\mathcal{\beta}_{1}}^{\mathcal{M}}$ is a proper initial segment of some $\mathfrak{C}_{\omega}\left(\mathcal{N}_{\tau}\right)$ for $\tau<\gamma$. But then Claim 2 implies $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}$ is a proper initial segment of \mathcal{N}_{τ}, a contradiction. Thus γ is a successor.

Let $\gamma=\tau+1$. From the definition of $\mathcal{N}_{\tau+1}$ (either we add an extender predicate to \mathcal{M}_{τ} or extend the J-hierarchy for one more step), $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}$ is an initial segment of $\mathcal{M}_{\tau}=\mathbb{C}_{\omega}\left(\mathcal{N}_{\tau}\right)$. This contradicts the minimality of $\langle\gamma, e\rangle$.

Thus $\mathcal{J}_{\boldsymbol{\beta}_{i}}^{\mathcal{M}}=\mathfrak{C}_{k_{i}}\left(\mathcal{N}_{\gamma}\right)$ for some $\gamma \leq \xi$. There is a unique such γ by the following easy fact, whose proof we omit: if $\gamma \neq \delta$ then $\mathfrak{C}_{e}\left(\mathcal{N}_{\gamma}\right) \neq \mathfrak{C}_{k}\left(\mathcal{N}_{\delta}\right), \forall \gamma, \delta, e, k$.

We can now define the (j, ξ) resurrection sequence for E.
Case 1. $i=0$. Notice that $\rho_{1}\left(\mathcal{J}_{\lambda}^{\mathcal{M}}\right)<\lambda$, since $\mathcal{J}_{\lambda}^{\mathcal{M}}$ is active. Since $\left\langle\beta_{1}, k_{1}\right\rangle=$ $\langle\lambda, 1\rangle$ is not defined we must have $\mathcal{N}_{\xi}=\mathcal{M}=\mathcal{J}_{\lambda}^{\mathcal{M}}$ and $j=0$. Then E is the

[^0]last extender of \mathcal{N}_{ξ}, and the (j, ξ) resurrection sequence for E is defined to be the empty sequence.

CASE 2. $i>0$. Let $\gamma \leq \xi$ be such that $\mathcal{J}_{\beta_{i}}^{\mathcal{M}}=\mathfrak{C}_{\boldsymbol{k}_{i}}\left(\mathcal{N}_{\gamma}\right)$. Notice that $\boldsymbol{k}_{i} \geq 1$ as $\rho_{k_{i}}\left(\mathcal{N}_{\gamma}\right)<\lambda$ and $\omega \lambda \leq \mathrm{OR}^{\mathcal{N}_{\gamma}}$. Let $\pi: \mathfrak{C}_{k_{i}}\left(\mathcal{N}_{\gamma}\right) \rightarrow \mathfrak{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma}\right)$ be the inverse of the collapse. Then the (j, ξ) resurrection sequence for E is $\left\langle\beta_{i}, k_{i}, \gamma, \pi\right\rangle-S$, where S is the ($k_{i}-1, \gamma$) resurrection sequence for $\pi(E)$. (Here if E is the last extender of $\mathfrak{C}_{k_{1}}\left(\mathcal{N}_{\gamma}\right)$, then by $\pi(E)$ we mean the last extender of $\mathfrak{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma}\right)$.)

This completes the recursive definition of the (j, ξ) resurrection sequence for E.

For any premouse \mathcal{P} with $\omega \alpha=\mathrm{OR}^{\mathcal{P}}$ and $t<\omega$, and $\omega \lambda \leq \mathrm{OR}^{\mathcal{P}}$, the (t, λ) dropdown sequence of \mathcal{P} is just that initial segment of the λ-dropdown sequence of \mathcal{P} consisting of pairs (β, k) such that $(\beta, k) \leq_{\text {lex }}(\alpha, t)$.

Now let us return to the situation of Case 2 of the definition of the (j, ξ) resurrection sequence for E, and adopt the notation there. Let us adopt our standard notational device by taking $\pi\left(\mathrm{OR}^{\mathcal{C}_{k_{i}}}\left(\mathcal{N}_{\gamma}\right)\right.$ to be $\mathrm{OR}^{\mathcal{C}_{k_{i}-1}\left(\mathcal{N}_{\gamma}\right)}$. One can easily see from our results on preservation of projecta that the ($k_{i}-1, \pi(\lambda)$) dropdown sequence for $\mathfrak{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma}\right)$, which is what we use to resurrect $\pi(E)$, has the form

$$
\left\langle\left\langle\pi\left(\beta_{0}\right), k_{0}\right\rangle, \ldots,\left\langle\pi\left(\beta_{i-1}\right), k_{i-1}\right\rangle\right\rangle \subset u
$$

where

$$
u=\varnothing \quad \text { or } \quad u=\left\langle\pi\left(\beta_{i}\right), k_{i}-1\right\rangle
$$

We do not know whether it is possible that $u \neq \varnothing$. In order for this to happen we would need to have $\left\langle\beta_{i-1}, k_{i-1}\right\rangle \neq\left\langle\beta_{i}, k_{i}-1\right\rangle, \rho_{k_{i}-1}\left(\mathcal{J}_{\beta_{i}}^{\mathcal{M}}\right)=\rho_{k_{i-1}}\left(\mathcal{J}_{\beta_{i-1}}^{\mathcal{M}}\right)$, and $\rho_{k_{i}-1}\left(\mathfrak{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma}\right)\right)<\pi\left(\rho_{k_{i}-1}\left(\mathcal{J}_{\beta_{i}}^{\mathcal{M}}\right)\right)$. We only know that $\rho_{k_{i}-1}\left(\mathfrak{C}_{k_{i}-1}\left(\mathcal{N}_{\gamma}\right)\right)=$ $\sup \pi^{\prime \prime} \rho_{k_{i}-1}\left(\mathcal{J}_{\beta_{i}}^{\mathcal{M}}\right)$. It seems plausible that π preserves the $k_{i}-1$ st projectum, so that in fact $u=\varnothing$ must hold.

Notice that if $u \neq \varnothing$, then the last integer k_{i} in the dropdown sequence gets decreased by 1 at the next stage of resurrection. Thus there are cofinally many stages in the resurrection at which the u associated to the stage is \varnothing. These stages are important, so we now give a formal definition.

Let E be on the sequence of $\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right), \lambda=\operatorname{lh} E$, and let

$$
\left\langle\left\langle\beta_{0}, k_{0}\right\rangle, \ldots,\left\langle\beta_{i}, k_{i}\right\rangle\right\rangle
$$

be the (j, λ) dropdown sequence of $\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right)$, and let

$$
\left\langle\left\langle\delta_{0}, \ell_{0}, \gamma_{0}, \pi_{0}\right\rangle, \ldots,\left\langle\delta_{t}, \ell_{t}, \gamma_{t}, \pi_{t}\right\rangle\right\rangle
$$

be the (j, ξ) resurrection sequence for E. (We suppose the resurrection to be nonempty. Thus $\left(\beta_{1}, k_{1}\right)=(\lambda, 1)$ is defined.) We have at once from the definitions
that

$$
\begin{aligned}
& \left(\delta_{0}, \ell_{0}\right)=\left(\beta_{i}, k_{i}\right), \\
& \mathcal{J}_{\delta_{0}}^{\left.\mathcal{E}, \mathcal{N}_{\ell}\right)}=\mathfrak{C}_{\ell_{0}}\left(\mathcal{N}_{\gamma_{0}}\right), \\
& \pi_{0}: \mathfrak{C}_{\ell_{0}}\left(\mathcal{N}_{\gamma_{0}}\right) \rightarrow \mathfrak{C}_{\ell_{0}-1}\left(\mathcal{N}_{\gamma_{0}}\right),
\end{aligned}
$$

and for $1 \leq e \leq t$,

$$
\begin{aligned}
\left(\delta_{e}, \ell_{e}\right)= & \text { last term in the }\left(\ell_{e-1}-1, \pi_{e-1} \circ \cdots \circ \pi_{0}(\lambda)\right) \\
& \text { dropdown sequence of } \mathfrak{C}_{\ell_{e-1}-1}\left(\mathcal{N}_{\gamma_{e-1}}\right) \\
& \mathcal{J}_{\delta_{e}}^{\mathcal{C}_{\ell_{e-1}-1}\left(\mathcal{N}_{\gamma_{e-1}}\right)}=\mathscr{C}_{\ell_{e}}\left(\mathcal{N}_{\gamma_{e}}\right)
\end{aligned}
$$

and

$$
\pi_{e}: \mathfrak{C}_{\ell_{e}}\left(\mathcal{N}_{\gamma_{e}}\right) \rightarrow \mathbb{C}_{\ell_{e}-1}\left(\mathcal{N}_{\gamma_{e}}\right) .
$$

From our earlier remarks on the new dropdown sequences, we can find stages

$$
1 \leq e_{1}<e_{2}<\cdots<e_{i-1}=t
$$

such that

$$
\left.\begin{array}{l}
\left(\delta_{e_{1}}, \ell_{e_{1}}\right)=\pi_{e_{1}-1} \circ \cdots \circ \pi_{0}\left(\left(\beta_{i-1}, k_{i-1}\right)\right) \\
\left(\delta_{e_{2}}, \ell_{e_{2}}\right)=\pi_{e_{2}-1} \circ \cdots \circ \pi_{0}\left(\left(\beta_{i-2}, k_{i-2}\right)\right) \\
\quad \vdots \\
\left(\delta_{e_{i-1}}, \ell_{e_{1-1}}\right)
\end{array}\right)=\pi_{e_{e_{-1}-1}} \circ \cdots \circ \pi_{0}\left(\left(\beta_{1}, k_{1}\right)\right) .
$$

Here if $e_{1}=1$, the notation " $\pi_{e_{1}-1} \circ \cdots \circ \pi_{0}$ " stands for π_{0}. We also set $e_{0}=0$, and interpret " $\pi_{e_{0}-1} \circ \cdots \circ \pi_{0}$ " to stand for the identity embedding. We then have for $0 \leq n \leq i-1$

$$
\left(\delta_{e_{n}}, \ell_{e_{n}}\right)=\pi_{e_{n}-1} \circ \cdots \circ \pi_{0}\left(\left(\beta_{i-n}, k_{i-n}\right)\right)
$$

This enables us to define embeddings and models resurrecting the various $\mathcal{J}_{\beta_{e}}^{\mathcal{M}}$, where $\mathcal{M}=\mathbb{C}_{j}\left(\mathcal{N}_{\xi}\right)$. Set

$$
\sigma_{i-n}=\pi_{e_{n}} \circ \pi_{e_{n}-1} \circ \cdots \circ \pi_{1} \circ \pi_{0}
$$

so that

$$
\sigma_{i-n}: \mathcal{J}_{\mathcal{\beta}_{i-n}}^{\mathcal{M}} \rightarrow \mathfrak{C}_{\ell_{e_{n}}-1}\left(\mathcal{N}_{\gamma_{e_{n}}}\right)
$$

is an $\ell_{e_{n}}-1$ embedding, for $0 \leq n \leq i-1$. In order to simplify the indexing a bit set $\tau_{i-n}=\gamma_{e_{n}}$ for $0 \leq n \leq i-1$. Notice also that $k_{i-n}=\ell_{e_{n}}$. Thus, setting $p=i-n$, we have that for $1 \leq p \leq i$

$$
\sigma_{p}: \mathcal{J}_{\beta_{\boldsymbol{p}}}^{\mathcal{M}} \rightarrow \mathfrak{C}_{k_{p}-1}\left(\mathcal{N}_{\tau_{p}}\right)
$$

is a $k_{p}-1$ embedding. Let us set

$$
\operatorname{Res}_{p}=\mathfrak{C}_{k_{p}-1}\left(\mathcal{N}_{\tau_{\boldsymbol{p}}}\right)
$$

and call $\left(\sigma_{p}, \operatorname{Res}_{p}\right)$ the p th partial resurrection of E from stage (j, ξ). (Notice that if $p<q$, then Res $_{p}$ represents "more resurrection" than Res_{q} in the sense that it goes back to an earlier model \mathcal{N}_{η} and hence nearer to the first appearance of the prototype of E. On the other hand, Res ${ }_{p}$ resurrects less of \mathcal{M} in the sense that the domain $\mathcal{J}_{\beta_{\boldsymbol{p}}}^{\mathcal{M}}$ of $\sigma_{\boldsymbol{p}}$ is smaller than that of $\sigma_{\boldsymbol{q}}$.
The partial resurrections of E agree with one another in the following way: For $1 \leq p \leq i$, let

$$
\kappa_{p}=\rho_{k_{p}}\left(\mathcal{J}_{\boldsymbol{\beta}_{\boldsymbol{p}}}^{\mathcal{M}}\right) .
$$

Then one can check without too much difficulty that $\kappa_{1}>\kappa_{2}>\cdots>\kappa_{i}$, and that if $p<q$ then $\sigma_{p} \upharpoonright \kappa_{q-1}=\sigma_{q} \backslash \kappa_{q-1}$ and the models Res_{p} and Res_{q} agree below $\sup \sigma_{q}^{\prime \prime} \kappa_{q-1}$. For example, consider the case $q=i$. Then $\sigma_{i}=\pi_{0}$: $\mathcal{J}_{\mathcal{\beta}_{i}}^{\mathcal{M}} \rightarrow \mathscr{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma_{0}}\right)$, and moreover, the last term of the $\left(k_{i}-1, \pi_{0}(\lambda)\right)$ dropdown sequence for $\mathfrak{C}_{k_{1}-1}\left(\mathcal{N}_{\gamma_{0}}\right)$ corresponds to a projectum which is greater than or equal to $\sup \left(\pi_{0}^{\prime \prime} \kappa_{i-1}\right)$. This implies that $\pi_{j} \upharpoonright \sup \pi_{0}^{\prime \prime} \kappa_{i-1}$ is the identity, for all $j>0$. So

$$
\sigma_{p} \backslash \kappa_{i-1}=\pi_{e_{i-p}} \circ \cdots \circ \pi_{1} \circ \pi_{0} \backslash \kappa_{i-1}=\pi_{0} \backslash \kappa_{i-1}=\sigma_{i} \backslash \kappa_{i-1}
$$

See figure 1 for a diagram of some of the relationships above.
Finally, the complete resurrection of E from (j, ξ) is the pair (identity, \mathcal{N}_{ξ}) if the (j, ξ) resurrection sequence for E is \varnothing (so that $j=0$ and E is the last extender of \mathcal{N}_{ξ}), and the pair ($\sigma_{1}, \operatorname{Res}_{1}$) if the (j, ξ) resurrection sequence for E is nonempty.

Notice that in any case, Res $=\mathcal{N}_{\gamma}$ for some $\gamma \leq \xi$ and σ is a 0 -embedding from $\mathcal{J}_{\lambda}^{\mathbb{C},\left(\mathcal{N}_{6}\right)}$ into $\mathcal{N}_{\boldsymbol{\gamma}}$.

Of course, the notions associated to resurrection can be interpreted not just in $V=R_{0}$, but in any model R_{α} of the tree \mathcal{U} (using the construction $i_{0 \alpha}^{\mathcal{U}}(\mathbb{C})$). We shall do this in what follows.

Definition of \mathcal{U} : Induction hypotheses. During the recursive definition of the tree \mathcal{U} and the embeddings π_{α} we will be maintaining a number of induction hypotheses, which we have numbered H1 through H7. Recall that R_{α} is the α th model of the tree \mathcal{U}.

H1. There is an ordinal ξ such that the map π_{α} is a weak n-embedding from \mathcal{P}_{α} into Q_{α}, where $n=\operatorname{deg}^{\boldsymbol{T}} \alpha$ and $Q_{\alpha}=\left(\mathscr{C}_{n}\left(\mathcal{N}_{\xi}\right)\right)^{R_{\alpha}}$.

H2. (commutativity) If $\beta T \alpha$ and $(\beta, \alpha]_{T} \cap D^{\mathcal{T}}=\varnothing$ then $\pi_{\alpha} \circ i_{\beta, \alpha}^{\mathcal{T}}=i_{\beta, \alpha}^{\mathcal{U}} \circ \pi_{\beta}$.

Figure 1. To simplify matters, this diagram assumes that $i=3$ and $\beta_{1}<\beta_{2}<\beta_{3}$. It also assumes that the new dropdown sequence is just the image of the old minus its last term, that is, that " $u=\varnothing$ " always holds. Thus $t=2, e_{0}=0, e_{1}=1$, and $e_{2}=2$. Also, $\sigma_{3}=$ $\pi_{0}, \sigma_{2}=\pi_{1} \circ \pi_{0}$, and $\sigma_{1}=\pi_{2} \circ \pi_{1} \circ \pi_{0}$. Finally, we assume that $\pi_{e}\left(\rho_{\ell_{e}-1}\left(\mathscr{C}_{\ell_{e}}\left(\mathcal{N}_{\gamma_{e}}\right)\right)\right)=\rho_{\ell_{e}-1}\left(\mathscr{C}_{\ell_{e}-1}\left(\mathcal{N}_{\gamma_{e}}\right)\right)$ for $e=1,2$, which, together with a similar assumption on π_{0}, implies $u=\varnothing$.

Next, we have some agreement of models and embeddings to maintain. For each ordinal $\beta<\operatorname{lh} \mathcal{T}$, let ν_{β} be the natural length of $E_{\beta}^{\mathcal{T}}$ and let $\left(\sigma^{\beta}, \operatorname{Res}{ }^{\beta}\right)$ be the complete resurrection of $\pi_{\beta}\left(E_{\beta}^{\mathcal{T}}\right)$ from stage (j, τ), where $j=\operatorname{deg}^{\mathcal{T}}(\beta)$ and $Q_{\beta}=\left(\mathfrak{C}_{j}\left(\mathcal{N}_{\tau}\right)\right)^{R_{\beta}}$.

H3. For each $\beta<\alpha$, if $\operatorname{Res}^{\beta}$ is type I or III then Q_{α} agrees with Res ${ }^{\beta}$ below
$\nu^{\text {Res }^{\beta}}$, moreover

$$
\pi_{\alpha} \upharpoonright \nu_{\beta}=\sigma^{\beta} \circ \pi_{\beta} \backslash \nu_{\beta} \quad \text { and } \quad \pi_{\alpha}\left(\nu_{\beta}\right) \geq \nu^{\text {Res }^{\beta}}
$$

H4. For each $\beta<\alpha$, if $\operatorname{Res}^{\beta}$ is type II then Q_{α} agrees with $\operatorname{Res}^{\beta}$ below $\mathrm{OR}^{\text {Res }}{ }^{\beta}$, and moreover

$$
\pi_{\alpha} \backslash \operatorname{lh} E_{\beta}^{\mathcal{T}}=\sigma^{\beta} \circ \pi_{\beta} \backslash \operatorname{lh} E_{\beta}^{\mathcal{T}} \quad \text { and } \quad \pi_{\alpha}\left(\operatorname{lh} E_{\beta}^{\mathcal{T}}\right) \geq \mathrm{OR}^{\text {Res }{ }^{\beta}}
$$

H5. For each $\beta<\alpha, R_{\alpha}$ agrees with R_{β} below $\nu^{\text {Res }^{\beta}}+\omega$, that is $V_{\gamma}^{R_{\alpha}}=V_{\gamma}^{R_{\beta}}$ where $\gamma=\nu^{\text {Res }^{\beta}}+\omega$.

In order to handle the limit case in the definition of \mathcal{U}, we will require two final induction hypotheses.

If $Q=\mathfrak{C}_{k}\left(\mathcal{N}_{\gamma}\right)$ and $Q^{\prime}=\mathfrak{C}_{j}\left(\mathcal{N}_{\xi}\right)$ where \mathcal{N}_{γ} and \mathcal{N}_{ξ} are two models of the construction \mathbb{C}, then we write $Q \leq_{\mathbb{C}} Q^{\prime} \quad$ iff $\quad(\gamma, k) \leq_{\text {lex }}(\xi, j)$.
H6. Let $\beta=T-\operatorname{Pred}(\alpha+1)$ and $\mathbb{C}^{\alpha+1}=i_{0, \alpha+1}^{u}(\mathbb{C})$. Then
(a) $Q_{\alpha+1} \leq_{C^{\alpha+1}} i_{\beta, \alpha+1}^{u}\left(Q_{\beta}\right)$, and
(b) if $\alpha+1 \in D^{\boldsymbol{T}}$, then $Q_{\alpha+1}<_{\mathbb{C}^{\alpha+1}} i_{\beta, \alpha+1}^{\mu}\left(Q_{\beta}\right)$.

H7. If λ is a limit ordinal then $i_{\alpha \lambda}^{u}\left(Q_{\alpha}\right)=Q_{\lambda}$ for all sufficiently large $\alpha T \lambda$.
We shall need to know that \mathcal{U} is a tree in the "coarse structure" sense of [MS]. Set $\rho_{\beta}^{\mu}=\nu^{\text {Res }^{\beta}}$. Then it will be obvious from the construction that E_{β}^{μ} is $\rho_{\beta}^{\mu}+\omega$ strong in the model R_{β}. We shall show in the remark following claim 1 below that $\rho_{\beta}^{\mu}<\rho_{\delta}^{\mu}$ whenever $\beta<\delta$, and the agreement condition on the models R_{β} follows at once from this. This guarantees that \mathcal{U} is a normal iteration tree in the sense of [MS], provided that no illfounded model appears in \mathcal{U}. Thus we need to know that we encounter no illfounded ultrapowers or direct limits in the formation of \mathcal{U}. This follows from the following theorem, which is proved by the methods of [MS].

Theorem. If there is no ordinal $\gamma \leq \xi$ such that $L\left(V_{\gamma}\right) \vDash$ " γ is a Woodin cardinal" then every iteration tree on $L\left(V_{\xi}\right)$ has a unique cofinal wellfounded branch.

Note that if theorem 12.1 holds for all $\eta^{\prime}<\eta$, so that $\mathcal{N}_{\boldsymbol{\eta}}$ exists, then $\mathcal{N}_{\boldsymbol{\eta}}$ is constructed in V_{ξ} for some ordinal ξ smaller than the least cardinal δ such that $L\left[V_{\delta}\right]$ satisfies that δ is a Woodin cardinal. Thus we can apply this theorem to the trees derived from \mathcal{U}.

We now begin the recursive definition of the tree \mathcal{U} and the embeddings π_{α}. For $\alpha=0$ we take $Q_{0}=\mathcal{P}_{0}, R_{0}=L\left(V_{\theta}\right)$ where θ is the least ordinal γ such that $L\left(V_{\gamma}\right) \vDash$ " γ is a Woodin cardinal", and $\pi_{0}=$ identity.

Definition of \mathcal{U} : The Successor Step. We assume that the tree has been defined through the α th model R_{α}, and we have the embeddings π_{α} mapping P_{α} into Q_{α}, where $j=\operatorname{deg}^{T}(\alpha)$ and $Q_{\alpha}=\left(\mathcal{C}_{j}\left(\mathcal{N}_{\xi}\right)\right)^{R_{\alpha}}$, and we have (in R_{α})

$$
\left(\sigma^{\alpha}, \operatorname{Res}^{\alpha}\right)=\text { complete resurrection of } \pi_{\alpha}\left(E_{\alpha}^{\mathcal{T}}\right) \text { from }(j, \xi),
$$

where $\pi_{\alpha}\left(E_{\alpha}^{\mathcal{T}}\right)$ is the last extender predicate of Q_{α} in case $E_{\alpha}^{\mathcal{T}}$ is the last extender predicate of \mathcal{P}_{α}.

Claim 1. If γ is strictly smaller than α then $\sigma^{\alpha} \upharpoonright \pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)=$ identity.
Proof. Fix $\gamma<\alpha$. Then $\operatorname{lh} E_{\gamma}^{\boldsymbol{T}}$ is a cardinal of \mathcal{P}_{α}, so $\pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)$ is a cardinal of Q_{α}. Thus $\rho_{\omega}\left(\mathcal{J}_{\beta}^{Q_{\alpha}}\right) \geq \pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)$ for all β such that $\pi_{\alpha}\left(\operatorname{lh} E_{\alpha}^{\mathcal{T}}\right) \leq \omega \beta<$ $\mathrm{OR}^{Q_{\alpha}}$. We claim that also $\rho_{j}\left(Q_{\alpha}\right) \geq \pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)$. (Recall that $j=\operatorname{deg}(\alpha)$.) Assume first that α is a successor ordinal. Then $\mathcal{P}_{\alpha}=\operatorname{Ult}_{j}\left(\mathcal{P}_{\alpha}^{*}, E_{\alpha-1}^{\mathcal{T}}\right)$, and so $\operatorname{lh} E_{\alpha-1}^{\mathcal{T}}<\rho_{j}\left(\mathcal{P}_{\alpha}\right)$. Thus $\operatorname{lh} E_{\gamma}^{\boldsymbol{T}}<\rho_{j}\left(\mathcal{P}_{\alpha}\right)$, and as π_{α} is a weak j-embedding, $\pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\tau}\right)<\rho_{j}\left(Q_{\alpha}\right)$. Now our claim for the case α is a limit ordinal follows from the successor case applied to sufficiently large $\alpha^{\prime} T \alpha$.

Thus no projectum associated to a term in the ($j, \pi_{\alpha}\left(\operatorname{lh} E_{\alpha}^{\mathcal{T}}\right)$) dropdown sequence for Q_{α} lies below $\pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)$, and it follows that σ^{α} is the identity below $\pi_{\alpha}\left(\operatorname{lh} E_{\gamma}^{\mathcal{T}}\right)$.

Remark. The claim enables us to show that $\rho_{\alpha}^{\mu}>\rho_{\beta}^{\mu}$ for all $\beta<\alpha$. For

$$
\rho_{\alpha}^{u}=\nu^{\mathrm{Re}^{\alpha}}=\sigma^{\alpha} \circ \pi_{\alpha}\left(\nu_{\alpha}\right) .
$$

But now, for $\beta<\alpha, \operatorname{lh} E_{\beta}^{\mathcal{T}}$ is a cardinal of \mathcal{P}_{α} and $\operatorname{lh} E_{\beta}^{\mathcal{T}}<\operatorname{lh} E_{\alpha}^{\mathcal{T}}$, so that $\operatorname{lh} E_{\beta}^{\tau} \leq \nu_{\alpha}$. Thus $\nu_{\beta}<\nu_{\alpha}$ for $\beta<\alpha$. So

$$
\rho_{\alpha}^{u}>\sigma^{\alpha} \circ \pi_{\alpha}\left(\nu_{\beta}\right)
$$

But Claim 1 tells us $\sigma^{\alpha} \circ \pi_{\alpha}\left(\nu_{\beta}\right)=\pi_{\alpha}\left(\nu_{\beta}\right)$, and our induction hypotheses on agreement of embeddings say $\pi_{\alpha}\left(\nu_{\beta}\right) \geq v^{\operatorname{Res}^{\beta}}$. So

$$
\rho_{\alpha}^{u}>\sigma^{\alpha} \circ \pi_{\alpha}\left(\nu_{\beta}\right)=\pi_{\alpha}\left(\nu_{\beta}\right) \geq \nu^{\mathrm{Res}^{\beta}}=\rho_{\beta}^{\mu}
$$

We can now define $E_{\alpha}^{\mathcal{U}}$ and $R_{\alpha+1}$. Set

$$
F=\sigma^{\alpha} \circ \pi_{\alpha}\left(E_{\alpha}^{\mathcal{T}}\right)=\text { last extender of } \operatorname{Res}^{\alpha}
$$

Now Res ${ }^{\alpha}$ is an " \mathcal{N} model" in the universe R_{α}, so its last extender has a "background extender". Set $E_{\alpha}^{\mathcal{U}}=F^{*}$, the background extender for F in R_{α}. Let $\beta=T-\operatorname{pred}(\alpha+1)$ and set

$$
R_{\alpha+1}=\operatorname{Ult}\left(R_{\beta}, F^{*}\right)
$$

Notice that $\mathrm{Ult}_{0}=\mathrm{Ult}_{\omega}$ since $R_{\beta} \vDash Z F C$.
Let us note that R_{α} and R_{β} are in sufficient agreement that this ultrapower makes sense. This is clear if $\beta=\alpha$, so we may suppose that $\beta<\alpha$. By our induction hypotheses, R_{α} agrees with R_{β} to $\nu^{\text {Res }}{ }^{\beta}+\omega$. Now crit $E_{\alpha}^{\mathcal{T}}<\nu_{\beta}$ because $\beta=T-\operatorname{pred}(\alpha+1)$. As σ^{α} is the identity on $\pi_{\alpha}\left(\operatorname{lh} E_{\beta}^{\mathcal{T}}\right)$, crit $F^{*}=$ $\operatorname{crit} F=\operatorname{crit} \sigma^{\alpha}\left(\pi_{\alpha}\left(E_{\alpha}^{\mathcal{T}}\right)\right)<\sup \pi_{\alpha}^{\prime \prime} \nu_{\beta}=\sup \sigma^{\beta} \circ \pi_{\beta}^{\prime \prime} \nu_{\beta} \leq \nu^{\text {Res }{ }^{\beta}}$. Thus the ultrapower makes sense.
We now define $\pi_{\alpha+1}$ and $Q_{\alpha+1}$. Let $n=\operatorname{deg}^{\tau}(\beta)$, and $\lambda=\operatorname{lh} E_{\beta}^{\tau}$, let

$$
\left\langle\left(\eta_{0}, k_{0}\right), \ldots,\left(\eta_{e}, k_{e}\right)\right\rangle \text { be the }(n, \lambda) \text { dropdown sequence of } \mathcal{P}_{\beta},
$$

and set $\kappa_{i}=\rho_{k_{i}}\left(\mathcal{J}_{\eta_{i}}^{\mathcal{P}_{\boldsymbol{p}}}\right)$ for $0 \leq i \leq e$.
The following claim relates these to the ($n, \pi_{\beta}(\lambda)$) dropdown sequence of Q_{β}. The claim is slightly complicated by the fact that π_{β} is not a full n-embedding. Notice that $\kappa_{e} \leq \rho_{n}\left(\mathcal{P}_{\beta}\right)$.
Claim 2. The ($n, \pi_{\beta}(\lambda)$)-dropdown sequence of Q_{β} is the sequence given by the appropriate clause below:
(a) If $\kappa_{e}<\rho_{n}\left(\mathcal{P}_{\beta}\right)$ then the dropdown sequence is

$$
\left\langle\left(\pi_{\beta}\left(\eta_{0}\right), k_{0}\right), \ldots,\left(\pi_{\beta}\left(\eta_{e}\right), k_{e}\right)\right\rangle .
$$

(b) If $\kappa_{e}=\rho_{n}\left(\mathcal{P}_{\beta}\right)$ but $\left(\omega \eta_{e}, k_{e}\right) \neq\left(\mathrm{OR}^{\mathcal{P}_{\beta}}, n\right)$ then the dropdown sequence is

$$
\left\langle\left(\pi_{\beta}\left(\eta_{0}\right), k_{0}\right), \ldots,\left(\pi_{\beta}\left(\eta_{e}\right), k_{e}\right)\right\rangle \vee u
$$

where $u=\varnothing$ or $u=(\eta, n)$ for $\omega \eta=\mathrm{OR}^{Q_{\beta}}$.
(c) If $\left(\omega \eta_{e}, k_{e}\right)=\left(\mathrm{OR}^{\mathcal{P}_{\beta}}, n\right)$ then the dropdown sequence is

$$
\left.\left\langle\left(\pi_{\beta}\left(\eta_{0}\right), k_{0}\right), \ldots,\left(\pi_{\beta}\left(\eta_{e-1}\right), k_{e-1}\right)\right\rangle\right\rangle^{-} u
$$

where $u=\varnothing$ or $u=\left(\pi_{\beta}\left(\eta_{e}\right), k_{e}\right)=(\omega \eta, n)$, for $\omega \eta=\mathrm{OR}^{Q_{\beta}}$.
Remark. Note that $\kappa_{e}=\rho_{n}\left(\mathcal{P}_{\beta}\right)$ in case (c). If $e=0$, then $n=0=k_{0}$ and $\eta_{0}=\lambda=\omega \lambda=\mathrm{OR}^{\mathcal{P}_{\beta}}$. The $\left(n, \pi_{\beta}(\lambda)\right)$ dropdown sequence for Q_{β} is then $\left\langle\left(\mathrm{OR}^{Q_{\beta}}, 0\right)\right\rangle$, which falls under case (c).

Remark. The $u=\varnothing$ case in (c) would not be necessary if π_{β} were a full n-embedding.

The claim follows easily from the fact that π_{β} is a weak n-embedding. For (a), notice that $\pi_{\beta}\left(\kappa_{e}\right)<\sup \pi_{\beta}^{\prime \prime} \rho_{n}\left(\mathcal{P}_{\beta}\right) \leq \rho_{n}\left(Q_{\beta}\right)$. Recall that π_{β} preserves cardinals, so that if for example $\omega \eta_{e}<\mathrm{OR}^{\mathcal{P}_{\beta}}$ then $\mathcal{P}_{\beta} \vDash \forall \gamma \geq \eta_{e}\left(\rho_{\omega}\left(\mathcal{J}_{\gamma}^{\dot{\mathcal{E}}}\right) \geq\right.$ $\left.\rho_{\boldsymbol{k}_{\mathrm{e}}}\left(\mathcal{J}_{\eta_{e}}^{\dot{E}}\right)\right)$, and thus $Q_{\beta} \vDash \forall \gamma \geq \pi_{\beta}\left(\eta_{e}\right)\left(\rho_{\omega}\left(\mathcal{J}_{\gamma}^{\dot{E}}\right) \geq \pi_{\beta}\left(\kappa_{e}\right)\right)$.

Let $\mu=\operatorname{crit}\left(E_{\alpha}^{\boldsymbol{T}}\right)$, and let

$$
i= \begin{cases}e+1 & \text { if } \mu<\kappa_{e} \\ \text { least } j \text { s.t. } \kappa_{j} \leq \mu & \text { if } \kappa_{e} \leq \mu\end{cases}
$$

Notice that $i>0$ since $\kappa_{0}=\lambda>\mu$. Because \mathcal{T} is maximal

$$
\mathcal{P}_{\alpha+1}^{*}= \begin{cases}\mathcal{J}_{\eta_{i}}^{\mathcal{P}_{\beta}} & \text { if } i \leq e \\ \mathcal{P}_{\beta} & \text { if } i=i+1\end{cases}
$$

and

$$
\operatorname{deg}^{T}(\alpha+1)= \begin{cases}k_{i}-1 & \text { if } i \leq e \\ n & \text { if } i=e+1\end{cases}
$$

Let $\left(\sigma_{i}^{\beta}, \operatorname{Res}_{i}^{\beta}\right)$ be the i th partial resurrection of $\pi_{\beta}\left(E_{\beta}^{\mathcal{T}}\right)$ from stage (n, τ), where $Q_{\beta}=\mathscr{C}_{n}\left(\mathcal{N}_{\tau}\right)^{R_{\beta}}$, if this resurrection is defined. The resurrection is undefined if $i=e+1$ and defined if $i<e$ by claim 2. If $i=e$ then ($\sigma_{i}^{\beta}, \operatorname{Res}_{i}^{\beta}$) is undefined just in case $\left(\omega \eta_{e}, k_{e}\right)=\left(\mathrm{OR}^{\mathcal{P}_{\beta}}, n\right)$ and the conclusion of (c) of claim 2 holds with $u=\varnothing$.

Now let

$$
\begin{aligned}
& Q_{\alpha+1}^{*}= \begin{cases}\operatorname{Res}_{i}^{\beta} & \text { if } \operatorname{Res}_{i}^{\beta} \text { is defined } \\
Q_{\beta} & \text { otherwise }\end{cases} \\
& \sigma= \begin{cases}\sigma_{i}^{\beta} & \text { if } \operatorname{Res}_{i}^{\beta} \text { is defined } \\
\text { identity } & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $\sigma \circ\left(\pi_{\beta} \mid \mathcal{P}_{\alpha+1}^{*}\right)$ is, in any case, a weak $\operatorname{deg}^{\tau}(\alpha+1)$ embedding from $\mathcal{P}_{\alpha+1}^{*}$ into $Q_{\alpha+1}^{*}$. To see this, assume first that Resi is defined, so that $i \leq e$, $\operatorname{deg}^{T}(\alpha+1)=k_{i}-1$, and $\sigma=\sigma_{i}^{\beta}$ is a full $\left(k_{i}-1\right)$ embedding. Looking at claim 2, we see that in all cases the domain of σ is $\mathcal{J}_{\pi_{\beta}\left(\eta_{1}\right)}^{Q_{\beta}}$ since we cannot have the situation in (c) with $i=e$ and $u=\varnothing$. But $\mathcal{P}_{\alpha+1}^{*}=\mathcal{J}_{\eta_{i}}^{\mathcal{P}_{\beta}}$, and $\pi_{\beta} \upharpoonright \mathcal{P}_{\alpha+1}^{*}$ is a weak $\left(k_{i}-1\right)$ embedding. In fact, if $\omega \eta_{i}<O R^{\mathcal{P}_{\beta}}$ then $\pi_{\beta} \upharpoonright \mathcal{P}_{\alpha+1}^{*}$ is fully elementary, and if $\omega \eta_{i}=O R^{\mathcal{P}_{\beta}}$ then $k_{i} \leq n$, so $\pi_{\beta} \upharpoonright \mathcal{P}_{\alpha+1}^{*}$ is a weak k_{i-} embedding. It follows that $\sigma \circ\left(\pi_{\beta} \backslash \mathcal{P}_{\alpha+1}^{*}\right)$ is a weak $k_{i}-1$-embedding from $\mathcal{P}_{\alpha+1}^{*}$ into $Q_{\alpha+1}^{*}$. Assume next that $\operatorname{Res}_{i}^{\beta}$ is undefined. Then either $i=e+1$ or we have the situation in (c) of claim 2 with $u=\varnothing$. In either case, $\operatorname{deg}^{\tau}(\alpha+1) \leq n$. Also $\mathcal{P}_{\alpha+1}^{*}=\mathcal{P}_{\beta}, Q_{\alpha+1}^{*}=Q_{\beta}$, and σ is the identity. Since π_{β} is a weak n-embedding, $\sigma \circ \pi_{\beta}$ is a weak $\operatorname{deg}^{T}(\alpha+1)$-embedding from $\mathcal{P}_{\alpha+1}^{*}$ into $Q_{\alpha+1}^{*}$.

Let $Q_{\beta}=\mathcal{C}_{n}\left(\mathcal{N}_{\tau}\right)^{R_{\beta}}$, so that $\left(\sigma^{\beta}, \operatorname{Res}{ }^{\beta}\right)$ is the complete resurrection of $\pi_{\beta}\left(E_{\beta}^{\mathcal{T}}\right)$ from stage (n, τ). Let ψ be the complete resurrection embedding for $\sigma \circ \pi_{\beta}\left(E_{\beta}^{\mathcal{T}}\right)$ from the appropriate stage, which is (n, τ) if $\operatorname{Res}_{i}^{\beta}$ is undefined and $\left(k_{i}-1, \eta\right)$,
where $\operatorname{Res}_{i}^{\beta}=\mathfrak{C}_{k_{i}-1}\left(\mathcal{N}_{\eta}\right)$, otherwise. Then $\psi: \mathcal{J}_{\sigma 0 \pi_{\beta}(\lambda)}^{Q_{\alpha+1}^{*}} \rightarrow \operatorname{Res}^{\beta}$ and $\sigma^{\beta}=$ $\psi \circ\left(\sigma \upharpoonright \mathcal{J}_{\pi_{\beta}(\lambda)}^{Q_{\beta}}\right)$.

Claim 3. $\quad \psi \upharpoonright\left(\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \kappa_{i-1}\right)\right)=$ identity .
Proof. Suppose first that Res ${ }_{i}^{\beta}$ exists, so that $i \leq e$ and $\sigma=\sigma_{i}^{\beta}$. From claim 2 and the fact that π_{β} is a weak n-embedding we see that $\pi_{\beta}\left(\kappa_{i-1}\right)$ is the projectum associated to the $(i-1)$ st element of the $\left(n, \pi_{\beta}(\lambda)\right)$-dropdown sequence of Q_{β}. As we remarked earlier, ψ is therefore the identity on $\sup \left(\sigma_{i}^{\beta \prime \prime} \pi_{\beta}\left(\kappa_{i-1}\right)\right)$, and this implies the claim.

Suppose next that Res ${ }_{i}^{\beta}$ is undefined, so that either $i=e+1$ or else $i=e$ and (c) of claim 2 holds with $u=\varnothing$. In either case the projectum associated to the last term of the $\left(n, \pi_{\beta}(\lambda)\right)$ dropdown sequence of Q_{β} is at least $\sup \left(\pi_{\beta}{ }^{\prime \prime} \kappa_{i-1}\right)$. Thus $\sigma^{\beta} \mid \sup \left(\pi_{\beta}{ }^{\prime \prime} \kappa_{i-1}\right)$ is the identity, but $\psi=\sigma^{\beta}$ and σ is the identity, so this implies the claim.

We can now define $Q_{\alpha+1}=i_{\beta, \alpha+1}^{u}\left(Q_{\alpha+1}^{*}\right)$. Before we define $\pi_{\alpha+1}$ and verify the induction hypotheses, however, we must describe the agreement between $Q_{\alpha+1}^{*}$ and Res ${ }^{\alpha}$. Set

$$
\gamma= \begin{cases}\left(\mu^{+}\right)^{\mathcal{P}_{\alpha+1}^{*}} & \text { if } \mathcal{P}_{\alpha+1}^{*} \vDash \mu^{+} \text {exists } \\ \text { OR }^{\mathcal{P}_{\alpha+1}^{*}} & \text { otherwise } .\end{cases}
$$

CLaim 4. $\quad \gamma \leq \lambda=\operatorname{lh}\left(E_{\beta}^{\mathcal{T}}\right)$, and if $\gamma=\mathrm{OR}^{\mathcal{P}_{* \alpha+1}}$ then $\mathcal{P}_{\alpha+1}^{*}=\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$ and $\mathcal{P}_{\alpha+1}^{*}$ is type II.

Proof. If $\beta=\alpha$, then $\left(\mu^{+}\right)^{\mathcal{J}_{\lambda}^{\mathcal{P}_{\alpha}}}$ exists and $\mathcal{P}_{\alpha+1}^{*}$ is the shortest initial segment of \mathcal{P}_{α} over which a subset of μ not in $\mathcal{J}_{\lambda}^{\mathcal{P}_{\alpha}}$ is definable. Thus $\left(\mu^{+}\right)^{\mathcal{P}_{\alpha+1}^{*}}=$ $\left(\mu^{+}\right)^{\mathcal{J}_{\lambda}^{\mathcal{P}_{\alpha}}}<\lambda \leq \mathrm{OR}^{\mathcal{P}_{\alpha+1}^{*}}$, so $\gamma<\lambda \leq \mathrm{OR}^{\mathcal{P}_{\alpha+1}^{*}}$.

If $\beta<\alpha$ then the subsets of μ in \mathcal{P}_{α} are just those in $\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$ and $\mathcal{P}_{\alpha+1}^{*}$ is the shortest initial segment of \mathcal{P}_{β} over which a subset of μ not in $\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$ is definable, so if $\left(\mu^{+}\right)^{\mathcal{J}_{\lambda}^{\mathcal{P}}}$ exists then $\left(\mu^{+}\right)^{\mathcal{P}_{\alpha+1}^{*}}=\left(\mu^{+}\right)^{\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}}<\lambda$. Otherwise μ is the largest cardinal of $\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$, so $\mathcal{P}_{\alpha+1}^{*}=\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$ since λ is definably collapsed over the active $\mathrm{ppm} \mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$. In this case we see also that $\mathcal{P}_{\alpha+1}^{*}$ is type II, since otherwise $\mu<$ $\nu_{\beta}<\lambda$ and ν_{β} is a cardinal of $\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$.

Claim 4 implies $\gamma \leq \kappa_{i-1}$. If $\kappa_{i-1}=\lambda$ then this is obvious. Otherwise κ_{i-1} is a cardinal of $\mathcal{J}_{\lambda}^{\mathcal{P}_{\beta}}$, since it is a projectum of some $\mathcal{J}_{\eta}^{\mathcal{P}_{\beta}}$ with $\eta \geq \lambda$. Since $\mu<\kappa_{i-1}$ by the choice of i, we have $\gamma \leq \kappa_{i-1}$.

The next claim shows that $\operatorname{Res}^{\alpha}$ and $Q_{\alpha+1}^{*}$ have the agreement required for the use of the shift lemma.

Claim 5. (a) $\operatorname{Res}^{\alpha}$ agrees with $Q_{\alpha+1}^{*}$ below $\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \gamma\right)$.
(b) $\sigma^{\alpha} \circ \pi_{\alpha} \upharpoonright \gamma=\sigma \circ \pi_{\beta} \upharpoonright \gamma$.

Proof. The proof of claim 5 is divided up into three subclaims.
Subclaim A. $Q_{\alpha+1}^{*}$ and Res ${ }^{\beta}$ agree below $\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \gamma\right)$, and $\sigma \circ \pi_{\beta} \upharpoonright \gamma=$ $\psi \circ \sigma \circ \pi_{\beta} \upharpoonright \gamma$.

This follows at once from claim 3 and the fact that $\gamma \leq \kappa_{i-1}$.
Subclaim B. If $\beta<\alpha$ then Res ${ }^{\beta}$ and Q_{α} agree below $\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \gamma\right)$, and $\psi \circ \sigma \circ \pi_{\beta} \mid$ $\gamma=\pi_{\alpha} \upharpoonright \gamma$.

Recall that $\psi \circ \sigma \circ \pi_{\beta}=\sigma^{\beta} \circ \pi_{\beta}$. This subclaim is therefore just our induction hypotheses on agreement. If Res ${ }^{\beta}$ is type I or type III then claim 4 yields $\gamma \leq \nu_{\beta}$ and we can apply H3. If Res ${ }^{\beta}$ is type II then $\gamma \leq \operatorname{lh} E_{\beta}^{\tau}$ by claim 4 so we can apply H 4 .

Subclaim C. If $\beta<\alpha$ then Q_{α} and Res ${ }^{\alpha}$ agree below $\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \gamma\right)$ and $\pi_{\alpha} \upharpoonright$ $\gamma=\sigma^{\alpha} \circ \pi_{\alpha} \upharpoonright \gamma$.

We have $\gamma \leq \lambda$, and $\sigma \circ \pi_{\beta}=\pi_{\alpha} \upharpoonright \gamma$, so $\sup \left(\sigma \circ \pi_{\beta}{ }^{\prime \prime} \gamma\right) \leq \pi_{\alpha}(\lambda)$. By claim $1, Q_{\alpha}$ and Res ${ }^{\alpha}$ agree below $\pi_{\alpha}(\lambda)$ and σ^{α} is the identity there.

Together, subclaims A, B and C yield claim 5.
Now define, for $a \in\left[\nu_{\alpha}\right]^{<\omega}$ and appropriate f

$$
\pi_{\alpha+1}\left([a, f]_{E_{\alpha}^{\tau}}^{\mathcal{P}_{\alpha+1}^{*}}\right)=\left[\sigma^{\alpha} \circ \pi_{\alpha}(a), \sigma \circ \pi_{\beta}(f)\right]_{F^{*}}^{R_{\beta}}
$$

If $f=f_{\tau, q}$ then by " $\sigma \circ \pi_{\beta}(f)$ " we mean $f_{\tau, \sigma \circ \pi_{\beta}(q)}$, the later function being defined over the ppm $Q_{\alpha+1}^{*}$. In order to see that $\pi_{\alpha+1}$ has the desired properties, it is useful to factor it. Let $k=\operatorname{deg}^{\tau}(\alpha+1)$ and $Q_{\alpha+1}^{\prime}=\operatorname{Ult}\left(Q_{\alpha+1}^{*}, F\right)$. Let $i: Q_{\alpha+1}^{*} \rightarrow Q_{\alpha+1}^{\prime}$ be the canonical embedding and let $\pi_{\alpha+1}^{\prime}: \mathcal{P}_{\alpha+1} \rightarrow Q_{\alpha+1}^{\prime}$ be the weak k-embedding given by the shift lemma. Finally, let $\tau: Q_{\alpha+1}^{\prime} \rightarrow Q_{\alpha+1}$ be the natural map given by $\tau\left([a, f]_{\sigma^{\alpha} \pi_{\alpha}\left(E_{\alpha}^{\tau}\right)}^{Q_{\alpha+1}^{*}}\right)=[a, f]_{F^{*}}^{R_{\beta}}$. Then $\pi_{\alpha+1}=\tau \circ \pi_{\alpha+1}^{\prime}$ and we have the commutative diagram

In order to verify H 1 we need to show that $\pi_{\alpha+1}$ is a weak k-embedding, where $k=\operatorname{deg}(\alpha+1)$, which means that we have to find a witness set X on which
$\pi_{\alpha+1}$ is $r \Sigma_{k+1}$ elementary. If $k=\operatorname{deg}(\alpha+1)=n$ and $\mathcal{P}_{\alpha+1}^{*}=\mathcal{P}_{\beta}$ then we can take the witnessing set to be $X=i_{\alpha+1}^{*}{ }^{\prime \prime} X_{\beta}$, where X_{β} is a set witnessing that π_{β} is a weak k-embedding. Otherwise take $X=i_{\alpha+1}^{*}{ }^{\prime \prime}\left|\mathcal{P}_{\alpha+1}^{*}\right|$. In either case the shift lemma implies that $\pi_{\alpha+1}^{\prime}$ is $r \Sigma_{k+1}$ elementary on parameters from X. On the other hand the Los theorem 4.1 implies that τ is $r \Sigma_{k+1}$ elementary on parameters from $i^{\prime \prime}\left|Q_{\alpha+1}^{*}\right|$, and since $\pi_{\alpha+1}^{\prime \prime} X \subset i^{\prime \prime}\left|Q_{\alpha+1}^{*}\right|$ it follows that $\pi_{\alpha+1}$ is $r \Sigma_{k+1}$ elementary on parameters from X. Thus X witnesses that $\pi_{\alpha+1}$ is a weak k-embedding and we have verified H 1 . Induction hypothesis H 2 comes from the commutativity of the diagram above.

We now verify H3 and H4. Let $\eta<\alpha+1$. If Res ${ }^{\eta}$ is type I or III then we must show that $Q_{\alpha+1}$ agrees with Res ${ }^{\eta}$ below $\nu^{\text {Res }}{ }^{\eta}$ and moreover that $\pi_{\alpha+1} \backslash \nu_{\eta}=$ $\sigma^{\eta} \circ \pi_{\eta} \upharpoonright \nu_{\eta}$ and $\pi_{\alpha+1}\left(\nu_{\eta}\right) \geq \nu^{\text {Res }^{\eta}}$. If Res ${ }^{\eta}$ is of type II, on the other hand, then we must show that $Q_{\alpha+1}$ agrees with Res ${ }^{\eta}$ below OR $^{\text {Res }}{ }^{\eta}$ and moreover that $\pi_{\alpha+1}\left\lceil\operatorname{lh} E_{\eta}^{\tau}=\sigma^{\eta} \circ \pi_{\eta}\left\lceil\operatorname{lh} E_{\eta}^{\tau}\right.\right.$ and $\pi_{\alpha+1}\left(\operatorname{lh} E_{\eta}^{\tau}\right) \geq \mathrm{OR}^{\mathrm{Res}}$.
We consider first the case $\eta=\alpha$. Set $\mu^{\prime}=\pi_{\beta}(\mu)$. By claim 3, $\mathcal{J}_{\mu^{\prime}}^{Q_{\alpha+1}^{*}}=\mathcal{J}_{\mu^{\prime}}^{\text {Res }}{ }^{\alpha^{\alpha}}$ so that

$$
\mathcal{J}_{i_{\beta, \alpha+1}^{u}\left(\mu^{\prime}\right)}^{Q_{\alpha+1}}=\operatorname{Ult}\left(\mathcal{J}_{\mu^{\prime}+1}^{Q_{\alpha+1}^{*}}, F^{*}\right)=\operatorname{Ult}\left(\mathcal{J}_{\mu^{\prime}}^{\mathrm{Res}^{\alpha}}, F^{*}\right),
$$

where the ultrapowers are computed using all functions which are members of R_{β}, or equivalently of R_{α}, and which map $\left[\mu^{\prime}\right]^{i}$ into $\mathcal{J}_{\mu^{\prime}}^{Q_{\alpha+1}^{*}}$ for some integer i.

Now the canonical embedding

$$
\psi: \operatorname{Ult}_{0}\left(\operatorname{Res}^{\alpha}, F\right) \rightarrow \operatorname{Ult}\left(\operatorname{Res}^{\alpha}, F^{*}\right)
$$

(where the first ultrapower uses all functions belonging to Res ${ }^{\alpha}$, and the second uses all functions in R_{α}) has critical point $\geq \nu^{\text {Res }^{\alpha}}$ if Res ${ }^{\alpha}$ is type I or III, and $\geq \mathrm{OR}^{\mathrm{Res}^{\alpha}}=\operatorname{lh} F$ if $\operatorname{Res}^{\alpha}$ is type II. Moreover, $\mathrm{Ult}_{0}\left(\operatorname{Res}^{\alpha}, F\right)$ agrees with Res ${ }^{\alpha}$ below $\operatorname{lh} F=\mathrm{OR}^{\text {Res }^{\alpha}}$. As $i_{\beta, \alpha+1}^{\psi}\left(\mu^{\prime}\right)>\operatorname{lh} F, Q_{\alpha+1}$ agrees with Res ${ }^{\alpha}$ below $\nu^{\text {Res }^{\alpha}}$ in the type I or III case, and below $\mathrm{OR}^{\mathrm{Res}^{\alpha}}$ in the type II case.

Next we consider the agreement of embeddings. Suppose first Res ${ }^{\alpha}$ is type I or III, and $\xi<\nu_{\alpha}$. Then $\xi=[\{\xi\} \text {, id }]_{E_{\alpha}^{\tau}}^{\mathcal{P}_{\alpha}^{*}+1}$, where id=identity function, so

$$
\pi_{\alpha+1}(\eta)=\left[\left\{\sigma^{\alpha} \circ \pi_{\alpha}(\xi)\right\}, \mathrm{id}\right]_{F^{\bullet}}^{R_{\boldsymbol{\beta}}}=\sigma^{\alpha} \circ \pi_{\alpha}(\xi)
$$

as desired. Also, let $f \in\left|\mathcal{P}_{\alpha}\right| \cap\left|\mathcal{P}_{\alpha+1}^{*}\right|$ and $a \in\left[\nu_{\alpha}\right]^{<\omega}$ be such that $\nu_{\alpha}=$ $[a, f]_{E_{\alpha}^{\tau}}^{\mathcal{P}_{\alpha}^{\top}}=[a, f]_{E_{\alpha}^{\tau}+1}^{\mathcal{P}_{\alpha}^{*}}$. Then

$$
\begin{aligned}
\pi_{\alpha+1}\left(\nu_{\alpha}\right) & =\left[\sigma^{\alpha} \circ \pi_{\alpha}(a), \pi_{\beta}(f)\right]_{F^{*}}^{R_{\beta}} \\
& =\left[\sigma^{\alpha} \circ \pi_{\alpha}(a), \sigma^{\alpha} \circ \pi_{\alpha}(f)\right]_{F^{*}}^{R_{\alpha}} \\
& \geq\left[\sigma^{\alpha} \circ \pi_{\alpha}(a), \sigma^{\alpha} \circ \pi_{\alpha}(f)\right]_{F}^{\operatorname{Res}^{\alpha}}
\end{aligned}
$$

But for $\left(E_{\alpha}^{\mathcal{T}}\right)_{a \cup\left\{\nu_{\alpha}\right\}}$ a.e. $(\bar{u}, v), f(\bar{u})=v$. Also $\sigma^{\alpha} \circ \pi_{\alpha}\left(\nu_{\alpha}\right)=\nu^{\text {Res }}{ }^{\alpha}$, so $\sigma^{\alpha} \circ$ $\pi_{\alpha}(f)(\bar{u})=v$ for $(F)_{\sigma^{\alpha} \rho \pi_{\alpha}(a) \cup\left\{\nu^{\text {Res }}{ }^{\alpha}\right\}}$ a.e. (\bar{u}, v). Thus

$$
\nu^{\mathrm{Res}^{\alpha}}=\left[\sigma^{\alpha} \circ \pi_{\alpha}(a), \sigma^{\alpha} \circ \pi_{\alpha}(f)\right]_{F}^{\mathrm{Res}^{\alpha}}
$$

and $\pi_{\alpha+1}\left(\nu_{\alpha}\right) \geq \nu^{\text {Res }}{ }^{\alpha}$, as desired.
These calculations carry over easily to the case Res ${ }^{\alpha}$ is type II to give the agreement of embeddings facts in part (b) of the claim. We omit further detail.

We must now consider the case $\eta<\alpha$. Let's just prove (a), the proof of (b) being similar. So assume Res ${ }^{\eta}$ is type I or III.

From the $\eta=\alpha$ case we know that $Q_{\alpha+1}$ agrees with Res ${ }^{\alpha}$ below $\nu^{\text {Res }}{ }^{\alpha}$. But we showed in the proof of claim 5 that $\operatorname{Res}^{\alpha}$ agrees with Q_{α} below $\pi_{\alpha}\left(\operatorname{lh} E_{\eta}^{\mathcal{T}}\right)$. Also, $\pi_{\alpha}\left(\operatorname{lh} E_{\eta}^{\mathcal{T}}\right)$ is a cardinal of Res ${ }^{\alpha}$, hence $\pi_{\alpha}\left(\operatorname{lh} E_{\eta}^{\mathcal{T}}\right) \leq \nu^{\text {Res }}{ }^{\alpha}$. Thus $Q_{\alpha+1}$ agrees with Q_{α} below $\pi_{\alpha}\left(\mathrm{lh} E_{\eta}^{\tau}\right)$. But by induction hypothesis, Q_{α} agrees with Res ${ }^{\eta}$ below $\nu^{\text {Res }}{ }^{\eta}$, and $\pi_{\alpha}\left(\nu_{\eta}\right) \geq \nu^{\text {Res }}{ }^{\eta}$. Thus $Q_{\alpha+1}$ agrees with Res ${ }^{\eta}$ below $\nu^{\text {Res }}{ }^{\eta}$, as desired. For agreement of embeddings, we argue similarly that $\pi_{\alpha+1} \upharpoonright \nu_{\alpha}=$ $\sigma^{\alpha} \circ \pi_{\alpha} \upharpoonright \nu_{\alpha}$. Furthermore since $\operatorname{lh} E_{\eta}^{\mathcal{T}}$ is a cardinal of \mathcal{P}_{α} and $\operatorname{lh} E_{\eta}^{\mathcal{T}}<\operatorname{lh} E_{\alpha}^{\mathcal{T}}$, we know that $\operatorname{lh} E_{\eta}^{\tau} \leq \nu_{\alpha}$, and since σ^{α} is the identity on $\pi_{\alpha}\left(\operatorname{lh} E_{\eta}^{\tau}\right)$ we get that $\pi_{\alpha+1} \upharpoonright \operatorname{lh} E_{\eta}^{\tau}=\pi_{\alpha} \upharpoonright \operatorname{lh} E_{\eta}^{\tau}$. But then since $\pi_{\alpha} \upharpoonright \nu_{\eta}=\sigma^{\eta} \circ \pi_{\eta} \upharpoonright \nu_{\eta}$ by the induction hypothesis, $\pi_{\alpha+1} \upharpoonright \nu_{\eta}=\sigma^{\eta} \circ \pi_{\eta} \upharpoonright \nu_{\eta}$, as desired. Notice also that we get $\pi_{\alpha+1}\left(\nu_{\eta}\right)=\pi_{\alpha}\left(\nu_{\eta}\right)>v^{\text {Res }}{ }^{\eta}$ by induction.

This verifies H 3 and H 4 . A much simpler coarse structural argument along the same lines gives H5. Finally, H6 is easy to check and H7 is vacuous in the successor case.

Now let λ be a limit ordinal with $\lambda<\theta=\operatorname{lh} \mathcal{T}$. We are given sequences $\mathcal{U} \mid \lambda$, $\left\langle Q_{\alpha} \mid \alpha<\lambda\right\rangle$, and $\left\langle\pi_{\alpha} \mid \alpha<\lambda\right\rangle$ satisfying our inductive hypothesis, and must define $\mathcal{U} \mid \lambda+1, Q_{\lambda}$, and π_{λ}.

Let $c=[0, \lambda)_{T}=\{\alpha \mid \alpha T \lambda\}$. We claim that $\lim _{\alpha \in c} R_{\alpha}$ is wellfounded, where the limit is taken along the maps $i_{\alpha \beta}^{u}$ for $\alpha, \beta \in c$.

For this it suffices, using results of [MS] asserting that \mathcal{T} has at least one well founded branch, to show that if b is a branch of $T \upharpoonright \lambda$ which is cofinal in λ, and $b \neq c$, then $\lim _{\alpha \in b} R_{\alpha}$ is illfounded. So let b be such a branch.

We may assume $i_{\alpha \beta}^{u}\left(Q_{\alpha}\right)=Q_{\beta}$ for all sufficiently large α and β in $b, \alpha<\beta$, as otherwise our last induction hypothesis $6(a)$ implies that $i_{0 b}^{u}(<\mathbb{C})$ is illfounded, so $\lim _{\alpha \in b} R_{\alpha}$ is illfounded. (Here $i_{\alpha b}^{u}$ is the canonical embedding from $R_{\alpha}, \alpha \in b$, into $\lim _{\alpha \in b} R_{\alpha}$.) This in turn implies $D^{\mathcal{T}} \cap b$ is finite via 6(b).
Let $\mathcal{P}_{b}=\lim _{\alpha \in b} \mathcal{P}_{\alpha}$, and $Q_{b}=\lim _{\alpha \in b} Q_{\alpha}$, which is the common value of $i_{\alpha b}^{u}\left(Q_{\alpha}\right)$ for $\alpha \in b$ sufficiently large. Then \mathcal{P}_{b} exists as $D^{\boldsymbol{T}} \cap b$ is finite, and \mathcal{P}_{b} is illfounded as $\mathcal{T} \mid \lambda$ is simple and $b \neq c$. There is a natural $\pi: \mathcal{P}_{b} \rightarrow Q_{b}$ given by our
commutativity hypothesis: $\pi\left(i_{\alpha b}^{\tau}(x)\right)=i_{\alpha, b}^{u}\left(\pi_{\alpha}(x)\right)$, for $\alpha \in b$ sufficiently large. Thus Q_{b} is illfounded, and hence \mathcal{R}_{b} is illfounded since $\mathcal{R}_{b}=\lim _{\alpha \in b} R_{\alpha} \vDash$ " Q_{b} is wellfounded".

We set $R_{\lambda}=\lim _{\alpha \in c} R_{\alpha}$, and this gives us $U \mid \lambda+1$. Notice that $i_{\alpha \lambda}^{u}\left(Q_{\alpha}\right)$ is constant on all sufficiently large $\alpha T \lambda$, as otherwise $i_{0 \lambda}^{u}(<\mathrm{c})$ is illfounded. Set Q_{λ} equal to the eventual value of $i_{\alpha \lambda}^{u}\left(Q_{\alpha}\right)$ for sufficiently large $\alpha T \lambda$. Set

$$
\pi_{\lambda}\left(i_{\alpha \lambda}^{\tau}(x)\right)=i_{\alpha \lambda}^{\mathcal{U}}\left(\pi_{\alpha}(x)\right)
$$

for $\alpha<\lambda$ sufficiently large, $\alpha T \lambda$.
Let $n=\operatorname{deg}^{T}(\lambda)=\operatorname{deg}^{T}(\alpha)$ for $\alpha T \lambda$ sufficiently large. It is easy to check that π_{λ} is a weak n-embedding which is $r \Sigma_{n+1}$ elementary on the appropriate set, and that π_{λ} commutes properly. Our last induction hypothesis is just the definition of Q_{λ} so we need only check that Q_{λ} and π_{λ} agree properly with Res ${ }^{\beta}$ and $\sigma^{\beta} \circ \pi_{\beta}$ for $\beta<\lambda$.

Let $\beta<\lambda$. We have already shown that if $\gamma>\beta$, then $\nu^{\text {Res }^{\gamma}}>\nu^{\text {Res }{ }^{\beta}}$. But $\nu^{\text {Res }^{\gamma}} \leq \operatorname{lh} E_{\gamma}^{u}$, and thus $\beta<\gamma \Rightarrow \nu^{\text {Res }^{\beta}}<i_{\eta, \gamma+1}^{u}\left(\right.$ crit $\left.E_{\gamma}^{u}\right)$ where $\eta=T$-pred ($\gamma+$ 1). As R_{λ} is wellfounded, we must have $\nu^{\text {Res }^{\beta}}<$ crit $E_{\gamma}^{\mathcal{U}}$, for all sufficiently large $\gamma+1 T \lambda$. We can then find $\gamma+1 T \lambda$ sufficiently large that $\nu^{\text {Res }^{\beta}}<\operatorname{crit} i_{\gamma+1, \lambda}^{u}$ and $i_{\gamma+1, \lambda}^{u}\left(Q_{\gamma+1}\right)=Q_{\lambda}$. By induction, $Q_{\gamma+1}$ agrees with Res ${ }^{\beta}$ below $\nu^{\text {Res }}{ }^{\beta}$. Q_{λ} agrees with $Q_{\gamma+1}$ below crit $i_{\gamma+1, \lambda}^{u}$. So Q_{λ} agrees with Res ${ }^{\beta}$ below $\nu^{\text {Res }}{ }^{\beta}$. For the embeddings, notice that $\beta<\gamma \Rightarrow \nu_{\beta}<\nu_{\gamma}<i_{\eta, \gamma+1}^{\tau}\left(\right.$ crit $\left.E_{\gamma}^{\boldsymbol{\tau}}\right)$, where $\eta=T \operatorname{pred}(\gamma+1)$. So we can assume the ordinal $\gamma+1$ of the last paragraph is such that $i_{\gamma+1, \lambda}^{\tau}$ is defined and $\nu_{\beta}<$ crit $i_{\gamma+1, \lambda}^{\tau}$.
But then, for $\alpha<\nu_{\beta}$,

$$
\pi_{\lambda}(\alpha)=\pi_{\lambda}\left(i_{\gamma+1, \lambda}^{\tau}(\alpha)\right)=i_{\gamma+1, \lambda}^{u}\left(\pi_{\gamma+1}(\alpha)\right)=\pi_{\gamma+1}(\alpha)
$$

Since $\pi_{\gamma+1} \backslash \nu_{\beta}=\sigma^{\beta} \circ \pi_{\beta} \backslash \nu_{\beta}$ by induction, $\pi_{\lambda} \backslash \nu_{\beta}=\sigma^{\beta} \circ \pi_{\beta} \backslash \nu_{\beta}$, as desired. This proves the agreement hypothesis in the case Res ${ }^{\beta}$ is type I or III. The type II case is almost the same.

We have completed the definition of $\mathcal{U} \upharpoonright \theta=\mathcal{U}$. Assuming that θ is a limit ordinal, methods of [MS] yield a cofinal, wellfounded branch b of \mathcal{U}. It is easy to see (cf. the limit case above) that b is a wellfounded branch of \mathcal{T}. This was what we needed.

In the case θ is a successor, the fact that \mathcal{U} can be extended freely one more step guarantees the same for \mathcal{T}, as desired.

The remaining clauses of k-iterability can be proved similarly, using that the corresponding operations on $L\left(V_{\theta}\right)$ yield wellfoundedness.

This completes the proof of 12.1 .

The 0 -iterability of the bicephali and psuedo-premice arising in the construction of $\S 11$ can be proved similarly.

[^0]:

