§6. Uniqueness of Wellfounded Branches

We shall show that, roughly speaking, all iteration trees which are important for the comparison of 1 -small mice are simple.

Let $\mathcal{T}=\left\langle T, \operatorname{deg}, D,\left\langle E_{\alpha}, \mathcal{M}_{\alpha+1}^{*} \mid \alpha+1<\theta\right\rangle\right\rangle$ be an iteration tree of length θ. We set

$$
\begin{aligned}
\vec{E}(\mathcal{T}) & =\bigcup_{\alpha<\theta}\left(\dot{E}^{\mathcal{M}_{\alpha}} \mid \operatorname{lh} E_{\alpha}\right) \\
\delta(\mathcal{T}) & =\bigcup_{\alpha<\theta} \operatorname{lh} E_{\alpha}
\end{aligned}
$$

By 5.1, $\dot{E}^{\mathcal{M}_{\alpha}}\left|\operatorname{lh} E_{\alpha}=\dot{E}^{\mathcal{M}_{\beta}}\right| \operatorname{lh} E_{\alpha}$ for all $\beta>\alpha$, so that $\vec{E}(\mathcal{T})$ is a good extender sequence with domain included in $\delta(\mathcal{T})$. Notice that if b is a cofinal wellfounded branch of \mathcal{T}, then $\vec{E}(\mathcal{T})=\dot{E}^{\mathcal{M}_{b}} \upharpoonright \delta(\mathcal{T})$.

Theorem 6.1 (Uniqueness Theorem). Let \mathcal{T} be an iteration tree of limit length θ, and b and c be distinct cofinal wellfounded branches of \mathcal{T}. Let $\alpha=$ $O R^{\mathcal{M}_{b}} \cap O R^{\mathcal{M}_{c}}$, so that $\alpha \geq \delta(\mathcal{T})$, and suppose that $\alpha>\delta(\mathcal{T})$. Then

$$
J_{\alpha}^{\vec{E}(\tau)} \vDash \delta(\mathcal{T}) \quad \text { is Woodin }
$$

Proof. Just as in [MS]. Here is a slightly cleaner presentation of that argument, adapted to our context.

Let $\delta=\delta(\mathcal{T}), \vec{E}=\vec{E}(\mathcal{T})$, and let $f: \delta \rightarrow \delta$ with $f \in J_{\alpha}^{\vec{E}}$. Let $\beta<\theta$ be large enough that

$$
D \cap(b \cup c) \subseteq \beta
$$

and

$$
b \cap \beta \neq c \cap \beta
$$

and

$$
\begin{aligned}
& \gamma \in b-\beta \Rightarrow f, \vec{E}, \delta \in \operatorname{ran} i_{\gamma b} \\
& \gamma \in c-\beta \Rightarrow f, \vec{E}, \delta \in \operatorname{ran} i_{\gamma c}
\end{aligned}
$$

and $\alpha \in \operatorname{ran} i_{\gamma b}$ if $\alpha \neq \mathrm{OR}^{\mathcal{M}_{b}}$, and $\alpha \in \operatorname{ran} i_{j c}$ if $\alpha \neq \mathrm{OR}^{\mathcal{M}_{c}}$.
Claim 1. If $\gamma \in b-\beta$ and $\eta \in c-\beta$, then

$$
\left(\operatorname{ran} i_{\gamma b} \cap \operatorname{ran} i_{\eta c} \cap J_{\alpha}^{\vec{E}}\right) \prec \Sigma_{1} J_{\alpha}^{\vec{E}}
$$

Proof. Straightforward. The restriction to Σ_{1} is due to the limited elementarity of the maps $i_{\gamma b}, i_{\eta c}$.

Claim 2. Let $\gamma+1 \in b$ with T-pred $(\gamma+1)=\xi \geq \beta$, and let η be a member of c such that $\beta<c<\gamma+1$ such that if $c<\xi$ then η is the largest member of c such that $\eta<\gamma+1$. Then

$$
\operatorname{ran} i_{\xi b} \cap \operatorname{ran} i_{\eta c} \cap \delta=\inf \left\{\text { crit } i_{\xi b}, \text { crit } i_{\eta c}\right\}
$$

Proof. \supseteq is obvious. Let us define

$$
\begin{aligned}
\gamma_{0} & =\gamma+1 \\
\eta_{n} & =\text { least ordinal in } c-\gamma_{n} \\
\gamma_{n+1} & =\text { least ordinal in } b-\eta_{n}
\end{aligned}
$$

for all $n<\omega$. The γ_{n} 's and η_{n} 's are all successor ordinals. Also we have $\sup _{n<\omega} \gamma_{n}=\sup _{n<\omega} \eta_{n}$, so the common sup is θ. Notice also that T-pred $\left(\eta_{n}\right)<$ γ_{n} and T-pred $\left(\gamma_{n+1}\right)<\eta_{n}$ by the minimality of our choices. Also T - $\operatorname{pred}\left(\eta_{0}\right)=\eta$ (unless $\eta \geq \xi$ in which case this may fail), and T-pred $\left(\gamma_{0}\right)=\xi$.

Now suppose $\mu \in \operatorname{ran} i_{\xi b} \cap \operatorname{ran} i_{\eta c} \cap \delta$. As $\mu<\delta$, we have an $n<\omega$ such that

$$
\mu<\operatorname{lh} E_{\gamma_{n+1}-1}
$$

Since $\mu \in \operatorname{ran} i_{\xi b}$ and $\xi T \gamma_{n+1}$,

$$
\mu<\operatorname{crit} E_{\gamma_{n+1}}
$$

By clauses (3) and (4) on iteration trees,

$$
\mu<\operatorname{lh} E_{T-\operatorname{pred}\left(\gamma_{n+1}\right)} \leq \operatorname{lh} E_{\eta_{n}-1}
$$

Since $\mu \in \operatorname{ran} i_{\eta c}$ and $\eta T \eta_{n}$,

$$
\mu<\operatorname{crit} E_{\eta_{n}-1}
$$

By clauses (3) and (4) on iteration trees

$$
\mu<\operatorname{lh} E_{T-\operatorname{pred}\left(\eta_{n}\right)} \leq \operatorname{lh} E_{\gamma_{n}-1} .
$$

So we may repeat the cycle until we get $\mu<\operatorname{lh} E_{\gamma_{0}-1}$. Then applying the argument again we get

$$
\mu<\operatorname{crit} E_{\gamma_{0}-1}<\operatorname{lh} E_{\xi} .
$$

So if $\nu+1 \in b-(\xi+1)$ or $\nu+1 \in c-(\eta+1)$ then $\nu \geq \xi$ (under either hypothesis on η) so that $\mu<\operatorname{lh} E_{\nu}$, so $\mu<\operatorname{crit} E_{\nu}$. Thus $\mu<\operatorname{crit} i_{\eta c}$ and $\mu<\operatorname{crit} i_{\xi b}$.

Claim 3. Claim 2 holds with the roles of b and c reversed.
Proof. The proof is the same as that of claim 2.

Now fix $\beta^{\prime}>\beta$ such that $b \cap\left(\beta^{\prime}-\beta\right) \neq \varnothing$ and $c \cap\left(\beta^{\prime}-\beta\right) \neq \varnothing$. Let

$$
\kappa=\text { least } \nu \text { such that } \nu=\text { crit } E_{\gamma} \text { for some } \gamma+1 \in(b \cup c)-\beta^{\prime}
$$

Let γ be largest such that $\kappa=\operatorname{crit} E_{\gamma}$ and $\gamma+1 \in(b \cup c)-\beta^{\prime}$, and suppose without loss of generality that $\gamma+1 \in b$. Let η be the largest element of c which is $<\gamma+1$. Notice crit $i_{\eta c}=$ crit E_{ν} for some $\nu+1 \in c$ such that $\gamma+1<\nu+1$; thus crit $i_{\eta c}>\kappa$. So

$$
\kappa=\operatorname{ran} i_{\eta c} \cap \operatorname{ran} i_{\xi b} \cap \delta
$$

where $\xi=T$-pred $(\gamma+1)$, and it follows by Claim 1 that κ is closed under f. Now let $\nu=\inf \left\{\right.$ crit $i_{\eta c}$, crit $\left.i_{\gamma+1, b}\right\}$ Claim 3 implies that

$$
\nu=\operatorname{ran} i_{\eta c} \cap \operatorname{ran} i_{\gamma+1, b} \cap \delta
$$

so that ν is closed under f. Note also that $\kappa<\nu$.
We claim that $\nu<\rho_{\gamma}$. (Recall that ρ_{γ} is the sup of the generators for E_{γ}.) Let $\tau \in c$ and $T-\operatorname{pred}(\tau)=\eta$. Then $\nu \leq$ crit $i_{\eta c} \leq \operatorname{crit} E_{\tau-1}<\rho_{\eta}$. So if $\eta=\gamma$ we're done. Otherwise $\eta<\gamma$, so $\operatorname{lh} E_{\eta}$ is a cardinal of \mathcal{M}_{γ}, and as $\operatorname{lh} E_{\eta}<\operatorname{lh} E_{\gamma}$, $\operatorname{lh} E_{\eta} \leq \rho_{\gamma}$. As $\nu<\rho_{\eta}, \nu<\rho_{\gamma}$.

Our initial segment condition on good extender sequences implies that $E_{\gamma} \upharpoonright \nu$ is an initial segment of some extender F which is on the sequence of \mathcal{M}_{γ} before E_{γ}. By coherence we see that F is one of the extenders on $\vec{E}=\vec{E}(\mathcal{T})$. So $E_{\gamma} \upharpoonright \nu \in J_{\alpha}^{\vec{E}}$.

We leave it to the reader to check that ν is an inaccessible cardinal of $J_{\alpha}^{\vec{E}}$. By strong acceptability and the fact that F coheres with \vec{E},

$$
J_{\alpha}^{\vec{E}} \vDash " V_{\nu} \in \operatorname{Ult}\left(V, E_{\gamma} \upharpoonright \nu\right) "
$$

Finally, suppose $i_{\xi b}(\bar{f})=f$. Then $\bar{f}|\kappa=f| \kappa$, and

$$
i_{\xi, \gamma+1}(\bar{f}) \upharpoonright \nu=f \upharpoonright \nu
$$

so

$$
i_{\xi, \gamma+1}(f \mid \kappa)(\kappa)<\nu
$$

But

$$
i_{\xi, \gamma+1}(f \mid \kappa)\left|\nu=i_{E_{\gamma} \mid \nu}(f \mid \kappa)\right| \nu
$$

as computed in $J_{\alpha}^{\vec{E}}$. Thus $E_{\gamma} \upharpoonright \nu$ witnesses that δ is Woodin with respect to f in $J_{\alpha}^{\vec{E}}$.

For the purpose of comparison we are only interested in iteration trees in which each E_{α} is applied to the earliest model to which it can be.

Definition 6.1.1. $\mathcal{T}=\left\langle T, \operatorname{deg}, D,\left\langle E_{\alpha}, \mathcal{M}_{\alpha+1}^{*} \mid \alpha+1<\theta\right\rangle\right\rangle$ is non-overlapping iff whenever $T-\operatorname{pred}(\gamma+1)=\beta$, then $\rho_{\eta} \leq$ crit E_{γ} for all $\eta<\beta$.

Here ρ_{η} is the sup of the generators for E_{η}, so that crit $E_{\gamma}<\rho_{\beta}$. Clearly, generators are not moved along the branches of a nonoverlapping tree, and in fact not moving generators is equivalent to being non-overlapping.

We want also to restrict ourselves to trees in which $\mathcal{M}_{\gamma+1}^{*}$ and $\operatorname{deg}(\gamma+1)$ are as large as possible, subject perhaps to an n-boundedness requirement.

Definition 6.1.2. Let $\mathcal{T}=\left\langle T, \operatorname{deg}, D,\left\langle E_{\alpha}, \mathcal{M}_{\alpha+1}^{*} \mid \alpha+1<\theta\right\rangle\right\rangle$ be an iteration tree, and $n \leq \omega$. We say \mathcal{T} is n-maximal iff \mathcal{T} is non-overlapping, and whenever $T-\operatorname{pred}(\gamma+1)=\beta, E_{\gamma}=\dot{F}^{\mathcal{N}}$ where \mathcal{N} is an initial segment of \mathcal{M}_{γ}, and $\kappa=$ crit E_{γ}, then
(a) $\mathcal{M}_{\gamma+1}^{*}$ is the longest initial segment \mathcal{P} of \mathcal{M}_{β} such that $P(\kappa) \cap|\mathcal{P}|=$ $P(\kappa) \cap|\mathcal{N}|$, and
(b) if $D \cap[0, \gamma+1]_{T}=\varnothing$ then $\operatorname{deg}(\gamma+1)$ is the largest integer $k \leq n$ such that $\kappa<\rho_{k}^{\mathcal{M}_{i+1}^{*}}$, and
(c) if $D \cap[0, \gamma+1]_{T} \neq \varnothing$, then $\operatorname{deg}(\gamma+1)$ is the largest $k \in \omega$ such that $\kappa<\rho_{k}^{\mathcal{M}_{i+1}^{*}}$.
Notice that in (a) of the definition \mathcal{P} is the longest initial segment Q of \mathcal{M}_{β} such that

$$
P(\kappa) \cap J_{\operatorname{lh} E_{\beta}}^{\mathcal{M}_{\beta}}=P(\kappa) \cap Q
$$

Since $J_{\mathrm{lh} E_{\beta}}^{\mathcal{M}_{\beta}}=J_{\mathrm{lh} E_{\beta}}^{\mathcal{M}_{\gamma}}$ it follows that if $\beta \neq \gamma$ then \mathcal{P} is the longest initial segment Q of \mathcal{M}_{β} such that $P(\kappa) \cap Q=P(\kappa) \cap\left|\mathcal{M}_{\gamma}\right|$.

The iteration trees for which we have any practical use are all n-maximal for some $n \leq \omega$. One important elementary property of such trees is the following.

Lemma 6.1.5. Let $\mathcal{T}=\left\langle T, \operatorname{deg}, D,\left\langle E_{\alpha}, \mathcal{M}_{\alpha+1}^{*} \mid \alpha+1<\theta\right\rangle\right\rangle$ be an n-maximal iteration tree, where $n \leq \omega$; then for any $\alpha+1<\theta, E_{\alpha}$ is close to $\mathcal{M}_{\alpha+1}^{*}$.

Proof. By induction on α. Let $\beta=T$-pred $(\alpha+1)$. We may assume $\beta<\alpha$; otherwise E_{α} is on the \mathcal{M}_{β} sequence, and so by the restrictions on how far $\mathcal{M}_{\alpha+1}^{*}$ can drop in \mathcal{M}_{β}, on the $\mathcal{M}_{\alpha+1}^{*}$ sequence. Thus E_{α} is close indeed to $\mathcal{M}_{\alpha+1}^{*}$.

Let $a \subseteq \operatorname{lh} E_{\alpha}$ be finite. We wish to verify the two conditions in closeness to $\mathcal{M}_{\alpha+1}^{*}$ for $\left(E_{\alpha}\right)_{a}$. We begin with the second.

Let $\kappa=\operatorname{crit} E_{\alpha}$ and $\tau=\operatorname{lh} E_{\beta}$. As $\beta=T$-pred $(\alpha+1), \kappa<\tau$, and as τ is a cardinal of $\mathcal{M}_{\alpha},\left(\kappa^{+}\right)^{\mathcal{M}_{\alpha}} \leq \tau$. Let $A \subseteq P\left([\kappa]^{\text {card } a}\right), A \in\left|\mathcal{M}_{\alpha+1}^{*}\right|$, be such that $\mathcal{M}_{\alpha+1}^{*} \vDash \operatorname{card}(A) \leq \kappa$. We want to see that $\left(E_{\alpha}\right)_{a} \cap A \in\left|\mathcal{M}_{\alpha+1}^{*}\right|$. Now $P(\kappa) \cap\left|\mathcal{M}_{\alpha}\right|=P(\kappa) \cap\left|\mathcal{M}_{\alpha+1}^{*}\right|$, so A has cardinality $\leq \kappa$ in \mathcal{M}_{α}. But then $\left(E_{\alpha}\right)_{a} \cap A$ is in \mathcal{M}_{α} and has cardinality $\leq \kappa$ there, by weak amenability. But then $\left(E_{\alpha}\right)_{a} \cap A \in\left|\mathcal{M}_{\alpha+1}^{*}\right|$, as desired.

It remains to show $\left(E_{\alpha}\right)_{a}$ is $\boldsymbol{\Sigma}_{1}$ over $\mathcal{M}_{\alpha+1}^{*}$. The following claim is useful; notice that $\mathcal{J}_{\tau}^{\mathcal{M}_{\beta}}$ is an initial segment of $\mathcal{M}_{\alpha+1}^{*}$.

Claim 1. If $A \subseteq \tau$ and $A \in\left|\mathcal{M}_{\gamma}\right|$ for some $\gamma>\beta$, then A is $\boldsymbol{\Sigma}_{1}$ over $\mathcal{J}_{\boldsymbol{\tau}}^{\mathcal{M}_{\beta}}$.
Proof. By 5.1, $A \in\left|\mathcal{M}_{\beta+1}\right|$. Let $A=[a, f]_{E_{\beta}}^{Q}$, where $Q=\mathcal{M}_{\alpha+1}^{*}$. Since $A \subseteq \tau$, we can take f to map $[\mu]^{\text {card } a}$ into J_{μ}^{Q}, where $\mu=$ crit E_{β}. We can therefore assume $f \in|Q|$, as $\mu<\rho_{m}^{Q}$ where $\mathcal{M}_{\beta+1}=\operatorname{Ult}_{m}\left(Q, E_{\beta}\right)$. But also, \mathcal{M}_{β} agrees with Q below τ, and $f \in J_{\tau}^{\mathcal{M}_{\beta}}=\mathcal{P}$. Moreover, $A=[a, f]_{E_{\beta}}^{Q}=[a, f]_{E_{\beta}}^{\mathcal{P}}$. It is easy, then, to define A in a Σ_{1} way over \mathcal{P} from the parameters a and f.

It follows that if $\left(E_{\alpha}\right)_{a} \in\left|\mathcal{M}_{\alpha}\right|$, then since $\left(E_{\alpha}\right)_{a}$ is coded by a subset of τ, $\left(E_{\alpha}\right)_{a}$ is Σ_{1} over $\mathcal{J}_{\tau}^{\mathcal{M}_{\beta}}$, hence $\boldsymbol{\Sigma}_{1}$ over $\mathcal{M}_{\alpha+1}^{*}$, as required. Thus we may assume that $\left(E_{\alpha}\right)_{a} \notin\left|\mathcal{M}_{\alpha}\right|$, and hence E_{α} is on the \mathcal{M}_{α} sequence, \mathcal{M}_{α} is active and $E_{\alpha}=\dot{F}^{\mathcal{M}_{\alpha}}$.

Claim 2. Let $\gamma \in[0, \alpha]_{T}$ be such that $\gamma \geq \beta$ and $D \cap(\gamma, \alpha]_{T}=\varnothing$. Then $\operatorname{crit}\left(i_{\gamma \alpha}\right)>\kappa$, and $\left(E_{\alpha}\right)_{a}$ is Σ_{1} over \mathcal{M}_{γ}. If, in addition, $\gamma>\beta$ and γ is a successor ordinal, then $\operatorname{crit}\left(i_{\gamma, \alpha} \circ i_{\gamma}^{*}\right)>\kappa$ and $\left(E_{\alpha}\right)_{a}$ is $\boldsymbol{\Sigma}_{1}$ over \mathcal{M}_{γ}^{*}.
Proof. Since $\kappa=\operatorname{crit} E_{\alpha}$ and $E_{\alpha}=\dot{F}^{\mathcal{M}_{\alpha}}, \kappa \in \operatorname{ran} i_{\gamma \alpha}$. On the other hand, every extender used in $i_{\gamma \alpha}$ has length at least $\operatorname{lh} E_{\beta}$, since $\gamma \geq \beta$. It follows that $\kappa<\operatorname{crit}\left(i_{\gamma \alpha}\right)$.

By our induction hypothesis, E_{η} is close to $\mathcal{M}_{\eta+1}^{*}$ for all $\eta<\alpha$. Thus the preservation facts recorded in 4.5, 4.6, and 4.7 hold for the embeddings of $\tau \mid$ $(\alpha+1)$. Now $\rho_{1}^{\mathcal{M}_{\alpha}} \leq \tau=\left(\kappa^{+}\right)^{\mathcal{M}_{\alpha}}$ since $\left(E_{\alpha}\right)_{a} \notin\left|\mathcal{M}_{\alpha}\right|$, and $\tau \leq$ crit $i_{\gamma \alpha}$, so $\operatorname{deg}(\eta)=0$ for all $\eta \in(\gamma, \alpha]_{T}$. The proofs of 4.5 and 4.7 (see especially 4.5) show that every $\boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\alpha}}$ subset of $\operatorname{crit}\left(i_{\gamma \alpha}\right)$ is $\boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\gamma}}$. Thus $\left(E_{\alpha}\right)_{a}$ is $\boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\gamma}}$, as desired.

Suppose finally that $\gamma>\beta$ and γ is a successor ordinal. The extenders used in $i_{\gamma \alpha} \circ i_{\gamma}^{*}$ are just those used in $i_{\gamma \alpha}$ together with $E_{\gamma-1}$. Since $\gamma-1 \geq \beta$, all these have length at least $\operatorname{lh} E_{\beta}$, hence $>\kappa$. The argument of the previous paragraph now shows $\operatorname{crit}\left(i_{\gamma \alpha} \circ i_{\gamma}^{*}\right)>\kappa$ and $\left(E_{\alpha}\right)_{a}$ is Σ_{1} over \mathcal{M}_{γ}^{*}.

Now let $\eta \in[0, \alpha]_{T}$ be least such that $\beta \leq \eta$. Suppose first that $D \cap(\eta, \alpha]_{T} \neq \varnothing$. Let γ be largest in $D \cap(\eta, \alpha]_{T}$, and $\xi=T$-pred (γ). Since $\gamma>\beta$, Claim 2 implies that $\left(E_{\alpha}\right)_{a}$ is Σ_{1} over \mathcal{M}_{γ}^{*}. Since $\gamma \in D, \mathcal{M}_{\gamma}^{*} \in\left|\mathcal{M}_{\xi}\right|$, so $\left(E_{\alpha}\right)_{a} \in\left|\mathcal{M}_{\xi}\right|$. Since $\xi \geq \beta$, Claim 1 implies that $\left(E_{\alpha}\right)_{a}$ is Σ_{1} over $\mathcal{M}_{\alpha+1}^{*}$, as desired.

So we may assume $D \cap(\eta, \alpha]_{T}=\varnothing$. We claim that $\eta=\beta$. For if $\eta>\beta$, then the leastness of η implies that η is not a limit, so let $\delta=T$-pred (η). Since η is least, $\delta<\beta$. By Claim 2 with $\gamma=\eta, \operatorname{crit}\left(i_{\eta}^{*}\right)=\operatorname{crit}\left(E_{\eta-1}\right)>\kappa$. But $\operatorname{crit}\left(E_{\eta-1}\right)<\rho_{\delta}$, so $\kappa<\rho_{\delta}$. But the rules for non-overlapping trees then require that T-pred $(\alpha+1) \leq \delta$, a contradiction.

So $\eta=\beta$. Also, by Claim 2, crit $i_{\beta \alpha}>\kappa$, and $\left(E_{\alpha}\right)_{a}$ is $\boldsymbol{\Sigma}_{1}$ over \mathcal{M}_{β}. But then
$P(\kappa) \cap\left|\mathcal{M}_{\beta}\right|=P(\kappa) \cap\left|\mathcal{M}_{\alpha}\right|$, and since \mathcal{T} is n-maximal, $\mathcal{M}_{\beta}=\mathcal{M}_{\alpha+1}^{*}$. Thus $\left(E_{\alpha}\right)_{a}$ is $\boldsymbol{\Sigma}_{1}$ over $\mathcal{M}_{\alpha+1}^{*}$, as desired.
Lemma 6.1.5 has the important consequence that the preservation facts listed in $4.5,4.6$, and 4.7 apply to the embeddings along the branches of an n-maximal tree. We shall use this repeatedly and without explicit mention in the future.

The following is a crucial strengthening of the uniqueness theorem (6.1). It will imply that only simple iteration trees arise in our proof that 1 -small, k-iterable premice are k-solid for all k. This is important because our proof of that fact uses heavily the Dodd-Jensen lemma, which requires a simplicity hypothesis.

If \mathcal{M} is a ppm, an "extender from the \mathcal{M}-sequence" is an extender E such that $E=\dot{F}^{\mathcal{M}}$ or E is on the sequence $\dot{E}^{\mathcal{M}}$.

Theorem 6.2 (Strong uniqueness). Let \mathcal{M} be an n-sound, 1 -small n-iterable premouse and $\rho_{n+1}^{\mathcal{M}} \leq \operatorname{lh} E$ for some extender E from the \mathcal{M}-sequence and some integer n. Let \mathcal{T} be an n-maximal iteration tree on \mathcal{M}. Then \mathcal{T} is simple.

Proof. Assume toward a contradiction that b and c are distinct cofinal wellfounded branches of \mathcal{T} with $\mathrm{OR}^{\mathcal{M}_{b}} \leq \mathrm{OR}^{\mathcal{M}_{c}}$. Let $\delta=\delta(\mathcal{T})$.

Claim 1. $\operatorname{lh} F<\delta$ for all extenders F from the \mathcal{M}_{b} sequence.
Proof. Let F be the first extender on the \mathcal{M}_{b} sequence such that $\operatorname{lh} F \geq \delta$. Notice δ is a limit of \mathcal{M}_{b} cardinals, as crit $i_{\alpha b}$ is an \mathcal{M}_{b} cardinal whenever $i_{\alpha b}$ is defined. Thus $\operatorname{lh} F>\delta$, as $\exists \nu<\operatorname{lh} F \forall \gamma<\operatorname{lh} F\left(\mathcal{M}_{b} \vDash \operatorname{card} \gamma \leq \nu\right)$. Let $\gamma=\operatorname{lh} F$. By Theorem 6.1,

$$
J_{\gamma}^{\vec{E}(\tau)} \vDash \delta \text { is Woodin }
$$

so

$$
\mathcal{J}_{\gamma}^{\mathcal{M}_{b}}=\left(J_{\gamma}^{\vec{E}(\mathcal{T})}, \in, \vec{E}(\mathcal{T}), \tilde{F}\right) \vDash \delta \text { is Woodin. }
$$

Now let $\mathcal{N}=\operatorname{Ult}_{0}\left(\mathcal{J}_{\gamma}^{\mathcal{M}_{b}}, F\right)$. As F is a pre-extender over $\mathcal{J}_{\boldsymbol{\gamma}}^{\mathcal{M}_{\mathrm{b}}}, \gamma \in \operatorname{wfp}(\mathcal{N})$. By coherence and strong acceptability and the fact that γ is a cardinal of \mathcal{N},

$$
\mathcal{N} \vDash \delta \text { is Woodin. }
$$

But then \mathcal{N} is not 1 -small, so that \mathcal{M}_{b} is not 1 -small and hence \mathcal{M} is not 1 -small, which is a contradiction.

Claim 2. \mathcal{M}_{b} is an initial segment of \mathcal{M}_{c}.
Proof. Otherwise \mathcal{M}_{c} is not 1 -small. For let F be the first extender from the \mathcal{M}_{c} sequence with $\operatorname{lh} F \geq \delta$; if none exists Claim 2 is obvious from Lemma 5.1. So $\operatorname{lh} F>\delta$ as in Claim 1. If \mathcal{M}_{b} is not an initial segment of $\mathcal{M}_{c}, \operatorname{lh} F \leq \mathrm{OR}^{\mathcal{M}_{b}}$. But now we can show \mathcal{M}_{c} is not 1 -small as in Claim 1.

Claim 3. If $\mathrm{OR}^{\mathcal{M}_{b}}<\mathrm{OR}^{\mathcal{M}_{c}}$, then there is no dropping of any kind along b; that is, $D^{\mathcal{T}} \cap b=\varnothing$ and $\operatorname{deg}^{\mathcal{T}}(\alpha+1)=n$ for all $\alpha+1 \in b$.

Proof. If $\mathrm{OR}^{\mathcal{M}_{b}}<\mathrm{OR}^{\mathcal{M}_{c}}$, then \mathcal{M}_{b} is a proper initial segment of \mathcal{M}_{c}, and hence \mathcal{M}_{b} is ω-sound since \mathcal{M}_{c} is a premouse. But now suppose the last drop of any kind along b occurs at $\alpha+1$. Then $\alpha+1 \in b$, and $k=\operatorname{deg}(\alpha+1)=\operatorname{deg}(\gamma)$ for all $\gamma \in b-(\alpha+1)$. Also, $\mathcal{M}_{\alpha+1}^{*}$ is $k+1$ sound and $\operatorname{crit}\left(i_{\alpha+1, b} \circ i_{\alpha+1}^{*}\right)=$ $\operatorname{crit}\left(i_{\alpha+1}^{*}\right) \geq \rho_{k+1}^{\mathcal{M}_{\alpha+1}^{*}}$. From Lemma 4.7 it follows that \mathcal{M}_{b} is not $k+1$-sound, a contradiction.

CLaim 4. If $\mathrm{OR}^{\mathcal{M}_{b}}=\mathrm{OR}^{\mathcal{M}_{c}}$, then on one of b and c there's no dropping of any kind.

Proof. Suppose the last drop along b occurs at $\eta+1$, and the last drop along c at $\gamma+1$. Since $\mathcal{M}_{b}=\mathcal{M}_{c}, \operatorname{deg}(\eta+1)=\operatorname{deg}(\gamma+1)=k$, where $k<\omega$ is least such that $\mathcal{M}_{b}=\mathcal{M}_{c}$ is not $k+1$-sound. But then

$$
\mathcal{M}_{\eta+1}^{*}=\mathfrak{C}_{k+1}\left(\mathcal{M}_{b}\right)=\mathfrak{C}_{k+1}\left(\mathcal{M}_{c}\right)=\mathcal{M}_{\gamma+1}^{*} .
$$

This implies that T-pred $(\eta+1)=T-\operatorname{pred}(\gamma+1)$. For let $\beta=T$-pred $(\eta+1)$; then E_{β} is on the $\mathcal{M}_{\eta+1}^{*}$ sequence, so E_{β} is on the $\mathcal{M}_{\gamma+1}^{*}$ sequence, so E_{β} is on the \mathcal{M}_{ξ}-sequence where $\xi=T$-pred $(\gamma+1$). Thus $\xi \leq \beta$ by remark (a) following 5.1. That $\beta \leq \xi$ is proved symmetrically.

Now then

$$
i_{\eta+1, b} \circ i_{\eta+1}^{*}=i_{\gamma+1, c} \circ i_{\gamma+1}^{*}
$$

since by lemma 4.7 each side is the natural embedding from $\mathfrak{C}_{k+1}\left(\mathcal{M}_{b}\right)$ to $\mathfrak{C}_{k}\left(\mathcal{M}_{b}\right)=\mathcal{M}_{b}$ inverting the collapse.

Since \mathcal{T} is non-overlapping, crit $i_{\eta+1, b} \geq \rho_{\eta}$ and crit $i_{\gamma+1, b} \geq \rho_{\gamma}$. So letting $\nu=\inf \left(\rho_{\eta}, \rho_{\gamma}\right)$, we have crit $E_{\eta}=\operatorname{crit} E_{\gamma}<\nu$ and $E_{\eta} \upharpoonright \nu=E_{\gamma} \upharpoonright \nu$. By remark (a) following 5.1 we see that $\eta=\gamma$.

Now let β be largest in $b \cap c$; from the above we know that there's no dropping after β on b or c, that is, $\eta+1=\gamma+1 \in b \cap c$. Let

$$
\rho=\sup \left\{\operatorname{lh} E_{\xi} \mid \xi+1 \in b \cap c\right\}
$$

then

$$
\mathcal{M}_{\beta}=\mathcal{H}_{k+1}^{\mathcal{M}_{\beta}}\left(\rho \cup\left\{q_{\beta}\right\}\right)
$$

where for any $\xi \in b \cup c$ such that $\xi \geq \eta+1$

$$
q_{\xi}=i_{\eta+1, \xi} \circ i_{\eta+1}^{*}\left(p_{k+1}\left(\mathcal{M}_{\eta+1}^{*}\right)\right)
$$

But then

$$
i_{\beta, b}=i_{\beta, c}
$$

as $i_{\beta, b} \upharpoonright \rho=i_{\beta, c} \upharpoonright \rho=\mathrm{id}$, and $i_{\beta, b}\left(q_{\beta}\right)=i_{\beta, c}\left(q_{\beta}\right)=\langle r, u\rangle$, where r is the $k+1$ st standard parameter of $\left(\mathcal{M}_{b}, u\right)$ and u is as in the definition of $p_{k+1}\left(\mathcal{M}_{b}\right)$ (cf. Lemma 4.7). Let $\sigma+1 \in b, \tau+1 \in c$, and T-pred $(\sigma+1)=T$-pred $(\tau+1)=\beta$. As $i_{\beta, c}=i_{\beta, b}$, we see that crit $E_{\sigma}=$ crit E_{τ}, and $E_{\sigma} \upharpoonright \nu=E_{\tau} \upharpoonright \nu$, where $\nu=\inf \left(\rho_{\sigma}, \rho_{\tau}\right)$. This implies $\sigma=\tau$, a contradiction.
In view of Claims 3 and 4, we may assume there's no dropping of any kind along b (perhaps by exchanging b for c). The proof of the following claim will take several pages and will nearly finish the proof of theorem 6.2.

Claim 5. $\rho_{n+1}^{\mathcal{M}_{b}}<\delta$.
Proof. We show by induction on $\eta \in b$, that if $\alpha T \eta$, or if $\eta=b$ and $\alpha \in b$, then

$$
\begin{equation*}
\rho_{n+1}^{\mathcal{M}_{\eta}} \leq i_{\alpha, \eta}\left(\rho_{n+1}^{\mathcal{M}_{\alpha}}\right) \tag{*}
\end{equation*}
$$

and
(**) If $\rho_{n+1}^{\mathcal{M}_{\eta}}=i_{\alpha \eta}\left(\rho_{n+1}^{\mathcal{M}_{\alpha}}\right)$ and $\operatorname{Th}_{n+1}^{\mathcal{M}_{\alpha}}\left(\rho_{n+1}^{\mathcal{M}_{\alpha}} \cup\{q\} \notin \mathcal{M}_{\alpha}\right)$ then $\operatorname{Th}_{n+1}^{\mathcal{M}_{\boldsymbol{\eta}}}\left(\rho_{n+1}^{\mathcal{M}_{\eta}} \cup\left\{i_{\alpha \eta}(q)\right\}\right) \notin \mathcal{M}_{\eta}$.

By (${ }^{*}$) for $\eta=b$ and $\alpha=0$ we have $\rho_{n+1}^{\mathcal{M}_{b}} \leq i_{0 b}\left(\rho_{n+1}^{\mathcal{M}_{0}}\right) \leq \operatorname{lh} E$ for some extender E from the \mathcal{M}_{b} sequence, so that $\rho_{n+1}^{\mathcal{M}_{b}}<\delta$, as desired.
Consider first the case η is a limit or $\eta=b$. Let $\alpha T \eta$ be the least ordinal such that $i_{\alpha \gamma}\left(\rho_{n+1}^{\mathcal{M}_{\alpha}}\right)=\rho_{n+1}^{\mathcal{M}_{\gamma}}$ whenever $\alpha T \gamma T \eta$. Such an ordinal α exists by (*). It will be enough to show that whenever $\gamma \in[\alpha, \eta)_{T}$ and $\operatorname{Th}_{n+1}^{\mathcal{M}_{\gamma}}\left(\rho_{n+1}^{\mathcal{M}} \cup\{q\}\right)$ is not a member of \mathcal{M}_{γ}, then

$$
\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}\left(i_{\gamma \eta}\left(\rho_{n+1}^{\mathcal{M}_{\gamma}}\right) \cup\left\{i_{\gamma \eta}(q)\right\}\right) \notin\left|\mathcal{M}_{\eta}\right|
$$

For this, suppose $\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}\left(i_{\gamma \eta}\left(\rho_{n+1}^{\mathcal{M}_{\gamma}}\right) \cup\left\{i_{\gamma \eta}(q)\right\}\right)=i_{\xi \eta}(x)$, where we may assume $\gamma T \xi T \eta$. As $i_{\xi \eta}$ is generalized $r \Sigma_{n+1}$ elementary, we see $x=\operatorname{Th}_{n+1}^{\mathcal{M}}\left(i_{\gamma \xi}\left(\rho_{n+1}^{\mathcal{M}} \cup\right.\right.$ $\left.\left\{i_{\gamma \xi}(q)\right\}\right)$. This contradicts $\left({ }^{* *}\right)$ at ξ.

Now let $\eta=\xi+1$ and set $\beta=T$-pred (η). If (*) or (${ }^{* *}$) fails at η we must have $q \in\left|\mathcal{M}_{\beta}\right|$ such that

$$
\mathrm{Th}_{n+1}^{\mathcal{M}_{\beta}}\left(\rho_{n+1}^{\mathcal{M}_{\beta}} \cup\{q\}\right) \notin\left|\mathcal{M}_{\beta}\right|
$$

but

$$
\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}\left(i_{\beta \eta}\left(\rho_{n+1}^{\mathcal{M}_{\beta}}\right) \cup\left\{i_{\beta \eta}(q)\right\}\right)=[a, f]_{E_{\xi}}^{\mathcal{M}_{\beta}} \in\left|\mathcal{M}_{\eta}\right| .
$$

Fix such a q. Let $\rho=\rho_{n+1}^{\mathcal{M}_{\beta}}, i=i_{\beta \eta}, E=E_{\xi}$.
We may assume $f(\bar{u}) \subseteq \rho$ for all $\bar{u} \in \operatorname{dom} f$. Also $\rho<\rho_{n}^{\mathcal{M}_{\beta}}$ by $\left(^{*}\right)$ and the fact that $\rho_{n+1}^{\mathcal{M}_{0}}<\rho_{n}^{\mathcal{M}_{0}}$. If we let $A=\{(\bar{u}, \nu) \mid \nu \in f(\bar{u})\}$, then A is (generalized) $r \boldsymbol{\Sigma}_{\boldsymbol{n}}$, so $A \in\left|\mathcal{M}_{\beta}\right|$. Thus $f \in\left|\mathcal{M}_{\beta}\right|$.

Now

$$
x \in \operatorname{Th}_{n+1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\}) \Leftrightarrow i(x) \in[a, f]_{E}^{\mathcal{M}_{\beta}}
$$

since i is generalized $r \Sigma_{n+1}$ elementary. This gives an $r \Delta_{1}^{\mathcal{M}_{\beta}}$ definition of $\mathrm{Th}_{n+1}^{\mathcal{M}_{\boldsymbol{\beta}}}(\rho \cup\{q\})$ since E_{a} is $\boldsymbol{r} \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\beta}}$. This is a contradiction if $n>0$, so we now assume $\boldsymbol{n}=0$.

Let $\kappa=$ crit E. We have $\kappa<\rho$ by Lemma 4.5. On the other hand, $E_{a} \notin\left|\mathcal{M}_{\beta}\right|$, as otherwise (\dagger) would imply $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\}) \in\left|\mathcal{M}_{\beta}\right|$. Thus $\rho=\rho_{1}^{\mathcal{M}_{\beta}}=\left(\kappa^{+}\right)^{\mathcal{M}_{\beta}}$.

We will now complete the proof of claim 5 by showing that there is a $r \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\beta}}$ function $t: \kappa \rightarrow \rho$ such that $\operatorname{ran}(t)$ is cofinal in ρ. To see that this proves claim 5, we let S be the set of triples (α, γ, ν) such that $\gamma \prec_{t(\alpha)} \nu$, where $\prec_{t(\alpha)}$ is the first well ordering of κ in the natural order of \mathcal{M}_{β} which has order type $t(\alpha)$. Then $S \subseteq \kappa$ and S is $r \Sigma_{1}^{\mathcal{M}_{\beta}}$, so that $S \in\left|\mathcal{M}_{\beta}\right|$ and hence $\rho<\left(\kappa^{+}\right)^{\mathcal{M}_{\beta}}$, contradiction.

For any \mathcal{N} and $X \subseteq|\mathcal{N}|$, let

$$
\overline{\operatorname{Th}}_{1}^{\mathcal{N}}(X)=\operatorname{Th}_{1}^{\mathcal{N}}(X) \cap\left\{(\varphi, \bar{a}) \mid \varphi \text { is pure } r \Sigma_{1}\right\}
$$

Using the proof of Lemma 2.10 we see that $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\}) \notin\left|\mathcal{M}_{\beta}\right|$ implies that $\overline{T h}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\}) \notin\left|\mathcal{M}_{\beta}\right|$, so we can use $\overline{T h}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\})$ instead of $\mathrm{Th}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\})$. Let f be the function representing $\overline{T h}_{1}^{\mathcal{M}_{n}}(i(\rho) \cup\{i(q)\})$. We need to consider two cases:

Case 1. There is a total, continuous, order-preserving, $r \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\boldsymbol{\beta}}}$ function $g: \kappa \rightarrow$ $\mathrm{OR}^{\mathcal{M}_{\beta}}$ such that $g^{\prime \prime} \kappa$ is cofinal in $\mathrm{OR}^{\mathcal{M}_{\beta}}$.

In this case, we set for $\bar{u} \in \operatorname{dom}(f)$

$$
h(\bar{u})=\overline{\operatorname{Th}}_{1}{ }_{g\left(\boldsymbol{\varepsilon}_{0}\right)}^{\mathcal{M}_{\boldsymbol{\beta}}}(\rho \cup\{q\}),
$$

so that h is $\boldsymbol{r} \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\boldsymbol{\beta}}}$. Notice that if $A \in E_{a}$, then $\exists \bar{u} \in A h(\bar{u}) \neq f(\bar{u})$, as otherwise $h|A \in| \mathcal{M}_{\beta} \mid$, so that $\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\}) \in\left|\mathcal{M}_{\beta}\right|$, a contradiction.
Now set, for all $\bar{u} \in \operatorname{dom}(f)$

$$
t(\bar{u})= \begin{cases}\text { least } \alpha & \text { such that }(f(\bar{u}) \Delta h(\bar{u})) \cap\left(\omega \times(\alpha \cup\{q\})^{<\omega}\right) \neq \varnothing \\ 0 & \text { if no such } \alpha \text { exists }\end{cases}
$$

So t is total and $\boldsymbol{r} \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\beta}}$. It is enough to see $\operatorname{ran}(t)$ is unbounded in ρ. Fix any ordinal $\theta<\rho$. We will complete the proof of case 1 by finding a \bar{u} such that $t(\bar{u})>\theta$. Define a function k by

$$
k(\bar{v})=h(\bar{v}) \cap\left(\omega \times(\theta \cup\{q\})^{<\omega}\right) .
$$

Then $k \in\left|\mathcal{M}_{\beta}\right|$ since it can be computed from $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\theta \cup\{q, r\})$, where r is a parameter chosen so that the function g is $\Sigma_{1}^{\mathcal{M}_{\beta}}(\{r\})$. Moreover

$$
\begin{equation*}
[a, k]_{E}^{\mathcal{M}_{\beta}}=\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\eta}}(i(\theta) \cup\{i(q)\}) \tag{tt}
\end{equation*}
$$

One direction, \supseteq, of equation ($\dagger \dagger$) is easy. To prove \subseteq, let $[b, \mathcal{I}]_{E}^{\mathcal{M}_{\beta}} \in[a, k]_{E}^{\mathcal{M}_{\beta}}$, where we may assume $a \subseteq b$. We may assume that for all $\bar{v} \in \operatorname{dom} \mathcal{I}$

$$
\mathcal{I}(\bar{v}) \in k\left(\bar{v}^{*}\right)=\overline{\operatorname{Th}}_{1}^{J_{g\left(v_{0}\right)}^{\mathcal{M}_{\boldsymbol{\beta}}}}(\theta \cup\{q\})
$$

where \bar{v}^{*} is the appropriate subsequence of \bar{v}. For $\bar{v} \in \operatorname{dom} \mathcal{I}$ such that v_{0} is a limit, let

$$
s(\bar{v})=\text { least } \alpha<v_{0} \text { such that } \mathcal{I}(\bar{v}) \in \overline{\operatorname{Th}}_{1}^{J_{\boldsymbol{g}(\alpha)}^{\mathcal{M}_{\boldsymbol{\beta}}}}(\theta \cup\{q\}) .
$$

Then s is a $r \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\boldsymbol{\beta}}} \operatorname{map}$ from $\kappa^{\boldsymbol{n}}$ to κ, so $s \in\left|\mathcal{M}_{\boldsymbol{\beta}}\right|$. By normality, fix α_{0} such that $s(\bar{v})=\alpha_{0}$ for E_{b} a.e. \bar{v}, and let $\xi=g\left(\alpha_{0}\right)$. Then

$$
\begin{aligned}
{[a, \mathcal{I}]_{E}^{\mathcal{M}_{\beta}} } & \left.\in i{\overline{\operatorname{Th}_{1}^{\prime}}}_{j_{\varepsilon}^{\mathcal{M}_{\beta}}}(\theta \cup\{q\})\right) \\
& =\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\eta}(\xi)}(i(\theta) \cup\{i(q)\}) \subseteq \overline{T h}_{1}^{\mathcal{M}_{\eta}}(i(\theta) \cup\{i(q)\})
\end{aligned}
$$

as desired. This completes the proof of equation ($\dagger \dagger$).
It follows that there is an $A \in E_{a}$ such that for all $\bar{u} \in A$,

$$
f(\bar{u}) \cap\left(\omega \times(\theta \cup\{q\})^{<\omega}\right)=h(\bar{u}) \cap\left(\omega \times(\theta \cup\{q\})^{<\omega}\right) .
$$

Let $\bar{u} \in A$ be such that $h(\bar{u}) \neq f(\bar{u})$; then $t(\bar{u})>\theta$. This completes the proof of case 1 of claim 5 .

Case 2. There is no function g as in case 1.
In this case, define the function $t(\bar{u})$, where $\bar{u} \in \operatorname{dom}(f)$, by

$$
t(\bar{u})=\text { least } \alpha \text { such that }\left(f(\bar{u}) \Delta \overline{T h}_{1}^{\mathcal{M}_{\beta}}(\rho \cup\{q\})\right) \cap\left(\omega \times(\alpha \cup\{q\})^{<\omega}\right) \neq \varnothing
$$

Thus t is total $r \boldsymbol{\Sigma}_{1}^{\mathcal{M}_{\beta}}$. To see that ran t is unbounded in ρ, note that for $\theta<\rho$

$$
\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\eta}}(i(\theta) \cup\{i(q)\})=i\left(\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\beta}}(\theta \cup\{q\})\right)
$$

as

$$
\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\beta}}(\theta \cup\{q\})=\overline{\operatorname{Th}}_{1}^{J_{\varepsilon}^{\mathcal{M}_{\beta}}}(\theta \cup\{q\})
$$

for some $\boldsymbol{\xi}<\mathrm{OR}^{\mathcal{M}_{\beta}}$ by case hypothesis.
This completes the proof of case 2, and hence of Claim 5.
Fix now $p \in\left|\mathcal{M}_{\beta}\right|$ and $\rho<\delta$ such that $\operatorname{Th}_{n+1}^{\mathcal{M}_{b}}(\rho \cup\{p\}) \notin\left|\mathcal{M}_{b}\right|$. We obtain a contradiction via an easy generalization of the proof of 6.1.

Fix $\beta<$ length of \mathcal{T} so large that
(1) $b \cap \beta \neq c \cap \beta$, and there's no dropping on $b \cup c$ above β.
(2) $\gamma \in b-\beta \Rightarrow \operatorname{crit} i_{\gamma b}>\rho$ and $p \in \operatorname{ran} \boldsymbol{i}_{\gamma b}$ and $\left(\delta<\mathrm{OR}^{\mathcal{M}_{b}} \Rightarrow \delta \in \operatorname{ran} \boldsymbol{i}_{\gamma b}\right)$.
(3) $\gamma \in c-\beta \Rightarrow \operatorname{crit} i_{\gamma c}>\rho$ and $p \in \operatorname{ran} i_{\gamma c}$ and $\left(\delta<\mathrm{OR}^{\mathcal{M}_{b}} \Rightarrow \delta \in \operatorname{ran} i_{\gamma c}\right)$ and $\left(\mathrm{OR}^{\mathcal{M}_{b}}<\mathrm{OR}^{\mathcal{M}_{c}} \Rightarrow \mathrm{OR}^{\mathcal{M}_{b}} \in \operatorname{ran} \boldsymbol{i}_{\boldsymbol{\gamma}}\right)$.

As in Claim 2 of the proof of 6.1 , we can find $\gamma \in b-\beta$ and $\eta \in c-\beta$ such that

$$
\operatorname{ran} i_{\gamma b} \cap \operatorname{ran} i_{\eta c} \cap \delta=\kappa
$$

where $\rho<\kappa<\delta$. Let

$$
\pi:|\mathcal{N}| \cong X \subseteq\left|\mathcal{M}_{b}\right|
$$

where $X=\operatorname{ran} i_{\gamma b} \cap \operatorname{ran} i_{\eta c}$ and π is the inverse of the collapse. Then π is generalized $r \Sigma_{n+1}$ elementary. This follows from the fact that both $i_{\gamma b}$ and $i_{\gamma c}$ are generalized $r \Sigma_{n+1}$ elementary. To see that $i_{\gamma c}$ is generalized $r \Sigma_{n+1}$ elementary, note that if $\mathcal{M}_{b}=\mathcal{M}_{c}$, then $\operatorname{deg}(\xi+1) \geq n$ for all sufficiently large $\xi+1 \in c$, so $i_{\eta c}$ is generalized $r \Sigma_{n+1}$ elementary. If \mathcal{M}_{b} is a proper initial segment of \mathcal{M}_{c}, then $i_{\eta c} \upharpoonright_{\eta c}^{-1}\left(\mathcal{M}_{b}\right)$ is in fact fully elementary.

Notice that crit $\pi=\kappa$, and $\mathcal{N}=\mathcal{J}_{\alpha}^{\vec{E}(\mathcal{T}) \mid \kappa}$ for some $\alpha \geq \kappa$. Also $\operatorname{Th}_{n+1}^{\mathcal{M}_{b}}(\rho \cup\{p\})$ is definable over \mathcal{N}, and hence is a member of $L[\vec{E}(\mathcal{T}) \mid \kappa]$. As $\vec{E}(\mathcal{T})|\kappa \in| \mathcal{M}_{b} \mid$ and \mathcal{M}_{b} has an internally iterable extender on its sequence with critical point greater than κ, we get $\operatorname{Th}_{n+1}^{\mathcal{M}_{b}}(\rho \cup\{p\}) \in\left|\mathcal{M}_{b}\right|$, a contradiction. This completes the proof of theorem 6.2.

