We shall show that, roughly speaking, all iteration trees which are important for the comparison of 1-small mice are simple.

Let $\mathcal{T} = \langle T, \deg, D, \langle E_{\alpha}, \mathcal{M}_{\alpha+1}^* | \alpha + 1 < \theta \rangle \rangle$ be an iteration tree of length θ . We set

$$\vec{E}(T) = \bigcup_{\alpha < \theta} (\dot{E}^{\mathcal{M}_{\alpha}} \restriction \ln E_{\alpha})$$
$$\delta(T) = \bigcup_{\alpha < \theta} \ln E_{\alpha}$$

By 5.1, $\dot{E}^{\mathcal{M}_{\alpha}} \upharpoonright h E_{\alpha} = \dot{E}^{\mathcal{M}_{\beta}} \upharpoonright h E_{\alpha}$ for all $\beta > \alpha$, so that $\vec{E}(\mathcal{T})$ is a good extender sequence with domain included in $\delta(\mathcal{T})$. Notice that if b is a cofinal wellfounded branch of \mathcal{T} , then $\vec{E}(\mathcal{T}) = \dot{E}^{\mathcal{M}_{b}} \upharpoonright \delta(\mathcal{T})$.

Theorem 6.1 (Uniqueness Theorem). Let \mathcal{T} be an iteration tree of limit length θ , and b and c be distinct cofinal wellfounded branches of \mathcal{T} . Let $\alpha = OR^{\mathcal{M}_b} \cap OR^{\mathcal{M}_c}$, so that $\alpha \geq \delta(\mathcal{T})$, and suppose that $\alpha > \delta(\mathcal{T})$. Then

$$J^{\vec{E}(\mathcal{T})}_{\alpha} \models \delta(\mathcal{T}) \quad is \ Woodin$$
.

PROOF. Just as in [MS]. Here is a slightly cleaner presentation of that argument, adapted to our context.

Let $\delta = \delta(\mathcal{T}), \vec{E} = \vec{E}(\mathcal{T})$, and let $f : \delta \to \delta$ with $f \in J_{\alpha}^{\vec{E}}$. Let $\beta < \theta$ be large enough that

$$D \cap (b \cup c) \subseteq \beta$$

and

$$b \cap \beta \neq c \cap \beta$$

and

$$\begin{aligned} \gamma \in b - \beta \Rightarrow f, \vec{E}, \delta \in \operatorname{ran} \, i_{\gamma b} \,, \\ \gamma \in c - \beta \Rightarrow f, \vec{E}, \delta \in \operatorname{ran} \, i_{\gamma c} \,, \end{aligned}$$

and $\alpha \in \operatorname{ran} i_{\gamma b}$ if $\alpha \neq \operatorname{OR}^{\mathcal{M}_b}$, and $\alpha \in \operatorname{ran} i_{jc}$ if $\alpha \neq \operatorname{OR}^{\mathcal{M}_c}$.

CLAIM 1. If $\gamma \in b - \beta$ and $\eta \in c - \beta$, then

$$(\operatorname{ran} i_{\gamma b} \cap \operatorname{ran} i_{\eta c} \cap J_{\alpha}^{\vec{E}}) \prec_{\Sigma_1} J_{\alpha}^{\vec{E}}.$$

PROOF. Straightforward. The restriction to Σ_1 is due to the limited elementarity of the maps $i_{\gamma b}$, $i_{\eta c}$.

CLAIM 2. Let $\gamma + 1 \in b$ with T-pred $(\gamma + 1) = \xi \geq \beta$, and let η be a member of c such that $\beta < c < \gamma + 1$ such that if $c < \xi$ then η is the largest member of c such that $\eta < \gamma + 1$. Then

ran
$$i_{\xi b} \cap \operatorname{ran} i_{\eta c} \cap \delta = \inf\{\operatorname{crit} i_{\xi b}, \operatorname{crit} i_{\eta c}\}.$$

PROOF. \supseteq is obvious. Let us define

$$\gamma_0 = \gamma + 1$$

$$\eta_n = \text{least ordinal in } c - \gamma_n$$

$$\gamma_{n+1} = \text{least ordinal in } b - \eta_n$$

for all $n < \omega$. The γ_n 's and η_n 's are all successor ordinals. Also we have $\sup_{n < \omega} \gamma_n = \sup_{n < \omega} \eta_n$, so the common sup is θ . Notice also that T-pred $(\eta_n) < \gamma_n$ and T-pred $(\gamma_{n+1}) < \eta_n$ by the minimality of our choices. Also T-pred $(\eta_0) = \eta$ (unless $\eta \ge \xi$ in which case this may fail), and T-pred $(\gamma_0) = \xi$.

Now suppose $\mu \in \operatorname{ran} i_{\xi b} \cap \operatorname{ran} i_{\eta c} \cap \delta$. As $\mu < \delta$, we have an $n < \omega$ such that

$$\mu < \ln E_{\gamma_{n+1}-1}.$$

Since $\mu \in \operatorname{ran} i_{\xi b}$ and $\xi T \gamma_{n+1}$,

$$\mu < \operatorname{crit} E_{\gamma_{n+1}}$$
.

By clauses (3) and (4) on iteration trees,

 $\mu < \ln E_{T\text{-pred}(\gamma_{n+1})} \le \ln E_{\eta_n - 1}.$

Since $\mu \in \operatorname{ran} i_{\eta c}$ and $\eta T \eta_n$,

 $\mu < \operatorname{crit} E_{\eta_n-1}$.

By clauses (3) and (4) on iteration trees

$$\mu < \ln E_{T\text{-}\mathrm{pred}(\eta_n)} \le \ln E_{\gamma_n - 1}.$$

So we may repeat the cycle until we get $\mu < \ln E_{\gamma_0-1}$. Then applying the argument again we get

$$\mu < \operatorname{crit} E_{\gamma_0 - 1} < \operatorname{lh} E_{\xi}$$
.

So if $\nu + 1 \in b - (\xi + 1)$ or $\nu + 1 \in c - (\eta + 1)$ then $\nu \ge \xi$ (under either hypothesis on η) so that $\mu < \ln E_{\nu}$, so $\mu < \operatorname{crit} E_{\nu}$. Thus $\mu < \operatorname{crit} i_{\eta c}$ and $\mu < \operatorname{crit} i_{\xi b}$.

CLAIM 3. Claim 2 holds with the roles of b and c reversed.

PROOF. The proof is the same as that of claim 2.

Now fix $\beta' > \beta$ such that $b \cap (\beta' - \beta) \neq \emptyset$ and $c \cap (\beta' - \beta) \neq \emptyset$. Let

 $\kappa = \text{ least } \nu \text{ such that } \nu = \text{crit } E_{\gamma} \text{ for some } \gamma + 1 \in (b \cup c) - \beta'$.

Let γ be largest such that $\kappa = \operatorname{crit} E_{\gamma}$ and $\gamma + 1 \in (b \cup c) - \beta'$, and suppose without loss of generality that $\gamma + 1 \in b$. Let η be the largest element of c which is $\langle \gamma + 1$. Notice crit $i_{\eta c} = \operatorname{crit} E_{\nu}$ for some $\nu + 1 \in c$ such that $\gamma + 1 < \nu + 1$; thus crit $i_{\eta c} > \kappa$. So

$$\kappa = \operatorname{ran} \, i_{\eta c} \cap \operatorname{ran} \, i_{\ell b} \cap \delta$$

where $\xi = T$ -pred $(\gamma + 1)$, and it follows by Claim 1 that κ is closed under f. Now let $\nu = \inf\{\operatorname{crit} i_{\eta c}, \operatorname{crit} i_{\gamma+1,b}\}$ Claim 3 implies that

$$\nu = \operatorname{ran} \, i_{\eta c} \cap \operatorname{ran} \, i_{\gamma+1, b} \cap \delta$$

so that ν is closed under f. Note also that $\kappa < \nu$.

We claim that $\nu < \rho_{\gamma}$. (Recall that ρ_{γ} is the sup of the generators for E_{γ} .) Let $\tau \in c$ and T-pred $(\tau) = \eta$. Then $\nu \leq \operatorname{crit} i_{\eta c} \leq \operatorname{crit} E_{\tau-1} < \rho_{\eta}$. So if $\eta = \gamma$ we're done. Otherwise $\eta < \gamma$, so lh E_{η} is a cardinal of \mathcal{M}_{γ} , and as lh $E_{\eta} < \operatorname{lh} E_{\gamma}$, lh $E_{\eta} \leq \rho_{\gamma}$. As $\nu < \rho_{\eta}$, $\nu < \rho_{\gamma}$.

Our initial segment condition on good extender sequences implies that $E_{\gamma} \upharpoonright \nu$ is an initial segment of some extender F which is on the sequence of \mathcal{M}_{γ} before E_{γ} . By coherence we see that F is one of the extenders on $\vec{E} = \vec{E}(\mathcal{T})$. So $E_{\gamma} \upharpoonright \nu \in J_{\alpha}^{\vec{E}}$.

We leave it to the reader to check that ν is an inaccessible cardinal of $J_{\alpha}^{\vec{E}}$. By strong acceptability and the fact that F coheres with \vec{E} ,

$$J_{\alpha}^{\vec{E}} \models "V_{\nu} \in \mathrm{Ult}(V, E_{\gamma} \restriction \nu)".$$

Finally, suppose $i_{\xi b}(\bar{f}) = f$. Then $\bar{f} \upharpoonright \kappa = f \upharpoonright \kappa$, and

$$i_{\xi,\gamma+1}(\bar{f}) \upharpoonright \nu = f \upharpoonright \nu$$

so

$$i_{\xi,\gamma+1}(f \restriction \kappa)(\kappa) < \nu$$
.

But

$$i_{\xi,\gamma+1}(f\restriction\kappa)\restriction
u=i_{E_\gamma\restriction
u}(f\restriction\kappa)\restriction
u$$

as computed in $J_{\alpha}^{\vec{E}}$. Thus $E_{\gamma} \upharpoonright \nu$ witnesses that δ is Woodin with respect to f in $J_{\alpha}^{\vec{E}}$.

For the purpose of comparison we are only interested in iteration trees in which each E_{α} is applied to the earliest model to which it can be.

60

DEFINITION 6.1.1. $\mathcal{T} = \langle T, \deg, D, \langle E_{\alpha}, \mathcal{M}^*_{\alpha+1} | \alpha + 1 < \theta \rangle \rangle$ is non-overlapping iff whenever T-pred $(\gamma + 1) = \beta$, then $\rho_{\eta} \leq \operatorname{crit} E_{\gamma}$ for all $\eta < \beta$.

Here ρ_{η} is the sup of the generators for E_{η} , so that crit $E_{\gamma} < \rho_{\beta}$. Clearly, generators are not moved along the branches of a nonoverlapping tree, and in fact not moving generators is equivalent to being non-overlapping.

We want also to restrict ourselves to trees in which $\mathcal{M}_{\gamma+1}^*$ and deg $(\gamma + 1)$ are as large as possible, subject perhaps to an *n*-boundedness requirement.

DEFINITION 6.1.2. Let $\mathcal{T} = \langle T, \deg, D, \langle E_{\alpha}, \mathcal{M}_{\alpha+1}^* | \alpha + 1 < \theta \rangle \rangle$ be an iteration tree, and $n \leq \omega$. We say \mathcal{T} is *n*-maximal iff \mathcal{T} is non-overlapping, and whenever T-pred $(\gamma + 1) = \beta$, $E_{\gamma} = \dot{F}^{\mathcal{N}}$ where \mathcal{N} is an initial segment of \mathcal{M}_{γ} , and $\kappa = \operatorname{crit} E_{\gamma}$, then

- (a) $\mathcal{M}^*_{\gamma+1}$ is the longest initial segment \mathcal{P} of \mathcal{M}_{β} such that $P(\kappa) \cap |\mathcal{P}| = P(\kappa) \cap |\mathcal{N}|$, and
- (b) if $D \cap [0, \gamma + 1]_T = \emptyset$ then $\deg(\gamma + 1)$ is the largest integer $k \leq n$ such that $\kappa < \rho_k^{\mathcal{M}^*_{\gamma+1}}$, and
- (c) if $D \cap [0, \gamma + 1]_T \neq \emptyset$, then $\deg(\gamma + 1)$ is the largest $k \in \omega$ such that $\kappa < \rho_k^{\mathcal{M}^*_{\gamma+1}}$.

Notice that in (a) of the definition \mathcal{P} is the longest initial segment Q of \mathcal{M}_{β} such that

$$P(\kappa) \cap J_{\mathrm{lh}\, E_{\beta}}^{\mathcal{M}_{\beta}} = P(\kappa) \cap Q.$$

Since $J_{\ln E_{\beta}}^{\mathcal{M}_{\beta}} = J_{\ln E_{\beta}}^{\mathcal{M}_{\gamma}}$ it follows that if $\beta \neq \gamma$ then \mathcal{P} is the longest initial segment Q of \mathcal{M}_{β} such that $P(\kappa) \cap Q = P(\kappa) \cap |\mathcal{M}_{\gamma}|$.

The iteration trees for which we have any practical use are all *n*-maximal for some $n \leq \omega$. One important elementary property of such trees is the following.

Lemma 6.1.5. Let $\mathcal{T} = \langle T, \deg, D, \langle E_{\alpha}, \mathcal{M}_{\alpha+1}^* | \alpha + 1 < \theta \rangle \rangle$ be an n-maximal iteration tree, where $n \leq \omega$; then for any $\alpha + 1 < \theta$, E_{α} is close to $\mathcal{M}_{\alpha+1}^*$.

PROOF. By induction on α . Let $\beta = T$ -pred $(\alpha + 1)$. We may assume $\beta < \alpha$; otherwise E_{α} is on the \mathcal{M}_{β} sequence, and so by the restrictions on how far $\mathcal{M}_{\alpha+1}^*$ can drop in \mathcal{M}_{β} , on the $\mathcal{M}_{\alpha+1}^*$ sequence. Thus E_{α} is close indeed to $\mathcal{M}_{\alpha+1}^*$.

Let $a \subseteq \ln E_{\alpha}$ be finite. We wish to verify the two conditions in closeness to $\mathcal{M}^*_{\alpha+1}$ for $(E_{\alpha})_a$. We begin with the second.

Let $\kappa = \operatorname{crit} E_{\alpha}$ and $\tau = \ln E_{\beta}$. As $\beta = T\operatorname{-pred}(\alpha + 1)$, $\kappa < \tau$, and as τ is a cardinal of \mathcal{M}_{α} , $(\kappa^{+})^{\mathcal{M}_{\alpha}} \leq \tau$. Let $A \subseteq P([\kappa]^{\operatorname{card} a})$, $A \in |\mathcal{M}_{\alpha+1}^{*}|$, be such that $\mathcal{M}_{\alpha+1}^{*} \models \operatorname{card}(A) \leq \kappa$. We want to see that $(E_{\alpha})_{a} \cap A \in |\mathcal{M}_{\alpha+1}^{*}|$. Now $P(\kappa) \cap |\mathcal{M}_{\alpha}| = P(\kappa) \cap |\mathcal{M}_{\alpha+1}^{*}|$, so A has cardinality $\leq \kappa$ in \mathcal{M}_{α} . But then $(E_{\alpha})_{a} \cap A$ is in \mathcal{M}_{α} and has cardinality $\leq \kappa$ there, by weak amenability. But then $(E_{\alpha})_{a} \cap A \in |\mathcal{M}_{\alpha+1}^{*}|$, as desired. It remains to show $(E_{\alpha})_a$ is Σ_1 over $\mathcal{M}^*_{\alpha+1}$. The following claim is useful; notice that $\mathcal{J}^{\mathcal{M}_{\beta}}_{\tau}$ is an initial segment of $\mathcal{M}^*_{\alpha+1}$.

CLAIM 1. If $A \subseteq \tau$ and $A \in |\mathcal{M}_{\gamma}|$ for some $\gamma > \beta$, then A is Σ_1 over $\mathcal{J}_{\tau}^{\mathcal{M}_{\beta}}$.

PROOF. By 5.1, $A \in |\mathcal{M}_{\beta+1}|$. Let $A = [a, f]_{E_{\beta}}^{Q}$, where $Q = \mathcal{M}_{\alpha+1}^{*}$. Since $A \subseteq \tau$, we can take f to map $[\mu]^{\operatorname{card} a}$ into J_{μ}^{Q} , where $\mu = \operatorname{crit} E_{\beta}$. We can therefore assume $f \in |Q|$, as $\mu < \rho_{m}^{Q}$ where $\mathcal{M}_{\beta+1} = \operatorname{Ult}_{m}(Q, E_{\beta})$. But also, \mathcal{M}_{β} agrees with Q below τ , and $f \in J_{\tau}^{\mathcal{M}_{\beta}} = \mathcal{P}$. Moreover, $A = [a, f]_{E_{\beta}}^{Q} = [a, f]_{E_{\beta}}^{\mathcal{P}}$. It is easy, then, to define A in a Σ_{1} way over \mathcal{P} from the parameters a and f.

It follows that if $(E_{\alpha})_a \in |\mathcal{M}_{\alpha}|$, then since $(E_{\alpha})_a$ is coded by a subset of τ , $(E_{\alpha})_a$ is Σ_1 over $\mathcal{J}_{\tau}^{\mathcal{M}_{\beta}}$, hence Σ_1 over $\mathcal{M}_{\alpha+1}^*$, as required. Thus we may assume that $(E_{\alpha})_a \notin |\mathcal{M}_{\alpha}|$, and hence E_{α} is on the \mathcal{M}_{α} sequence, \mathcal{M}_{α} is active and $E_{\alpha} = \dot{F}^{\mathcal{M}_{\alpha}}$.

CLAIM 2. Let $\gamma \in [0, \alpha]_T$ be such that $\gamma \geq \beta$ and $D \cap (\gamma, \alpha]_T = \emptyset$. Then $\operatorname{crit}(i_{\gamma\alpha}) > \kappa$, and $(E_{\alpha})_a$ is Σ_1 over \mathcal{M}_{γ} . If, in addition, $\gamma > \beta$ and γ is a successor ordinal, then $\operatorname{crit}(i_{\gamma,\alpha} \circ i_{\gamma}^*) > \kappa$ and $(E_{\alpha})_a$ is Σ_1 over \mathcal{M}_{γ}^* .

PROOF. Since $\kappa = \operatorname{crit} E_{\alpha}$ and $E_{\alpha} = \dot{F}^{\mathcal{M}_{\alpha}}$, $\kappa \in \operatorname{ran} i_{\gamma\alpha}$. On the other hand, every extender used in $i_{\gamma\alpha}$ has length at least $\ln E_{\beta}$, since $\gamma \geq \beta$. It follows that $\kappa < \operatorname{crit}(i_{\gamma\alpha})$.

By our induction hypothesis, E_{η} is close to $\mathcal{M}_{\eta+1}^{*}$ for all $\eta < \alpha$. Thus the preservation facts recorded in 4.5, 4.6, and 4.7 hold for the embeddings of $\mathcal{T} \upharpoonright (\alpha + 1)$. Now $\rho_{1}^{\mathcal{M}_{\alpha}} \leq \tau = (\kappa^{+})^{\mathcal{M}_{\alpha}}$ since $(E_{\alpha})_{a} \notin |\mathcal{M}_{\alpha}|$, and $\tau \leq \operatorname{crit} i_{\gamma\alpha}$, so $\operatorname{deg}(\eta) = 0$ for all $\eta \in (\gamma, \alpha]_{T}$. The proofs of 4.5 and 4.7 (see especially 4.5) show that every $\Sigma_{1}^{\mathcal{M}_{\alpha}}$ subset of $\operatorname{crit}(i_{\gamma\alpha})$ is $\Sigma_{1}^{\mathcal{M}_{\gamma}}$. Thus $(E_{\alpha})_{a}$ is $\Sigma_{1}^{\mathcal{M}_{\gamma}}$, as desired.

Suppose finally that $\gamma > \beta$ and γ is a successor ordinal. The extenders used in $i_{\gamma\alpha} \circ i^*_{\gamma}$ are just those used in $i_{\gamma\alpha}$ together with $E_{\gamma-1}$. Since $\gamma - 1 \ge \beta$, all these have length at least $\lim E_{\beta}$, hence $> \kappa$. The argument of the previous paragraph now shows $\operatorname{crit}(i_{\gamma\alpha} \circ i^*_{\gamma}) > \kappa$ and $(E_{\alpha})_a$ is Σ_1 over \mathcal{M}^*_{γ} .

Now let $\eta \in [0, \alpha]_T$ be least such that $\beta \leq \eta$. Suppose first that $D \cap (\eta, \alpha]_T \neq \emptyset$. Let γ be largest in $D \cap (\eta, \alpha]_T$, and $\xi = T$ -pred (γ) . Since $\gamma > \beta$, Claim 2 implies that $(E_{\alpha})_a$ is Σ_1 over \mathcal{M}^*_{γ} . Since $\gamma \in D$, $\mathcal{M}^*_{\gamma} \in |\mathcal{M}_{\xi}|$, so $(E_{\alpha})_a \in |\mathcal{M}_{\xi}|$. Since $\xi \geq \beta$, Claim 1 implies that $(E_{\alpha})_a$ is Σ_1 over $\mathcal{M}^*_{\alpha+1}$, as desired.

So we may assume $D \cap (\eta, \alpha]_T = \emptyset$. We claim that $\eta = \beta$. For if $\eta > \beta$, then the leastness of η implies that η is not a limit, so let $\delta = T$ -pred (η) . Since η is least, $\delta < \beta$. By Claim 2 with $\gamma = \eta$, $\operatorname{crit}(i_{\eta}^*) = \operatorname{crit}(E_{\eta-1}) > \kappa$. But $\operatorname{crit}(E_{\eta-1}) < \rho_{\delta}$, so $\kappa < \rho_{\delta}$. But the rules for non-overlapping trees then require that T-pred $(\alpha + 1) \leq \delta$, a contradiction.

So $\eta = \beta$. Also, by Claim 2, crit $i_{\beta\alpha} > \kappa$, and $(E_{\alpha})_a$ is Σ_1 over \mathcal{M}_{β} . But then

 $P(\kappa) \cap |\mathcal{M}_{\beta}| = P(\kappa) \cap |\mathcal{M}_{\alpha}|$, and since \mathcal{T} is *n*-maximal, $\mathcal{M}_{\beta} = \mathcal{M}_{\alpha+1}^*$. Thus $(E_{\alpha})_a$ is Σ_1 over $\mathcal{M}_{\alpha+1}^*$, as desired.

Lemma 6.1.5 has the important consequence that the preservation facts listed in 4.5, 4.6, and 4.7 apply to the embeddings along the branches of an *n*-maximal tree. We shall use this repeatedly and without explicit mention in the future.

The following is a crucial strengthening of the uniqueness theorem (6.1). It will imply that only simple iteration trees arise in our proof that 1-small, k-iterable premice are k-solid for all k. This is important because our proof of that fact uses heavily the Dodd-Jensen lemma, which requires a simplicity hypothesis.

If \mathcal{M} is a ppm, an "extender from the \mathcal{M} -sequence" is an extender E such that $E = \dot{F}^{\mathcal{M}}$ or E is on the sequence $\dot{E}^{\mathcal{M}}$.

Theorem 6.2 (Strong uniqueness). Let \mathcal{M} be an n-sound, 1-small n-iterable premouse and $\rho_{n+1}^{\mathcal{M}} \leq \ln E$ for some extender E from the \mathcal{M} -sequence and some integer n. Let T be an n-maximal iteration tree on \mathcal{M} . Then T is simple.

PROOF. Assume toward a contradiction that b and c are distinct cofinal well-founded branches of \mathcal{T} with $OR^{\mathcal{M}_b} \leq OR^{\mathcal{M}_c}$. Let $\delta = \delta(\mathcal{T})$.

CLAIM 1. lh $F < \delta$ for all extenders F from the \mathcal{M}_b sequence.

PROOF. Let F be the first extender on the \mathcal{M}_b sequence such that $\ln F \geq \delta$. Notice δ is a limit of \mathcal{M}_b cardinals, as crit $i_{\alpha b}$ is an \mathcal{M}_b cardinal whenever $i_{\alpha b}$ is defined. Thus $\ln F > \delta$, as $\exists \nu < \ln F \forall \gamma < \ln F (\mathcal{M}_b \models \operatorname{card} \gamma \leq \nu)$. Let $\gamma = \ln F$. By Theorem 6.1,

$$J_{\gamma}^{\vec{E}(\mathcal{T})} \models \delta$$
 is Woodin

so

$$\mathcal{J}_{\gamma}^{\mathcal{M}_{b}} = (J_{\gamma}^{\vec{E}(\mathcal{T})}, \in, \vec{E}(\mathcal{T}), \tilde{F}) \models \delta \text{ is Woodin }.$$

Now let $\mathcal{N} = \text{Ult}_0(\mathcal{J}_{\gamma}^{\mathcal{M}_b}, F)$. As F is a pre-extender over $\mathcal{J}_{\gamma}^{\mathcal{M}_b}$, $\gamma \in wfp(\mathcal{N})$. By coherence and strong acceptability and the fact that γ is a cardinal of \mathcal{N} ,

$$\mathcal{N} \models \delta$$
 is Woodin.

But then \mathcal{N} is not 1-small, so that \mathcal{M}_b is not 1-small and hence \mathcal{M} is not 1-small, which is a contradiction.

CLAIM 2. \mathcal{M}_b is an initial segment of \mathcal{M}_c .

PROOF. Otherwise \mathcal{M}_c is not 1-small. For let F be the first extender from the \mathcal{M}_c sequence with $\ln F \geq \delta$; if none exists Claim 2 is obvious from Lemma 5.1. So $\ln F > \delta$ as in Claim 1. If \mathcal{M}_b is not an initial segment of \mathcal{M}_c , $\ln F \leq \mathrm{OR}^{\mathcal{M}_b}$. But now we can show \mathcal{M}_c is not 1-small as in Claim 1. CLAIM 3. If $OR^{\mathcal{M}_b} < OR^{\mathcal{M}_c}$, then there is no dropping of any kind along b; that is, $D^{\mathcal{T}} \cap b = \emptyset$ and $\deg^{\mathcal{T}}(\alpha + 1) = n$ for all $\alpha + 1 \in b$.

PROOF. If $OR^{\mathcal{M}_b} < OR^{\mathcal{M}_c}$, then \mathcal{M}_b is a proper initial segment of \mathcal{M}_c , and hence \mathcal{M}_b is ω -sound since \mathcal{M}_c is a premouse. But now suppose the last drop of any kind along b occurs at $\alpha + 1$. Then $\alpha + 1 \in b$, and $k = \deg(\alpha + 1) = \deg(\gamma)$ for all $\gamma \in b - (\alpha + 1)$. Also, $\mathcal{M}_{\alpha+1}^*$ is k + 1 sound and $\operatorname{crit}(i_{\alpha+1,b} \circ i_{\alpha+1}^*) =$ $\operatorname{crit}(i_{\alpha+1}^*) \ge \rho_{k+1}^{\mathcal{M}_{\alpha+1}^*}$. From Lemma 4.7 it follows that \mathcal{M}_b is not k + 1-sound, a contradiction.

CLAIM 4. If $OR^{\mathcal{M}_b} = OR^{\mathcal{M}_c}$, then on one of b and c there's no dropping of any kind.

PROOF. Suppose the last drop along b occurs at $\eta + 1$, and the last drop along c at $\gamma + 1$. Since $\mathcal{M}_b = \mathcal{M}_c$, $\deg(\eta + 1) = \deg(\gamma + 1) = k$, where $k < \omega$ is least such that $\mathcal{M}_b = \mathcal{M}_c$ is not k + 1-sound. But then

$$\mathcal{M}_{n+1}^* = \mathfrak{C}_{k+1}(\mathcal{M}_b) = \mathfrak{C}_{k+1}(\mathcal{M}_c) = \mathcal{M}_{\gamma+1}^*.$$

This implies that T-pred $(\eta + 1) = T$ -pred $(\gamma + 1)$. For let $\beta = T$ -pred $(\eta + 1)$; then E_{β} is on the $\mathcal{M}_{\eta+1}^*$ sequence, so E_{β} is on the $\mathcal{M}_{\gamma+1}^*$ sequence, so E_{β} is on the \mathcal{M}_{ξ} -sequence where $\xi = T$ -pred $(\gamma + 1)$. Thus $\xi \leq \beta$ by remark (a) following 5.1. That $\beta \leq \xi$ is proved symmetrically.

Now then

$$i_{\eta+1,b} \circ i_{\eta+1}^* = i_{\gamma+1,c} \circ i_{\gamma+1}^*$$

since by lemma 4.7 each side is the natural embedding from $\mathfrak{C}_{k+1}(\mathcal{M}_b)$ to $\mathfrak{C}_k(\mathcal{M}_b) = \mathcal{M}_b$ inverting the collapse.

Since \mathcal{T} is non-overlapping, crit $i_{\eta+1,b} \geq \rho_{\eta}$ and crit $i_{\gamma+1,b} \geq \rho_{\gamma}$. So letting $\nu = \inf(\rho_{\eta}, \rho_{\gamma})$, we have crit $E_{\eta} = \operatorname{crit} E_{\gamma} < \nu$ and $E_{\eta} \upharpoonright \nu = E_{\gamma} \upharpoonright \nu$. By remark (a) following 5.1 we see that $\eta = \gamma$.

Now let β be largest in $b \cap c$; from the above we know that there's no dropping after β on b or c, that is, $\eta + 1 = \gamma + 1 \in b \cap c$. Let

$$\rho = \sup \{ \ln E_{\xi} \mid \xi + 1 \in b \cap c \};$$

then

$$\mathcal{M}_{\beta} = \mathcal{H}_{k+1}^{\mathcal{M}_{\beta}}(\rho \cup \{q_{\beta}\})$$

where for any $\xi \in b \cup c$ such that $\xi \geq \eta + 1$

$$q_{\xi} = i_{\eta+1,\xi} \circ i^*_{\eta+1}(p_{k+1}(\mathcal{M}^*_{\eta+1})).$$

But then

$$i_{\beta,b}=i_{\beta,c}$$
,

as $i_{\beta,b} \upharpoonright \rho = i_{\beta,c} \upharpoonright \rho = \mathrm{id}$, and $i_{\beta,b}(q_{\beta}) = i_{\beta,c}(q_{\beta}) = \langle r, u \rangle$, where r is the $k + \mathrm{1st}$ standard parameter of (\mathcal{M}_b, u) and u is as in the definition of $p_{k+1}(\mathcal{M}_b)$ (cf. Lemma 4.7). Let $\sigma + 1 \in b, \tau + 1 \in c$, and T-pred $(\sigma + 1) = T$ -pred $(\tau + 1) = \beta$. As $i_{\beta,c} = i_{\beta,b}$, we see that crit $E_{\sigma} = \mathrm{crit} E_{\tau}$, and $E_{\sigma} \upharpoonright \nu = E_{\tau} \upharpoonright \nu$, where $\nu = \mathrm{inf}(\rho_{\sigma}, \rho_{\tau})$. This implies $\sigma = \tau$, a contradiction.

In view of Claims 3 and 4, we may assume there's no dropping of any kind along b (perhaps by exchanging b for c). The proof of the following claim will take several pages and will nearly finish the proof of theorem 6.2.

CLAIM 5. $\rho_{n+1}^{\mathcal{M}_b} < \delta$.

PROOF. We show by induction on $\eta \in b$, that if $\alpha T\eta$, or if $\eta = b$ and $\alpha \in b$, then

(*)
$$\rho_{n+1}^{\mathcal{M}_{\eta}} \leq i_{\alpha,\eta}(\rho_{n+1}^{\mathcal{M}_{\alpha}})$$

and

(**) If
$$\rho_{n+1}^{\mathcal{M}_{\eta}} = i_{\alpha\eta}(\rho_{n+1}^{\mathcal{M}_{\alpha}})$$
 and $\operatorname{Th}_{n+1}^{\mathcal{M}_{\alpha}}(\rho_{n+1}^{\mathcal{M}_{\alpha}} \cup \{q\} \notin \mathcal{M}_{\alpha})$
then $\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}(\rho_{n+1}^{\mathcal{M}_{\eta}} \cup \{i_{\alpha\eta}(q)\}) \notin \mathcal{M}_{\eta}.$

By (*) for $\eta = b$ and $\alpha = 0$ we have $\rho_{n+1}^{\mathcal{M}_b} \leq i_{0b}(\rho_{n+1}^{\mathcal{M}_0}) \leq \ln E$ for some extender E from the \mathcal{M}_b sequence, so that $\rho_{n+1}^{\mathcal{M}_b} < \delta$, as desired.

Consider first the case η is a limit or $\eta = b$. Let $\alpha T\eta$ be the least ordinal such that $i_{\alpha\gamma}(\rho_{n+1}^{\mathcal{M}_{\alpha}}) = \rho_{n+1}^{\mathcal{M}_{\gamma}}$ whenever $\alpha T\gamma T\eta$. Such an ordinal α exists by (*). It will be enough to show that whenever $\gamma \in [\alpha, \eta)_T$ and $\operatorname{Th}_{n+1}^{\mathcal{M}_{\gamma}}(\rho_{n+1}^{\mathcal{M}_{\gamma}} \cup \{q\})$ is not a member of \mathcal{M}_{γ} , then

$$\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}(i_{\gamma\eta}(\rho_{n+1}^{\mathcal{M}_{\gamma}})\cup\{i_{\gamma\eta}(q)\})\notin |\mathcal{M}_{\eta}|.$$

For this, suppose $\operatorname{Th}_{n+1}^{\mathcal{M}_{\eta}}(i_{\gamma\eta}(\rho_{n+1}^{\mathcal{M}_{\gamma}}) \cup \{i_{\gamma\eta}(q)\}) = i_{\xi\eta}(x)$, where we may assume $\gamma T\xi T\eta$. As $i_{\xi\eta}$ is generalized $r\Sigma_{n+1}$ elementary, we see $x = \operatorname{Th}_{n+1}^{\mathcal{M}_{\xi}}(i_{\gamma\xi}(\rho_{n+1}^{\mathcal{M}_{\gamma}} \cup \{i_{\gamma\xi}(q)\})$. This contradicts (**) at ξ .

Now let $\eta = \xi + 1$ and set $\beta = T$ -pred (η) . If (*) or (**) fails at η we must have $q \in |\mathcal{M}_{\beta}|$ such that

$$\operatorname{Th}_{n+1}^{\mathcal{M}_{\beta}}(\rho_{n+1}^{\mathcal{M}_{\beta}}\cup\{q\})\notin|\mathcal{M}_{\beta}|$$

but

$$\mathrm{Th}_{n+1}^{\mathcal{M}_{\eta}}(i_{eta\eta}(
ho_{n+1}^{\mathcal{M}_{eta}})\cup\{i_{eta\eta}(q)\})=[a,f]_{E_{\xi}}^{\mathcal{M}_{eta}}\in|\mathcal{M}_{\eta}|$$

Fix such a q. Let $\rho = \rho_{n+1}^{\mathcal{M}_{\beta}}$, $i = i_{\beta\eta}$, $E = E_{\xi}$.

We may assume $f(\bar{u}) \subseteq \rho$ for all $\bar{u} \in \text{dom } f$. Also $\rho < \rho_n^{\mathcal{M}_\beta}$ by (*) and the fact that $\rho_{n+1}^{\mathcal{M}_0} < \rho_n^{\mathcal{M}_0}$. If we let $A = \{(\bar{u}, \nu) \mid \nu \in f(\bar{u})\}$, then A is (generalized) $r\Sigma_n$, so $A \in |\mathcal{M}_\beta|$. Thus $f \in |\mathcal{M}_\beta|$.

Now

(†)
$$x \in \operatorname{Th}_{n+1}^{\mathcal{M}_{\boldsymbol{\beta}}}(\rho \cup \{q\}) \Leftrightarrow i(x) \in [a, f]_E^{\mathcal{M}_{\boldsymbol{\beta}}}$$

since *i* is generalized $r\Sigma_{n+1}$ elementary. This gives an $r\Delta_1^{\mathcal{M}_{\beta}}$ definition of $\operatorname{Th}_{n+1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\})$ since E_a is $r\Sigma_1^{\mathcal{M}_{\beta}}$. This is a contradiction if n > 0, so we now assume n = 0.

Let $\kappa = \operatorname{crit} E$. We have $\kappa < \rho$ by Lemma 4.5. On the other hand, $E_a \notin |\mathcal{M}_\beta|$, as otherwise (†) would imply $\operatorname{Th}_1^{\mathcal{M}_\beta}(\rho \cup \{q\}) \in |\mathcal{M}_\beta|$. Thus $\rho = \rho_1^{\mathcal{M}_\beta} = (\kappa^+)^{\mathcal{M}_\beta}$.

We will now complete the proof of claim 5 by showing that there is a $r\Sigma_1^{\mathcal{M}_{\beta}}$ function $t : \kappa \to \rho$ such that ran(t) is cofinal in ρ . To see that this proves claim 5, we let S be the set of triples (α, γ, ν) such that $\gamma \prec_{t(\alpha)} \nu$, where $\prec_{t(\alpha)}$ is the first well ordering of κ in the natural order of \mathcal{M}_{β} which has order type $t(\alpha)$. Then $S \subseteq \kappa$ and S is $r\Sigma_1^{\mathcal{M}_{\beta}}$, so that $S \in |\mathcal{M}_{\beta}|$ and hence $\rho < (\kappa^+)^{\mathcal{M}_{\beta}}$, contradiction.

For any \mathcal{N} and $X \subseteq |\mathcal{N}|$, let

$$\overline{\mathrm{Th}}_{1}^{\mathcal{N}}(X) = \mathrm{Th}_{1}^{\mathcal{N}}(X) \cap \{(\varphi, \bar{a}) \mid \varphi \text{ is pure } r\Sigma_{1}\}.$$

Using the proof of Lemma 2.10 we see that $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\}) \notin |\mathcal{M}_{\beta}|$ implies that $\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\}) \notin |\mathcal{M}_{\beta}|$, so we can use $\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\})$ instead of $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\})$. Let f be the function representing $\overline{\operatorname{Th}}_{1}^{\mathcal{M}_{\eta}}(i(\rho) \cup \{i(q)\})$. We need to consider two cases:

Case 1. There is a total, continuous, order-preserving, $r\Sigma_1^{\mathcal{M}_{\beta}}$ function $g: \kappa \to OR^{\mathcal{M}_{\beta}}$ such that $g''\kappa$ is cofinal in $OR^{\mathcal{M}_{\beta}}$.

In this case, we set for $\bar{u} \in \text{dom}(f)$

$$h(\bar{u}) = \overline{\mathrm{Th}}_{1}^{J_{g(\mathfrak{s}_{0})}^{\mathcal{M}_{\beta}}}(\rho \cup \{q\}),$$

so that h is $r\Sigma_1^{\mathcal{M}_{\beta}}$. Notice that if $A \in E_a$, then $\exists \bar{u} \in A h(\bar{u}) \neq f(\bar{u})$, as otherwise $h \upharpoonright A \in |\mathcal{M}_{\beta}|$, so that $\overline{\mathrm{Th}}_1^{\mathcal{M}_{\beta}}(\rho \cup \{q\}) \in |\mathcal{M}_{\beta}|$, a contradiction.

Now set, for all $\bar{u} \in \text{dom}(f)$

$$t(\bar{u}) = \begin{cases} \text{least } \alpha & \text{such that } (f(\bar{u}) \triangle h(\bar{u})) \cap (\omega \times (\alpha \cup \{q\})^{<\omega}) \neq \emptyset \\ 0 & \text{if no such } \alpha \text{ exists }. \end{cases}$$

So t is total and $r\Sigma_1^{\mathcal{M}_{\theta}}$. It is enough to see ran(t) is unbounded in ρ . Fix any ordinal $\theta < \rho$. We will complete the proof of case 1 by finding a \bar{u} such that $t(\bar{u}) > \theta$. Define a function k by

$$k(\bar{v}) = h(\bar{v}) \cap (\omega \times (\theta \cup \{q\})^{<\omega}).$$

66

Then $k \in |\mathcal{M}_{\beta}|$ since it can be computed from $\operatorname{Th}_{1}^{\mathcal{M}_{\beta}}(\theta \cup \{q, r\})$, where r is a parameter chosen so that the function g is $\Sigma_{1}^{\mathcal{M}_{\beta}}(\{r\})$. Moreover

(††)
$$[a,k]_E^{\mathcal{M}_{\theta}} = \overline{\mathrm{Th}}_1^{\mathcal{M}_{\eta}}(i(\theta) \cup \{i(q)\}).$$

One direction, \supseteq , of equation (\dagger) is easy. To prove \subseteq , let $[b, \mathcal{I}]_E^{\mathcal{M}_{\beta}} \in [a, k]_E^{\mathcal{M}_{\beta}}$, where we may assume $a \subseteq b$. We may assume that for all $\bar{v} \in \text{dom } \mathcal{I}$

$$\mathcal{I}(\bar{v}) \in k(\bar{v}^*) = \overline{\mathrm{Th}}_1^{J_{g(v_0)}^{\mathcal{M}_{\beta}}}(\theta \cup \{q\})$$

where \bar{v}^* is the appropriate subsequence of \bar{v} . For $\bar{v} \in \text{dom } \mathcal{I}$ such that v_0 is a limit, let

$$s(\bar{v}) = \text{least } \alpha < v_0 \text{ such that } \mathcal{I}(\bar{v}) \in \overline{\mathrm{Th}}_1^{J_{g(\alpha)}^{\mathcal{M}_{\beta}}}(\theta \cup \{q\})$$

Then s is a $r\Sigma_1^{\mathcal{M}_{\beta}}$ map from κ^n to κ , so $s \in |\mathcal{M}_{\beta}|$. By normality, fix α_0 such that $s(\bar{v}) = \alpha_0$ for E_b a.e. \bar{v} , and let $\xi = g(\alpha_0)$. Then

$$\begin{split} [a,\mathcal{I}]_E^{\mathcal{M}_{\boldsymbol{\theta}}} &\in i\big(\overline{\mathrm{Th}}_1^{J_{\boldsymbol{\xi}}^{\mathcal{M}_{\boldsymbol{\theta}}}}(\boldsymbol{\theta} \cup \{q\})\big) \\ &= \overline{\mathrm{Th}}_1^{J_{\boldsymbol{\xi}}^{\mathcal{M}_{\boldsymbol{\eta}}}}(i(\boldsymbol{\theta}) \cup \{i(q)\}) \subseteq \overline{\mathrm{Th}}_1^{\mathcal{M}_{\boldsymbol{\eta}}}(i(\boldsymbol{\theta}) \cup \{i(q)\})\,, \end{split}$$

as desired. This completes the proof of equation $(\dagger \dagger)$.

It follows that there is an $A \in E_a$ such that for all $\bar{u} \in A$,

$$f(\bar{u}) \cap (\omega \times (\theta \cup \{q\})^{<\omega}) = h(\bar{u}) \cap (\omega \times (\theta \cup \{q\})^{<\omega}).$$

Let $\bar{u} \in A$ be such that $h(\bar{u}) \neq f(\bar{u})$; then $t(\bar{u}) > \theta$. This completes the proof of case 1 of claim 5.

Case 2. There is no function g as in case 1.

In this case, define the function $t(\bar{u})$, where $\bar{u} \in \text{dom}(f)$, by

$$t(\bar{u}) = \text{least } \alpha \text{ such that } \left(f(\bar{u}) \triangle \overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\beta}}(\rho \cup \{q\})\right) \cap (\omega \times (\alpha \cup \{q\})^{<\omega}) \neq \emptyset.$$

Thus t is total $r\Sigma_1^{\mathcal{M}_{\theta}}$. To see that ran t is unbounded in ρ , note that for $\theta < \rho$

$$\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{q}}(i(\theta)\cup\{i(q)\})=i(\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\beta}}(\theta\cup\{q\}))$$

as

$$\overline{\mathrm{Th}}_{1}^{\mathcal{M}_{\beta}}(\theta \cup \{q\}) = \overline{\mathrm{Th}}_{1}^{J_{\ell}^{\mathcal{M}_{\beta}}}(\theta \cup \{q\})$$

for some $\xi < OR^{\mathcal{M}_{\beta}}$ by case hypothesis.

This completes the proof of case 2, and hence of Claim 5. $\hfill \Box$

Fix now $p \in |\mathcal{M}_{\beta}|$ and $\rho < \delta$ such that $\operatorname{Th}_{n+1}^{\mathcal{M}_{b}}(\rho \cup \{p\}) \notin |\mathcal{M}_{b}|$. We obtain a contradiction via an easy generalization of the proof of 6.1.

Fix β < length of \mathcal{T} so large that

(1) $b \cap \beta \neq c \cap \beta$, and there's no dropping on $b \cup c$ above β .

(2) $\gamma \in b - \beta \Rightarrow \operatorname{crit} i_{\gamma b} > \rho$ and $p \in \operatorname{ran} i_{\gamma b}$ and $(\delta < \operatorname{OR}^{\mathcal{M}_b} \Rightarrow \delta \in \operatorname{ran} i_{\gamma b})$.

(3) $\gamma \in c - \beta \Rightarrow \operatorname{crit} i_{\gamma c} > \rho$ and $p \in \operatorname{ran} i_{\gamma c}$ and $(\delta < \operatorname{OR}^{\mathcal{M}_b} \Rightarrow \delta \in \operatorname{ran} i_{\gamma c})$ and $(\operatorname{OR}^{\mathcal{M}_b} < \operatorname{OR}^{\mathcal{M}_c} \Rightarrow \operatorname{OR}^{\mathcal{M}_b} \in \operatorname{ran} i_{\gamma c})$.

As in Claim 2 of the proof of 6.1, we can find $\gamma \in b - \beta$ and $\eta \in c - \beta$ such that

$$\operatorname{ran}\,i_{\gamma b}\cap\operatorname{ran}\,i_{\eta c}\cap\delta=\kappa$$

where $\rho < \kappa < \delta$. Let

$$\pi: |\mathcal{N}| \cong X \subseteq |\mathcal{M}_b|$$

where $X = \operatorname{ran} i_{\gamma b} \cap \operatorname{ran} i_{\eta c}$ and π is the inverse of the collapse. Then π is generalized $r\Sigma_{n+1}$ elementary. This follows from the fact that both $i_{\gamma b}$ and $i_{\gamma c}$ are generalized $r\Sigma_{n+1}$ elementary. To see that $i_{\gamma c}$ is generalized $r\Sigma_{n+1}$ elementary, note that if $\mathcal{M}_b = \mathcal{M}_c$, then $\deg(\xi + 1) \geq n$ for all sufficiently large $\xi + 1 \in c$, so $i_{\eta c}$ is generalized $r\Sigma_{n+1}$ elementary. If \mathcal{M}_b is a proper initial segment of \mathcal{M}_c , then $i_{\eta c} \upharpoonright i_{nc}^{-1}(\mathcal{M}_b)$ is in fact fully elementary.

Notice that $\operatorname{crit} \pi = \kappa$, and $\mathcal{N} = \mathcal{J}_{\alpha}^{\vec{E}(\mathcal{T})\restriction\kappa}$ for some $\alpha \geq \kappa$. Also $\operatorname{Th}_{n+1}^{\mathcal{M}_b}(\rho \cup \{p\})$ is definable over \mathcal{N} , and hence is a member of $L[\vec{E}(\mathcal{T}) \restriction \kappa]$. As $\vec{E}(\mathcal{T}) \restriction \kappa \in |\mathcal{M}_b|$ and \mathcal{M}_b has an internally iterable extender on its sequence with critical point greater than κ , we get $\operatorname{Th}_{n+1}^{\mathcal{M}_b}(\rho \cup \{p\}) \in |\mathcal{M}_b|$, a contradiction. This completes the proof of theorem 6.2.