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33 Louveau's Theorem

Let us define codes for Borel sets in our usual way of thinking of them as trees
with basic clopen sets attached to the terminal nodes.

Definitions

1. Define (Γ, q) is an α-code iff T C ω<ω is a tree of rank < a and q : T° -> B
is a map from the terminal nodes, T°, of T (i.e. rank zero nodes) to a nice
base, β, for the clopen sets of ωω, say all sets of the form [s] for s G ω<ω

plus the empty set.

2. Define Ss(T,q) and Ps(Tyq) for s G T by induction on the rank of s as
follows. For s E T° define

P8{T,q) = q(s) and S'(Γ,g) = ~ φ ) .

For β € T>0 define

p (Γ,g) = | J { S ( T , g ) ' ' m : s~m E T} and S9(Ttq) = ~ P'(Γ, β ) .

3. Define
P(T,q) = pU(T,q) and

the Π^ set and the Σ° set coded by (T, g), respectively. (5 is short for
Sigma and P is short for Pi.)

4. Define C C w w is Π^(hyp) iff it has an α-code which is hyperarithmetic.

5. ωfκ is the first nonrecursive ordinal.

Theorem 33.1 (Louveau [63]) IfA,BC ωω are Σ\ sets, a < ωfκ, and A and
B can be separated by Π° set7 then A and B can be separated by a Π° (hyp)-se*.

Corollary 33.2 Δ } Π Π ° = U°a(hyp)

Corollary 33.3 (Section Problem) IfBCωωxωω is Borel and α < ωi is such
that Bx e Σ£ for every x £ ωω, then

B e Jj°a({D xC :De Borel(α;ω) and Cis clopen}).

Note that the converse is trivial.
This result was proved by Dellecherie for α = 1 who conjectured it in general.

Saint-Raymond proved it for a = 2 and Louveau and Saint-Raymond indepen-
dently proved it for a = 3 and then Louveau proved it in general. In their paper
[64] Louveau and Saint-Raymond give a different proof of it. We will need the
following lemma.

Lemma 33.4 For a < ωfκ the following sets are A\:
{y : y is a β-code for some β < α},
{(#> y) : y is a β-code for some β < a and x G P(T, q)} , and
{(x, y) : y is a β-code for some β < a and x G 5(T, q)}.
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proof:
For the first set it is enough to see that WF<a the set of trees of rank < a is

A\. Let Γ be a recursive tree of rank α. Then T G WF<a iff T < f shows that
WF<a is Σ\. But since f is well-founded T -< f iff -.(Γ < T) and so it is Πj.
For the second set just use an argument similar to Theorem 27.3. The third set
is just the complement of the second one.
•

Now we prove Corollary 33.3 by induction on α. By relativizing the proof to
a parameter we may assume a < ωfκ and that B is Δ } . By taking complements
we may assume that the result holds for U.^ for all β < α. Define

R(x, (Γ, q)) iff (Γ, q) G Δ}(*), (T, q) is an α-code, and P(Γ, q) = Bx.

where P(T, q) is the Π° set coded by (T, q). Note that by the relativized version
of Louveau's Theorem for every x there exists a (Γ, q) such that Λ(x,(T, q)).
By Πϊ-uniformization (Theorem 22.1) there exist a ϊί\ set R C Λ such that for
every x there exists a unique (T, ςr) such that R(x, (T, g)). Fix β < a and n < ω
and define

Bβyn(x,z) iff there exists (T, q) £ Δj(x) such that

2. rankτ((n)) = β and

3. 2 € P ( n ) ( T , g ) .

Since quantification over Δj(x) preserves Π} (Theorem 29.3), R is Π}, and the
rest is Δj by Lemma 33.4, we see that Bβfn is Πj. But note that -*Bβin(x, z) iff
there exists (T, q) 6 Δj(x) such that

2. rank τ ({n)) ^ ^ or

3. z e S

and consequently, ~ Bβ<n is Πj and therefore BβιΛ is Δ } . Note that every cross
section of Bβ<n is a Jl^ set and so by induction (in case α > 1)

B0,a € Ul({D xC De Borel(ωω) and Cis clopen}).

But then

n<ω}β<a

and so

B G Σ° ( { D x C : D G Borel(α;w) and Cis clopen}).

Now to do the case for a = 1, define for every n G w and s £ω
BSyn{x, z) iff there exists (T, g) G Δ{(x) such that
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2. rankτ((n)) = 0,

3. q({n)) = s, and

4. z € [s].

As in the other case B,>n is Δj . Let ZQ € [s] be arbitrary, then define the Borel
set C>tn = {x : (x,z0) G #»,n} Then £,,„ = C,tn x [s] where But now

B =

and so
x C : D € Borel(u/") and C clopen}).

Note that for every α < ω\ there exists a Πj set i7 which is universal for all
Δ ^ sets, i.e., every cross section of U is Δ° and every £ ° set occurs as a cross
section of U. To see this, let V be a Π° set which is universal for Π^ sets. Now
put

(*,y)€CΠffyetς0 andVφG 140 iffz^ViJ

where x = (xo, a?i) is some standard pairing function. Note also that the comple-
ment of U is also universal for all Δ^ sets, so there is a J i which is universal for
all Δ° sets. Louveau's Theorem implies that there can be no Borel set universal
for all Δ° sets.

Corollary 33.5 There can be no Borel set universal for all £ ° sets.

In order to prove this corollary we will need the following lemmas. A space
is Polish iff it is a separable complete metric space.

Lemma 33.6 // X is a 0-dimensional Polish space, then there exists a closed
set Y C ωω such that X and Y are homeomorphic.

proof:
Build a tree (Cs : s £ T) of nonempty clopen sets indexed by a tree T C ω<ω

such that

1. C() = X,

2. the diameter of Cs is less that l/|s| for s φ (), and

3. for each s G T the clopen set Cs is the disjoint union of the clopen sets
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If Y = [T] (the infinite branch of T), then X and Y are homeomorphic.
•

I am not sure who proved this first. I think the argument for the next lemma
comes from a theorem about Hausdorff that lifts the difference hierarchy on the
Δ^-sets to the Δ°-sets. This presentation is taken from Kechris [52] mutatis
mutandis.13

Lemma 33.7 For any sequence (Bn :nGw) of Borel subsets of ωω there exists

O-dimensional Polish topology, τ, which contains the standard topology and each

Bn is a clopen set in τ.

proof:
This will follow easily from the next two claims.

Claim: Suppose (X, τ) is a O-dimensional Polish space and F C X is closed,
then there exists a O-dimensional Polish topology σ D r such that F is clopen in
(X, σ). (In fact, r U {F} is a subbase for σ.)
proof:

Let XQ be F with the subspace topology given by τ and X\ be ~ F with
the subspace topology. Since XQ is closed in X the complete metric on X is
complete when restricted to XQ. Since ~ F is open there is another metric
which is complete on X\. This is a special case of Alexandroff 's Theorem which
says that a Gs set in a completely metrizable space is completely metrizable in
the subspace topology. In this case the complete metric d on ~ F would be
defined by

1 1
d(x,y) = d(x,y)

d(x,F)

where d is a complete metric on X and d(x,F) is the distance from x to the
closed set F.

Let
(X,σ) = X0®Xi

be the discrete topological sum, i.e., U is open iff U = Uo U U\ where {70 C Xo
is open in XQ and U\ C Xγ is open in X\.

Claim: If (X, r) is a Hausdorff space and (X, τn) for n G ω are O-dimensional
Polish topologies extending r, then there exists a O-dimensional Polish topology
(X, σ) such that rn C σ for every n. (In fact Un<u> τn ιs a subbase for σ.)
proof:

Consider the O-dimensional Polish space

1 3 Latin for plagiarized.
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Let / : X —> ΠnGωί^' 7") k e ^ e embedding which takes each x G X to the
constant sequence x (i.e., /(#) = (xn : n £ ω) where arn = x for every n). Let
I> C Πneω(X, rn) be the range of /, the set of constant sequences. Note that
/ : (X, τ) —• (D, T) is a homeomorphism. Let σ be the topology on X defined by

U G σ iff there exists V open in \[n^ω{X, τn) with U = Z" 1 (F).

Since each τn extends r we get that D is a closed subset of Πneω(^> T n ) ̂ on-
sequently, £) with the subspace topology inherited from Y[n€ω(X,τn) is Polish.
It follows that σ is a Polish topology on X. To see that τn C σ for every n let
U E TN and define

n>N

Then /"HV) = ί7 and so U G σ.

We prove Lemma 33.7 by induction on the rank of the Borel sets. Note that
by the second Claim it is enough to prove it for one Borel set at a time. So
suppose B is a Σ° subset of (X, r). Let B = \Jneω Bn where each Bn is Π^ for
some β < α. By induction on α there exists a O-dimensional Polish topology τn

extending r in which each Bn is clopen. Applying the second Claim gives us a
O-dimensional topology σ extending r in which each Bn is clopen and therefore
B is open. Apply the first Claim to get a O-dimensional Polish topology in which
B is clopen.
•
proof:

(of Corollary 33.5). The idea of this proof is to reduce it to the case of a Δ°
set universal for Δ° - sets, which is easily seen to be impossible by the standard
diagonal argument.

Suppose B is a Borel set which is universal for all Δ^ sets. Then by the
Corollary 33.3

B G Δ° ({D xC : De Borel(ωω) and C is clopen}).

By Lemma 33.7 there exists a O-dimensional Polish topology r such that if X =
(α;^,^, then B is A^(X x ωω). Now by Lemma 33.6 there exists a closed set
Y Cωω and a homeomorphism h : X —• Y. Consider

C = {(x,y) e X x X : (x,h(y)) e B}.

The set C is Δ° in X x X because it is the continuous preimage of the set B
under the map (x,y) »-» (x,h(y)). The set C is also universal for Δ« subsets
of X because the set Y is closed. To see this for α > 1 if H G Δ° (Y), then
H G Δ°(ωω), consequently there exists x £ X with Bx = H. For α = 1 just use
that disjoint closed subsets of ωω can be separated by clopen sets.

Finally, the set C gives a contradiction by the usual diagonal argument:



116 33 LOUVEAU'S THEOREM

would be Δ^ in X but cannot be a cross section of C.

m
Question 33.8 (Mauldin) Does there exists a U\ set which is universal for all
Π{ sets which are not Borel?14

We could also ask for the complexity of a set which is universal for Σ° \ Δ^
sets.

1 4 This was answered by Greg Hjorth [42], who showed it is independent.




