$29 \Delta_{1}^{1}$-codes

Using Π_{1}^{1}-reduction and universal sets it is possible to get codes for Δ_{1}^{1} subsets of ω and ω^{ω}.

Here is what we mean by Δ_{1}^{1} codes for subsets of X where $X=\omega$ or $X=\omega^{\omega}$.
There exists a Π_{1}^{1} sets $C \subseteq \omega \times \omega^{\omega}$ and $P \subseteq \omega \times \omega^{\omega} \times X$ and a Σ_{1}^{1} set $S \subseteq \omega \times \omega^{\omega} \times X$ such that

- for any $(e, u) \in C$

$$
\{x \in X:(e, u, x) \in P\}=\{x \in X:(e, u, x) \in S\}
$$

- for any $u \in \omega^{\omega}$ and $\Delta_{1}^{1}(u)$ set $D \subseteq X$ there exists a $(e, u) \in C$ such that

$$
D=\{x \in X:(e, u, x) \in P\}=\{x \in X:(e, u, x) \in S\}
$$

From now on we will write
" e is a $\Delta_{1}^{1}(u)$-code for a subset of X "
to mean $(e, u) \in C$ and remember that it is a Π_{1}^{1} predicate.
We also write " D is the $\Delta_{1}^{1}(u)$ set coded by e " if " e is a $\Delta_{1}^{1}(u)$-code for a subset of X " and

$$
D=\{x \in X:(e, x) \in P\}=\{x \in X:(e, x) \in S\}
$$

Note that $x \in D$ can be said in either a $\Sigma_{1}^{1}(u)$ way or $\Pi_{1}^{1}(u)$ way, using either S or P.

Theorem 29.1 (Spector-Gandy [103][31]) Π_{1}^{1}-reduction and universal sets implies Δ_{1}^{1} codes exist.
proof:
Let $U \subseteq \omega \times \omega^{\omega} \times X$ be a Π_{1}^{1} set which is universal for all $\Pi_{1}^{1}(u)$ sets, i.e., for every $u \in \omega^{\omega}$ and $A \in \Pi_{1}^{1}(u)$ with $A \subseteq X$ there exists $e \in \omega$ such that $A=\{x \in X:(e, u, x) \in U\}$. For example, to get such a U proceed as follows. Let $\{e\}^{u}$ be the partial function you get by using the $e^{t h}$ Turing machine with oracle u. Then define $(e, u, x) \in U$ iff $\{e\}^{u}$ is the characteristic function of a tree $T \subseteq \bigcup_{n<\omega}\left(\omega^{n} \times \omega^{n}\right)$ and $T_{x}=\{s:(s, x \upharpoonright|s|) \in T\}$ is well-founded.

Now get a doubly universal pair. Let $e \mapsto\left(e_{0}, e_{1}\right)$ be the usual recursive unpairing function from ω to $\omega \times \omega$ and define

$$
U^{0}=\left\{(e, u, x):\left(e_{0}, u, x\right) \in U\right\}
$$

and

$$
U^{1}=\left\{(e, u, x):\left(e_{1}, u, x\right) \in U\right\}
$$

The pair of sets U^{0} and U^{1} are Π_{1}^{1} and doubly universal, i.e., for any $u \in \omega^{\omega}$ and A and B which are $\Pi_{1}^{1}(u)$ subsets of X there exists $e \in \omega$ such that

$$
A=\left\{x:(e, u, x) \in U^{0}\right\}
$$

and

$$
B=\left\{x:(e, u, x) \in U^{1}\right\}
$$

Now apply reduction to obtain $P^{0} \subseteq U^{0}$ and $P^{1} \subseteq U^{1}$ which are Π_{1}^{1} sets. Note that the by the nature of taking cross sections, $P_{e, u}^{0}$ and $P_{e, u}^{1}$ reduce $U_{e, u}^{0}$ and $U_{e, u}^{1}$. Now we define

- " e is a $\Delta_{1}^{1}(u)$ code" iff $\forall x \in X\left(x \in P_{e, u}^{0}\right.$ or $\left.x \in P_{e, u}^{1}\right)$, and
- $P=P^{0}$ and $S=\sim P^{1}$.

Note that e is a $\Delta_{1}^{1}(u)$ code is a Π_{1}^{1} statement in (e, u). Also if e is a $\Delta_{1}^{1}(u)$ code, then $P_{(e, u)}=S_{e, u}$ and so its a $\Delta_{1}^{1}(u)$ set. Furthermore if $D \subseteq X$ is a $\Delta_{1}^{1}(u)$ set, then since U^{0} and U^{1} were a doubly universal pair, there exists e such that $U_{e, u}^{0}=D$ and $U_{e, u}^{1}=\sim D$. For this e it must be that $U_{e, u}^{0}=P_{e, u}^{0}$ and $U_{e, u}^{1}=P_{e, u}^{1}$ since the P 's reduce the U 's. So this e is a $\Delta_{1}^{1}(u)$ code which codes the set D.

Corollary $29.2\left\{(x, u) \in P(\omega) \times \omega^{\omega}: x \in \Delta_{1}^{1}(u)\right\}$ is Π_{1}^{1}.
proof:
$x \in \Delta_{1}^{1}(u)$ iff $\exists e \in \omega$ such that

1. e is a $\Delta_{1}^{1}(u)$ code,
2. $\forall n$ if $n \in x$, then n is in the $\Delta_{1}^{1}(u)$-set coded by e, and
3. $\forall n$ if n is the $\Delta_{1}^{1}(u)$-set coded by e, then $n \in x$.

Note that clause (1) is Π_{1}^{1}. Clause (2) is Π_{1}^{1} if we use that $(e, u, n) \in P$ is equivalent to " n is in the $\Delta_{1}^{1}(u)$-set coded by e ". While clause (3) is Π_{1}^{1} if we use that $(e, u, n) \in S$ is equivalent to " n is in the $\Delta_{1}^{1}(u)$-set coded by e ".

We say that $y \in \omega^{\omega}$ is $\Delta_{1}^{1}(u)$ iff its graph $\{(n, m): y(n)=m\}$ is $\Delta_{1}^{1}(u)$. Since being the graph a function is a Π_{2}^{0} property it is easy to see how to obtain $\Delta_{1}^{1}(u)$ codes for functions $y \in \omega^{\omega}$.

Corollary 29.3 Suppose $\theta(x, y, z)$ is a Π_{1}^{1} formula, then

$$
\psi(y, z)=\exists x \in \Delta_{1}^{1}(y) \theta(x, y, z)
$$

is a Π_{1}^{1} formula.
proof:
$\psi(y, z)$ iff
$\exists e \in \omega$ such that

1. e is a $\Delta_{1}^{1}(y)$ code, and
2. $\forall x$ if x is the set coded by (e, y), then $\theta(x, y, z)$.

This will be Π_{1}^{1} just in case the clause " x is the set coded by (e, y) " is Σ_{1}^{1}. But this is Δ_{1}^{1} provided that e is a $\Delta_{1}^{1}(y)$ code, e.g., for $x \subseteq \omega$ we just say: $\forall n \in \omega$

1. if $n \in x$ then $(e, y, n) \in S$ and
2. if $(e, y, n) \in P$, then $n \in x$.

Both of these clauses are Σ_{1}^{1} since S is Σ_{1}^{1} and P is Π_{1}^{1}. A similar argument works for $x \in \omega^{\omega}$.

The method of this corollary also works for the quantifier

$$
\exists D \subseteq \omega^{\omega} \text { such that } D \in \Delta(y) \theta(D, y, z)
$$

It is equivalent to say $\exists e \in \omega$ such that e is a $\Delta_{1}^{1}(y)$ code for a subset of ω^{ω} and $\theta(\ldots, y, z)$ where occurrences of the " $q \in D$ " in the formula θ have been replaced by either $(e, y, q) \in P$ or $(e, y, q) \in S$, whichever is necessary to makes θ come out Π_{1}^{1}.

Corollary 29.4 Suppose $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Borel, $B \subseteq \omega^{\omega}$ is Borel, and f is one-to-one on B. Then the image of B under $f, f(B)$, is Borel.
proof:
By relativizing the following argument to an arbitrary parameter we may assume that the graph of f and the set B are Δ_{1}^{1}. Define

$$
R=\{(x, y): f(x)=y \text { and } x \in B\} .
$$

Then for any y the set

$$
\{x: R(x, y)\}
$$

is a $\Delta_{1}^{1}(y)$ singleton (or empty). Consequently, its unique element is Δ_{1}^{1} in y. It follows that

$$
y \in f(B) \text { iff } \exists x R(x, y) \text { iff } \exists x \in \Delta_{1}^{1}(y) R(x, y)
$$

and so $f(B)$ is both Σ_{1}^{1} and Π_{1}^{1}.
Many applications of the Gandy-Spector Theorem exist. For example, it is shown (assuming $\mathrm{V}=\mathrm{L}$ in all three cases) that

1. there exists an uncountable Π_{1}^{1} set which is concentrated on the rationals (Erdos, Kunen, and Mauldin [21]),
2. there exists a Π_{1}^{1} Hamel basis (Miller [83]), and
3. there exists a topologically rigid Π_{1}^{1} set (Van Engelen, Miller, and Steel [18]).
