29 Δ_1^1 -codes

Using Π_1^1 -reduction and universal sets it is possible to get codes for Δ_1^1 subsets of ω and ω^{ω} .

Here is what we mean by Δ_1^1 codes for subsets of X where $X = \omega$ or $X = \omega^{\omega}$.

There exists a Π_1^1 sets $C \subseteq \omega \times \omega^{\omega}$ and $P \subseteq \omega \times \omega^{\omega} \times X$ and a Σ_1^1 set $S \subseteq \omega \times \omega^{\omega} \times X$ such that

• for any $(e, u) \in C$

$$\{x \in X : (e, u, x) \in P\} = \{x \in X : (e, u, x) \in S\}$$

• for any $u \in \omega^{\omega}$ and $\Delta_1^1(u)$ set $D \subseteq X$ there exists a $(e, u) \in C$ such that

$$D = \{x \in X : (e, u, x) \in P\} = \{x \in X : (e, u, x) \in S\}.$$

From now on we will write

"e is a $\Delta_1^1(u)$ -code for a subset of X"

to mean $(e, u) \in C$ and remember that it is a Π_1^1 predicate.

We also write "D is the $\Delta_1^1(u)$ set coded by e" if "e is a $\Delta_1^1(u)$ -code for a subset of X" and

$$D = \{x \in X : (e, x) \in P\} = \{x \in X : (e, x) \in S\}.$$

Note that $x \in D$ can be said in either a $\Sigma_1^1(u)$ way or $\Pi_1^1(u)$ way, using either S or P.

Theorem 29.1 (Spector-Gandy [103][31]) Π_1^1 -reduction and universal sets implies Δ_1^1 codes exist.

proof:

Let $U \subseteq \omega \times \omega^{\omega} \times X$ be a Π_1^1 set which is universal for all $\Pi_1^1(u)$ sets, i.e., for every $u \in \omega^{\omega}$ and $A \in \Pi_1^1(u)$ with $A \subseteq X$ there exists $e \in \omega$ such that $A = \{x \in X : (e, u, x) \in U\}$. For example, to get such a U proceed as follows. Let $\{e\}^u$ be the partial function you get by using the e^{th} Turing machine with oracle u. Then define $(e, u, x) \in U$ iff $\{e\}^u$ is the characteristic function of a tree $T \subseteq \bigcup_{n < \omega} (\omega^n \times \omega^n)$ and $T_x = \{s : (s, x \upharpoonright |s|) \in T\}$ is well-founded.

Now get a doubly universal pair. Let $e \mapsto (e_0, e_1)$ be the usual recursive unpairing function from ω to $\omega \times \omega$ and define

$$U^{0} = \{(e, u, x) : (e_{0}, u, x) \in U\}$$

and

$$U^1 = \{(e, u, x) : (e_1, u, x) \in U\}.$$

The pair of sets U^0 and U^1 are Π^1_1 and doubly universal, i.e., for any $u \in \omega^{\omega}$ and A and B which are $\Pi^1_1(u)$ subsets of X there exists $e \in \omega$ such that

$$A = \{x: (e,u,x) \in U^0\}$$

and

$$B = \{x : (e, u, x) \in U^1\}.$$

Now apply reduction to obtain $P^0 \subseteq U^0$ and $P^1 \subseteq U^1$ which are Π_1^1 sets. Note that the by the nature of taking cross sections, $P_{e,u}^0$ and $P_{e,u}^1$ reduce $U_{e,u}^0$ and $U_{e,u}^1$. Now we define

- "e is a $\Delta_1^1(u)$ code" iff $\forall x \in X (x \in P_{e,u}^0 \text{ or } x \in P_{e,u}^1)$, and
- $P = P^0$ and $S = \sim P^1$.

Note that e is a $\Delta_1^1(u)$ code is a Π_1^1 statement in (e, u). Also if e is a $\Delta_1^1(u)$ code, then $P_{(e,u)} = S_{e,u}$ and so its a $\Delta_1^1(u)$ set. Furthermore if $D \subseteq X$ is a $\Delta_1^1(u)$ set, then since U^0 and U^1 were a doubly universal pair, there exists e such that $U_{e,u}^0 = D$ and $U_{e,u}^1 = \sim D$. For this e it must be that $U_{e,u}^0 = P_{e,u}^0$ and $U_{e,u}^1 = P_{e,u}^1$ since the P's reduce the U's. So this e is a $\Delta_1^1(u)$ code which codes the set D.

Corollary 29.2 $\{(x, u) \in P(\omega) \times \omega^{\omega} : x \in \Delta^1_1(u)\}$ is Π^1_1 .

proof:

 $x \in \Delta_1^1(u)$ iff $\exists e \in \omega$ such that

- 1. e is a $\Delta_1^1(u)$ code,
- 2. $\forall n \text{ if } n \in x$, then n is in the $\Delta_1^1(u)$ -set coded by e, and
- 3. $\forall n \text{ if } n \text{ is the } \Delta_1^1(u) \text{-set coded by } e, \text{ then } n \in x.$

Note that clause (1) is Π_1^1 . Clause (2) is Π_1^1 if we use that $(e, u, n) \in P$ is equivalent to "n is in the $\Delta_1^1(u)$ -set coded by e". While clause (3) is Π_1^1 if we use that $(e, u, n) \in S$ is equivalent to "n is in the $\Delta_1^1(u)$ -set coded by e".

We say that $y \in \omega^{\omega}$ is $\Delta_1^1(u)$ iff its graph $\{(n,m) : y(n) = m\}$ is $\Delta_1^1(u)$. Since being the graph a function is a Π_2^0 property it is easy to see how to obtain $\Delta_1^1(u)$ codes for functions $y \in \omega^{\omega}$.

Corollary 29.3 Suppose $\theta(x, y, z)$ is a Π_1^1 formula, then

$$\psi(y,z) = \exists x \in \Delta^1_1(y) \ \theta(x,y,z)$$

is a Π_1^1 formula.

proof:

 $\psi(y,z)$ iff $\exists e \in \omega \text{ such that}$

- 1. e is a $\Delta_1^1(y)$ code, and
- 2. $\forall x \text{ if } x \text{ is the set coded by } (e, y), \text{ then } \theta(x, y, z).$

96

This will be Π_1^1 just in case the clause "x is the set coded by (e, y)" is Σ_1^1 . But this is Δ_1^1 provided that e is a $\Delta_1^1(y)$ code, e.g., for $x \subseteq \omega$ we just say: $\forall n \in \omega$

1. if
$$n \in x$$
 then $(e, y, n) \in S$ and

2. if $(e, y, n) \in P$, then $n \in x$.

Both of these clauses are Σ_1^1 since S is Σ_1^1 and P is Π_1^1 . A similar argument works for $x \in \omega^{\omega}$.

The method of this corollary also works for the quantifier

$$\exists D \subseteq \omega^{\omega}$$
 such that $D \in \Delta(y) \ \theta(D, y, z)$.

It is equivalent to say $\exists e \in \omega$ such that e is a $\Delta_1^1(y)$ code for a subset of ω^{ω} and $\theta(\ldots, y, z)$ where occurrences of the " $q \in D$ " in the formula θ have been replaced by either $(e, y, q) \in P$ or $(e, y, q) \in S$, whichever is necessary to makes θ come out Π_1^1 .

Corollary 29.4 Suppose $f : \omega^{\omega} \to \omega^{\omega}$ is Borel, $B \subseteq \omega^{\omega}$ is Borel, and f is one-to-one on B. Then the image of B under f, f(B), is Borel.

proof:

By relativizing the following argument to an arbitrary parameter we may assume that the graph of f and the set B are Δ_1^1 . Define

$$R = \{(x, y) : f(x) = y \text{ and } x \in B\}.$$

Then for any y the set

$$\{x: R(x, y)\}$$

is a $\Delta_1^1(y)$ singleton (or empty). Consequently, its unique element is Δ_1^1 in y. It follows that

$$y \in f(B)$$
 iff $\exists x \ R(x, y)$ iff $\exists x \in \Delta_1^1(y) \ R(x, y)$

and so f(B) is both Σ_1^1 and Π_1^1 .

Many applications of the Gandy-Spector Theorem exist. For example, it is shown (assuming V=L in all three cases) that

- 1. there exists an uncountable Π_1^1 set which is concentrated on the rationals (Erdos, Kunen, and Mauldin [21]),
- 2. there exists a Π_1^1 Hamel basis (Miller [83]), and
- 3. there exists a topologically rigid Π_1^1 set (Van Engelen, Miller, and Steel [18]).