Π_1^1 -Reduction 28

We say that A_0, B_0 reduce A, B iff

- 1. $A_0 \subset A$ and $B_0 \subset B$,
- 2. $A_0 \cup B_0 = A \cup B$, and
- 3. $A_0 \cap B_0 = \emptyset$.

 $\Pi^1_1\text{-}\mathrm{reduction}$ is the property that every pair of Π^1_1 sets can be reduced by a pair of Π_1^1 sets. The sets can be either subsets of ω or of ω^{ω} .

Theorem 28.1 Π_1^1 -uniformity implies Π_1^1 -reduction.

proof:

Suppose $A, B \subseteq X$ are Π_1^1 where $X = \omega$ or $X = \omega^{\omega}$. Let $P = (A \times \{0\}) \cup (B \times \{0\}) \cup (B \times \{0\})$ {1}). Then P is a Π_1^1 subset of $X \times \omega^{\omega}$ and so by Π_1^1 -uniformity (Theorem 22.1) there exists $Q \subseteq P$ which is Π_1^1 and for every $x \in X$, if there exists $i \in \{0, 1\}$ such that $(x, i) \in P$, then there exists a unique $i \in \{0, 1\}$ such that $(x, i) \in Q$. Hence, letting

$$A_0 = \{ x \in X : (x, 0) \in Q \}$$

and

 $B_0 = \{x \in X : (x, 1) \in Q\}$

gives a pair of Π_1^1 sets which reduce A and B.

There is also a proof of reduction using the prewellordering property, which is a weakening of the scale property used in the proof of Π_1^1 -uniformity. So, for example, suppose A and B are Π_1^1 subsets of ω^{ω} . Then we know there are maps from ω^{ω} to trees,

 $x \mapsto T_r^a$ and $y \mapsto T_u^b$

which are "recursive" and

 $x \in A$ iff T_x^a is well-founded and $y \in B$ iff T_y^b is well-founded.

Now define

1. $x \in A_0$ iff $x \in A$ and not $(T_x^b \prec T_x^a)$, and

2. $x \in B_0$ iff $x \in B$ and not $(T_r^a \prec T_r^b)$.

Since \prec and \preceq are both Σ_1^1 it is clear, that A_0 and B_0 are Π_1^1 subsets of A and B respectively. If $x \in A$ and $x \notin B$, then T_x^a is well-founded and T_x^b is ill-founded and so not $(T_x^b \prec T_x^a)$ and $a \in A_0$. Similarly, if $x \in B$ and $x \notin A$, then $x \in B_0$. If $x \in A \cap B$, then both T_x^b and T_x^a are well-founded and either $T_x^a \preceq T_x^b$, in which case $x \in A_0$ and $x \notin B_0$, or $T_x^b \prec T_x^a$, in which case $x \in B_0$ and $x \notin A_0$. **Theorem 28.2** Π_1^1 -reduction implies Σ_1^1 -separation, i.e., for any two disjoint Σ_1^1 sets A and B there exists a Δ_1^1 -set C which separates them. i.e., $A \subseteq C$ and $C \cap B = \emptyset$.

proof:

Note that $\sim A \cup \sim B = X$. If A_0 and B_0 are Π_1^1 sets reducing $\sim A$ and $\sim B$, then $\sim A_0 = B_0$, so they are both Δ_1^1 . If we set $C = B_0$, then $C = B_0 = \sim A_0 \subseteq \sim A$ so $C \subseteq \sim A$ and therefore $A \subseteq C$. On the other hand $C = B_0 \subseteq \sim B$ implies $C \cap B = \emptyset$.