Part III Classical Separation Theorems

26 Souslin-Luzin Separation Theorem

Define $A \subseteq \omega^{\omega}$ to be κ -Souslin iff there exists a tree $T \subseteq \bigcup_{n < \omega} (\kappa^n \times \omega^n)$ such that

$$y \in A \text{ iff } \exists x \in \kappa^{\omega} \ \forall n < \omega \ (x \upharpoonright n, y \upharpoonright n) \in T.$$

In this case we write A = p[T], the projection of the infinite branches of the tree T. Note that ω -Souslin is the same as Σ_1^1 .

Define the κ -Borel sets to be the smallest family of subsets of ω^{ω} containing the usual Borel sets and closed under intersections or unions of size κ and complements.

Theorem 26.1 Suppose A and B are disjoint κ -Souslin subsets of ω^{ω} . Then there exists a κ -Borel set C which separates A and B, i.e., $A \subseteq C$ and $C \cap B = \emptyset$.

proof:

Let $A = p[T_A]$ and $B = p[T_B]$. Given a tree $T \subseteq \bigcup_{n < \omega} (\kappa^n \times \omega^n)$, and $s \in \kappa^{<\omega}$, $t \in \omega^{<\omega}$ (possibly of different lengths), define

 $T^{s,t} = \{ (\hat{s}, \hat{t}) \in T : (s \subseteq \hat{s} \text{ or } \hat{s} \subseteq s) \text{ and } (t \subseteq \hat{t} \text{ or } \hat{t} \subseteq t) \}.$

Lemma 26.2 Suppose $p[T_A^{s,t}]$ cannot be separated from $p[T_B^{r,t}]$ by a κ -Borel set. Then for some $\alpha < \kappa$ the set

 $p[T_A^{r, \alpha, t}]$ cannot be separated from $p[T_B^{r, t}]$ by a κ -Borel set.

proof:

Note that $p[T_A^{s,t}] = \bigcup_{\alpha < \kappa} p[T_A^{s^{\alpha},t}]$. If there were no such α , then for every α we would have a κ -Borel set C_{α} with

 $p[T_A^{s^{\uparrow}\alpha,t}] \subseteq C_{\alpha} \text{ and } C_{\alpha} \cap p[T_B^{r,t}] = \emptyset.$

But then $\bigcup_{\alpha < \kappa} C_{\alpha}$ is a κ -Borel set separating $p[T_A^{s,t}]$ and $p[T_B^{r,t}]$.

Lemma 26.3 Suppose $p[T_A^{s,t}]$ cannot be separated from $p[T_B^{r,t}]$ by a κ -Borel set. Then for some $\beta < \kappa$

 $p[T_A^{s,t}]$ cannot be separated from $p[T_B^{r^{\hat{\beta},t}}]$ by a κ -Borel set.

proof:

Since $p[T_B^{r,t}] = \bigcup_{\beta < \kappa} p[T_B^{r^{\gamma,\beta,t}}]$, if there were no such β then for every β we would have κ -Borel set C_{β} with

$$p[T_A^{s,t}] \subseteq C_\beta$$
 and $C_\beta \cap p[T_B^{r^{\hat{\beta},t}}] = \emptyset$.

But then $\bigcap_{\beta < \kappa} C_{\beta}$ is a κ -Borel set separating $p[T_A^{s,t}]$ and $p[T_B^{r,t}]$.

Lemma 26.4 Suppose $p[T_A^{s,t}]$ cannot be separated from $p[T_B^{r,t}]$ by a κ -Borel set. Then for some $n < \omega$

 $p[T_A^{s,t^n}]$ cannot be separated from $p[T_B^{r,t^n}]$ by a κ -Borel set.

proof:

Note that

$$p[T_A^{s,t^n}] = p[T_A^{s,t}] \cap [t^n]$$

and

$$p[T_B^{r,t^n}] = p[T_B^{r,t}] \cap [t^n].$$

Thus if $C_n \subseteq [t n]$ were to separate $p[T_A^{s,t}]$ and $p[T_B^{r,t}]$ for each n, then $\bigcup_{n < \omega} C_n$ would separate $p[T_A^{s,t}]$ from $p[T_B^{r,t}]$.

To prove the separation theorem apply the lemmas iteratively in rotation to obtain, $u, v \in \kappa^{\omega}$ and $x \in \omega^{\omega}$ so that for every $n, p[T_A^{u \restriction n, x \restriction n}]$ cannot be separated from $p[T_B^{v \restriction n, x \restriction n}]$. But necessarily, for every n

$$(u \upharpoonright n, x \upharpoonright n) \in T_A \text{ and } (v \upharpoonright n, x \upharpoonright n) \in T_B$$

otherwise either $p[T_A^{u \restriction n, x \restriction n}] = \emptyset$ or $p[T_B^{v \restriction n, x \restriction n}] = \emptyset$ and they could be separated. But this means that $x \in p[T_A] = A$ and $x \in p[T_B] = B$ contradicting the fact that they are disjoint.