Part III

Classical Separation Theorems

26 Souslin-Luzin Separation Theorem

Define $A \subseteq \omega^{\omega}$ to be κ-Souslin iff there exists a tree $T \subseteq \bigcup_{n<\omega}\left(\kappa^{n} \times \omega^{n}\right)$ such that

$$
y \in A \text { iff } \exists x \in \kappa^{\omega} \forall n<\omega \quad(x \upharpoonright n, y \upharpoonright n) \in T
$$

In this case we write $A=p[T]$, the projection of the infinite branches of the tree T. Note that ω-Souslin is the same as $\boldsymbol{\Sigma}_{1}^{1}$.

Define the κ-Borel sets to be the smallest family of subsets of ω^{ω} containing the usual Borel sets and closed under intersections or unions of size κ and complements.

Theorem 26.1 Suppose A and B are disjoint κ-Souslin subsets of ω^{ω}. Then there exists a κ-Borel set C which separates A and B, i.e., $A \subseteq C$ and $C \cap B=\emptyset$. proof:

Let $A=p\left[T_{A}\right]$ and $B=p\left[T_{B}\right]$. Given a tree $T \subseteq \bigcup_{n<\omega}\left(\kappa^{n} \times \omega^{n}\right)$, and $s \in \kappa^{<\omega}, t \in \omega^{<\omega}$ (possibly of different lengths), define

$$
T^{s, t}=\{(\hat{s}, \hat{t}) \in T:(s \subseteq \hat{s} \text { or } \hat{s} \subseteq s) \text { and }(t \subseteq \hat{t} \text { or } \hat{t} \subseteq t)\}
$$

Lemma 26.2 Suppose $p\left[T_{A}^{s, t}\right]$ cannot be separated from $p\left[T_{B}^{r, t}\right]$ by a κ-Borel set. Then for some $\alpha<\kappa$ the set
$p\left[T_{A}^{s}{ }^{\alpha, t}\right]$ cannot be separated from $p\left[T_{B}^{r, t}\right]$ by a κ-Borel set.
proof:
Note that $p\left[T_{A}^{s, t}\right]=\bigcup_{\alpha<\kappa} p\left[T_{A}^{s^{\wedge} \alpha, t}\right]$. If there were no such α, then for every α we would have a κ-Borel set C_{α} with

$$
p\left[T_{A}^{s^{\wedge} \alpha, t}\right] \subseteq C_{\alpha} \text { and } C_{\alpha} \cap p\left[T_{B}^{r, t}\right]=\emptyset
$$

But then $\bigcup_{\alpha<\kappa} C_{\alpha}$ is a κ-Borel set separating $p\left[T_{A}^{s, t}\right]$ and $p\left[T_{B}^{r, t}\right]$.

Lemma 26.3 Suppose $p\left[T_{A}^{s, t}\right]$ cannot be separated from $p\left[T_{B}^{r, t}\right]$ by a κ-Borel set. Then for some $\beta<\kappa$
$p\left[T_{A}^{s, t}\right]$ cannot be separated from $p\left[T_{B}^{r^{\wedge} \beta, t}\right]$ by a κ-Borel set.
proof:
Since $p\left[T_{B}^{r, t}\right]=\bigcup_{\beta<\kappa} p\left[T_{B}^{r^{\wedge} \beta, t}\right]$, if there were no such β then for every β we would have κ-Borel set C_{β} with

$$
p\left[T_{A}^{s, t}\right] \subseteq C_{\beta} \text { and } C_{\beta} \cap p\left[T_{B}^{r^{\wedge} \beta, t}\right]=\emptyset
$$

But then $\bigcap_{\beta<\kappa} C_{\beta}$ is a κ-Borel set separating $p\left[T_{A}^{s, t}\right]$ and $p\left[T_{B}^{r, t}\right]$.

Lemma 26.4 Suppose $p\left[T_{A}^{s, t}\right]$ cannot be separated from $p\left[T_{B}^{r, t}\right]$ by a κ-Borel set. Then for some $n<\omega$ $p\left[T_{A}^{s, t^{\wedge} n}\right]$ cannot be separated from $p\left[T_{B}^{r, t^{\wedge} n}\right]$ by a κ-Borel set.
proof:
Note that

$$
p\left[T_{A}^{s, t^{\wedge} n}\right]=p\left[T_{A}^{s, t}\right] \cap\left[t^{\wedge} n\right]
$$

and

$$
p\left[T_{B}^{r, t^{\wedge} n}\right]=p\left[T_{B}^{r, t}\right] \cap\left[t^{\wedge} n\right] .
$$

Thus if $C_{n} \subseteq\left[t^{\wedge} n\right]$ were to separate $p\left[T_{A}^{s, t^{\wedge} n}\right]$ and $p\left[T_{B}^{r, t^{\wedge} n}\right]$ for each n, then $\bigcup_{n<\omega} C_{n}$ would separate $p\left[T_{A}^{s, t}\right]$ from $p\left[T_{B}^{r, t}\right]$.

To prove the separation theorem apply the lemmas iteratively in rotation to obtain, $u, v \in \kappa^{\omega}$ and $x \in \omega^{\omega}$ so that for every $n, p\left[T_{A}^{u|n, x| n}\right]$ cannot be separated from $p\left[T_{B}^{v|n, x| n}\right]$. But necessarily, for every n

$$
(u \upharpoonright n, x \upharpoonright n) \in T_{A} \text { and }(v \upharpoonright n, x \upharpoonright n) \in T_{B}
$$

otherwise either $p\left[T_{A}^{u|n, x| n}\right]=\emptyset$ or $p\left[T_{B}^{v|n, x| n}\right]=\emptyset$ and they could be separated. But this means that $x \in p\left[T_{A}\right]=A$ and $x \in p\left[T_{B}\right]=B$ contradicting the fact that they are disjoint.

