23 Martin's axiom and Constructibility

Theorem 23.1 (Gödel see Solovay [101]) If V=L, there exists uncountable Π_1^1 set $A \subseteq \omega^{\omega}$ which contains no perfect subsets.

proof:

Let X be any uncountable Σ_2^1 set containing no perfect subsets. For example, a Δ_2^1 Luzin set would do (Theorem 18.1). Let $R \subset \omega^{\omega} \times \omega^{\omega}$ be Π_1^1 such that $x \in X$ iff $\exists y \ R(x, y)$. Use Π_1^1 uniformization (Theorem 22.1) to get $S \subseteq R$ with the property that X is the one-to-one image of S via the projection map $\pi(x, y) = x$. Then S is an uncountable Π_1^1 set which contains no perfect subset. This is because if $P \subseteq S$ is perfect, then $\pi(P)$ is a perfect subset of X.

Note that it is sufficient to assume that $\omega_1 = (\omega_1)^L$. Suppose $A \in L$ is defined by the Π_1^1 formula θ . Then let B be the set which is defined by θ in V. So by Π_1^1 absoluteness $A = B \cap L$. The set B cannot contain a perfect set since the sentence:

 $\exists T \ T \text{ is a perfect tree and } \forall x \ (x \in [T] \text{ implies } \theta(x))$

is a Σ_2^1 and false in L and so by Shoenfield absoluteness (Theorem 20.2) must be false in V. It follows then by the Mansfield-Solovay Theorem 21.1 that B cannot contain a nonconstructible real and so A = B.

Actually, by tracing thru the actual definition of X one can see that the elements of the uniformizing set S (which is what A is) consist of pairs (x, y) where y is isomorphic to some L_{α} and $x \in L_{\alpha}$. These pairs are reals which witness their own constructibility, so one can avoid using the Solovay-Mansfield Theorem.

Corollary 23.2 If $\omega_1 = \omega_1^L$, then there exists a Π_1^1 set of constructible reals which contains no perfect set.

Theorem 23.3 (Martin-Solovay [72]) Suppose $MA + \neg CH + \omega_1 = (\omega_1)^L$. Then every $A \subseteq 2^{\omega}$ of cardinality ω_1 is Π_1^1 .

proof:

Let $A \subseteq 2^{\omega}$ be a uncountable Π_1^1 set of constructible reals and let B be an arbitrary subset of 2^{ω} of cardinality ω_1 . Arbitrarily well-order the two sets, $A = \{a_{\alpha} : \alpha < \omega_1\}$ and $B = \{b_{\alpha} : \alpha < \omega_1\}$.

By Theorem 5.1 there exists two sequences of G_{δ} sets $(U_n : n < \omega)$ and $(V_n : n < \omega)$ such that for every $\alpha < \omega_1$ for every $n < \omega$

$$a_{\alpha}(n) = 1$$
 iff $b_{\alpha} \in U_n$

and

$$b_{\alpha}(n) = 1$$
 iff $a_{\alpha} \in V_n$.

This is because the set $\{a_{\alpha} : b_{\alpha}(n) = 1\}$, although it is an arbitrary subset of A, is relatively G_{δ} by Theorem 5.1.

But note that $b \in B$ iff $\forall a \in 2^{\omega}$

 $[\forall n \ (a(n) = 1 \text{ iff } b \in U_n)] \text{ implies } [a \in A \text{ and } \forall n \ (b(n) = 1 \text{ iff } a \in U_n)].$

Since A is Π_1^1 this definition of B has the form:

$$orall a([\mathbf{I}\!\!\mathbf{1}_3^0] ext{ implies } [\Pi^1_1 ext{ and } \mathbf{I}\!\!\mathbf{1}_3^0])$$

So B is $\mathbf{\overline{\Pi}}_1^1$.

Note that if every set of reals of size ω_1 is Π_1^1 then every ω_1 union of Borel sets is Σ_2^1 . To see this let $\langle B_\alpha : \alpha < \omega_1 \rangle$ be any sequence of Borel sets. Let U be a universal Π_1^1 set and let $\langle x_\alpha : \alpha < \omega_1 \rangle$ be a sequence such that $B_\alpha = \{y : (x_\alpha, y) \in U\}$. Then

$$y \in \bigcup_{\alpha < \omega_1} B_{\alpha} \text{ iff } \exists x \ x \in \{x_{\alpha} : \alpha < \omega_1\} \land (x, y) \in U.$$

But $\{x_{\alpha} : \alpha < \omega_1\}$ is Π_1^1 and so the union is Σ_2^1 .