23 Martin's axiom and Constructibility

Theorem 23.1 (Gödel see Solovay [101]) If $V=L$, there exists uncountable Π_{1}^{1} set $A \subseteq \omega^{\omega}$ which contains no perfect subsets.
proof:
Let X be any uncountable Σ_{2}^{1} set containing no perfect subsets. For example, a Δ_{2}^{1} Luzin set would do (Theorem 18.1). Let $R \subset \omega^{\omega} \times \omega^{\omega}$ be Π_{1}^{1} such that $x \in X$ iff $\exists y R(x, y)$. Use Π_{1}^{1} uniformization (Theorem 22.1) to get $S \subseteq R$ with the property that X is the one-to-one image of S via the projection map $\pi(x, y)=x$. Then S is an uncountable Π_{1}^{1} set which contains no perfect subset. This is because if $P \subseteq S$ is perfect, then $\pi(P)$ is a perfect subset of X.

Note that it is sufficient to assume that $\omega_{1}=\left(\omega_{1}\right)^{L}$. Suppose $A \in L$ is defined by the Π_{1}^{1} formula θ. Then let B be the set which is defined by θ in V. So by Π_{1}^{1} absoluteness $A=B \cap L$. The set B cannot contain a perfect set since the sentence:

$$
\exists T T \text { is a perfect tree and } \forall x(x \in[T] \text { implies } \theta(x))
$$

is a Σ_{2}^{1} and false in L and so by Shoenfield absoluteness (Theorem 20.2) must be false in V. It follows then by the Mansfield-Solovay Theorem 21.1 that B cannot contain a nonconstructible real and so $A=B$.

Actually, by tracing thru the actual definition of X one can see that the elements of the uniformizing set S (which is what A is) consist of pairs (x, y) where y is isomorphic to some L_{α} and $x \in L_{\alpha}$. These pairs are reals which witness their own constructibility, so one can avoid using the Solovay-Mansfield Theorem.

Corollary 23.2 If $\omega_{1}=\omega_{1}^{L}$, then there exists a Π_{1}^{1} set of constructible reals which contains no perfect set.

Theorem 23.3 (Martin-Solovay [72]) Suppose $M A+\neg C H+\omega_{1}=\left(\omega_{1}\right)^{L}$. Then every $A \subseteq 2^{\omega}$ of cardinality ω_{1} is Π_{1}^{1}.
proof:
Let $A \subseteq 2^{\omega}$ be a uncountable Π_{1}^{1} set of constructible reals and let B be an arbitrary subset of 2^{ω} of cardinality ω_{1}. Arbitrarily well-order the two sets, $A=\left\{a_{\alpha}: \alpha<\omega_{1}\right\}$ and $B=\left\{b_{\alpha}: \alpha<\omega_{1}\right\}$.

By Theorem 5.1 there exists two sequences of G_{δ} sets $\left\langle U_{n}: n<\omega\right\rangle$ and $\left\langle V_{n}: n<\omega\right\rangle$ such that for every $\alpha<\omega_{1}$ for every $n<\omega$

$$
a_{\alpha}(n)=1 \text { iff } b_{\alpha} \in U_{n}
$$

and

$$
b_{\alpha}(n)=1 \text { iff } a_{\alpha} \in V_{n}
$$

This is because the set $\left\{a_{\alpha}: b_{\alpha}(n)=1\right\}$, although it is an arbitrary subset of A, is relatively G_{δ} by Theorem 5.1.

But note that $b \in B$ iff $\forall a \in 2^{\omega}$
$\left[\forall n\left(a(n)=1\right.\right.$ iff $\left.\left.b \in U_{n}\right)\right]$ implies $\left[a \in A\right.$ and $\forall n\left(b(n)=1\right.$ iff $\left.\left.a \in U_{n}\right)\right]$.
Since A is Π_{1}^{1} this definition of B has the form:

$$
\forall a\left(\left[\Pi_{3}^{0}\right] \text { implies }\left[\Pi_{1}^{1} \text { and } \Pi_{2}^{0}\right]\right)
$$

So B is $\boldsymbol{\Pi}_{1}^{1}$.
Note that if every set of reals of size ω_{1} is \prod_{1}^{1} then every ω_{1} union of Borel sets is $\boldsymbol{\Sigma}_{2}^{1}$. To see this let $\left\langle B_{\alpha}: \alpha<\omega_{1}\right\rangle$ be any sequence of Borel sets. Let U be a universal Π_{1}^{1} set and let $\left\langle x_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a sequence such that $B_{\alpha}=\{y$: $\left.\left(x_{\alpha}, y\right) \in U\right\}$. Then

$$
y \in \bigcup_{\alpha<\omega_{1}} B_{\alpha} \text { iff } \exists x x \in\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \wedge(x, y) \in U
$$

But $\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ is ${\underset{\sim}{1}}_{1}^{1}$ and so the union is $\boldsymbol{\Sigma}_{2}^{1}$.

