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22 Uniformity and Scales
Given R C X x Y we say that S C X xY uniformizes R iff

1. SCR,

2. for all x G X if there exists y € Y such that R(x,y)y then there exists
y G Y such that S(xy t/), and

3. for all x G X and y, z G Y if S(z, 2/) and 5(x, z), then y = z.

Another way to say the same thing is that 5 is a subset of R which is the graph
of a function whose domain is the same as Λ's.

Theorem 22.1 (Kondo [47]) Every Π} set R can be uniformized by a U{ set
S.

Here, X and Y can be taken to be either ω or ωω or even a singleton {0}.
In this last case, this amounts to saying for any nonempty Π} set A Cωω there
exists a Π{ set B C A such that B is a singleton, i.e., \B\ = 1. The proof of this
Theorem is to use a property which has become known as the Scale property.

Lemma 22.2 (Scale property) For any Πj set A there exists (φ% : i < ω) such
that

1. each φ{ : A -> OR,

2. for all i and x,yGA if φi+\{x) < Φi+i(y), then φi(x) < φi(y),

3. for every x,y£A ifVi φi(x) = φi(y)t then x = y,

4. for all (xn : n < ω) G Aω and (α, : i < ω) G ORω if for every i and for
all but finitely many n φ%(xn) = »,, then there exists x G A such that

oo xn = x and for each i Φi{x) < α, ,

5. there exists P a IL\ set such that for all x,y G A and i

P ( ,a?,y) iff Φi(x) < Φi(y)

and for all x G A, y £ A, i G ω P(z, x, y), and

6. there exists S a Σ\ set such that for all x,y G A and i

S(i,x,y) iff Φi{x) < Φi(y)

and for ally G A, x, i€ω if S(i,x,y), then x G A.

Another way to view a scale is from the point of view of the relations on A
defined by x <; y iff φi(x) < φ)i(y). These are called prewellorderings. They
are well orderings if we mod out by x =, y which is defined by

x =, y iff x <i y and y < t x.
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The second item says that these relations get finer and finer as i increases. The
third item says that in the "limit" we get a linear order. The fourth item is
some sort of continuity condition. And the last two items are the definability
properties of the scale.

Before proving the lemma, let us deduce uniformity from it. We do not use
the last item in the lemma. First let us show that for any nonempty U{ set
ACωω there exists a U{ singleton B C A. Define

x G B iff x G A and VnVt/ P(ny z, y).

Since P is U{ the set B is Π{. Clearly B C A, and also by item (2) of the lemma,

B can have at most one element. So it remains to show that B is nonempty.

Define α t = min{φi(x) : x £ A}. For each i choose x, G A such that φi(xi) = α t .

Claim: If n > i then φ%{xn) = αr, .
proof:

By choice of xn for every y G A we have φn(zn) < Φn(y)- By item (2) in the
lemma, for every y € A we have that φi(xn) < Φi(y) and hence φi(xn) = <*»•

By item (4) there exists x G A such that limn^oo xn = x and φi(x) < c*, all
i. By the minimality of α, it must be that φi(x) = α, . So x G B and we are
done.

Now to prove a more general case of uniformity suppose that R C ωω x ωω

is Π*. Let φi : R —• OR be scale given by the lemma and

PCωx(ωω xωω)x(ωω xωω)

be the Π| predicate given by item (5). Then define the Π} set 5 C ωω x ωω by

(x, y) G 5 iff (x, y ) 6 Λ and VzVn P(n, (x, y), («, z)).

The same proof shows that S uniformizes R.

The proof of the Lemma will need the following two elementary facts about
well-founded trees. For T, f subtrees of Q<ω we say that σ : T -> t is a free
embedding iff for all s,2 G Γ if s C t then σ(s) C σ(^). Note that s C t means
that s is a proper initial segment oft. Also note that tree embeddings need not
be one-to-one. We write T < T iff there exists a tree embedding from T into
T. We write T -< T iff there is a tree embedding which takes the root node of
T to a nonroot node of T. Recall that r : T —> OR is a rank function iff for all
s,t € T iΐ s C t then r(s) > r(t). Also the rank of T is the minimal ordinal α
such that there exists a rank function r : T —• α + 1.

L e m m a 2 2 . 3 Suppose T<fαndf is well-founded, i.e., J ϊ ] = 0, then T is

well-founded and rank ofT is less than or equal to rank ofT.

proof:

Let σ : T —• f be a tree embedding and r : f —• OR a rank function. Then

r o σ is a rank function on T.
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Lemma 22.4 Suppose T andf are well founded trees and rank ofT is less than

or equal rank off, then T <f.

Let ΓT and rf be the canonical rank functions on T and T (see Theorem 7.1).

Inductively define σ : T Π Qn -+ f Π Q n , so as to satisfy rτ(s) < rf(σ(s)).

•
Now we a ready to prove the existence of scales (Lemma 22.2). Let

α/f = { - l } U w i

be well-ordered in the obvious way. Given a well-founded tree T C ω<ω with
rank function rψ extend r? to all of ω<ω by defining rτ(s) = — 1 if s £ T. Now
suppose A C ωω is Πj and x £ A iff T^ is well-founded (see Theorem 17.4). Let
{sn : n < ω} be a recursive listing of ω<ω with SQ = (). For each n < ω define
φn : A —* ω ϊ x ω x ω f x ω by

The set ωj" x w x wj" x α; is well-ordered by the lexicographical order. The
scale φi is just obtained by mapping the range of φi order isomorphically to the
ordinals. (Remark: by choosing so = (), we guarantee that the first coordinate
is always the largest coordinate, and so the range of φi is less than or equal to
ωi.) Now we verify the properties.

For item (2): if φi+ι(x) <\ex φi+ι(y), then φi(x) <ιex Φi(y) This is true
because we are just taking the lexicographical order of a longer sequence.

For item (3): if Vi φi(x) = Φi(y), then x = y. This is true, because
φi(x) = φi(y) implies x \ i = y \ i.

For item (4): Suppose (xn : n < ω) € Aω and for every i and for all but
finitely many n φi(xn) = U- Then since φi(xn) contains xn f i there must be
x G ωω such that limn_*oo xn = x Note that since {sn : n G ω} lists every
element of ω<ω, we have that for every s G ω<ω there exists r(s) G OR such
that rτXn(s) = r(s) for all but finitely many n. Using this and

lirn^ TXn = Tx

it follows that r is a rank function on Tx. Consequently x G A. Now since
rτx(

s) ^ Γ ( S ) J it follows that φi(x) <ιex tt.
For item (5),(6): The following set is Σ{:

{(T, f):T,f are subtrees of w<α;, T < f}.

Consequently, assuming that T,f are well-founded, to say that rχ(s) < rf(s) is
equivalent to saying there exists a tree embedding which takes s to s. Note that
this is Σ}. This shows that it is possible to define a Σ{ set 5 C ω x ωω x ωω

such that for every x, y G A we have (n, x, y) G 5 iff
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is lexicographically less than or equal to

Note that if (n, x, y) 6 S and y £ A then x £ A, since Ty is a well-founded tree
and S implies Tx •< Ty, so T* is well-founded and so x € A.

To get the U{ relation P (item (5)), instead of saying T can be embedded
into T we say that T cannot be embedded properly into T,i.e., T -fc T or in other
words, there does not exists a tree embedding σ : T —• T such that σ(()) ^ ().
This is a Π} statement. For T and T well-founded trees saying that rank of T
is less than or equal to T is equivalent to saying rank of T is not strictly smaller
than the rank of T. But by Lemma 22.4 this is equivalent to the nonexistence
of such an embedding. Note also that if x £ A and y £ A, then we will have
P(n,x,y) for every n. This is because Ty is not well-founded and so cannot be
embedded into the well-founded tree Tx.

This finishes the proof of the Scale Lemma 22.2.
•

The scale property was invented by Moschovakis [86] to show how deter-
fninacy could be used to get uniformity properties10 in the higher projective
classes. He was building on earlier ideas of Blackwell, Addison, and Martin.
The 500 page book by Kuratowski and Mostowski [58] ends with a proof of the
uniformization theorem.

1 0 1 have yet to see any problem, however complicated, which, when you looked at it in the
right way, did not become still more complicated. Poul Anderson




