Part II Analytic sets

17 Analytic sets

Analytic sets were discovered by Souslin when he encountered a mistake of Lebesgue. Lebesgue had erroneously proved that the Borel sets were closed under projection. I think the mistake he made was to think that the countable intersection commuted with projection. A good reference is the volume devoted to analytic sets edited by Rogers [91]. For the more classical viewpoint of operation-A, see Kuratowski [57]. For the whole area of descriptive set theory and its history, see Moschovakis [87].

Definition. A set $A \subseteq \omega^{\omega}$ is Σ_1^1 iff there exists a recursive

$$R \subseteq \bigcup_{n \in \omega} (\omega^n \times \omega^n)$$

such that for all $x \in \omega^{\omega}$

$$x \in A \text{ iff } \exists y \in \omega^{\omega} \ \forall n \in \omega \ R(x \restriction n, y \restriction n).$$

A similar definition applies for $A \subseteq \omega$ and also for $A \subseteq \omega \times \omega^{\omega}$ and so forth. For example, $A \subseteq \omega$ is Σ_1^1 iff there exists a recursive $R \subseteq \omega \times \omega^{<\omega}$ such that for all $m \in \omega$

$$m \in A \text{ iff } \exists y \in \omega^{\omega} \ \forall n \in \omega \ R(m, y \restriction n).$$

A set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ is Π_1^0 iff there exists a recursive predicate

$$R \subseteq \bigcup_{n \in \omega} (\omega^n \times \omega^n)$$

such that

$$C = \{(x, y) : \forall n \ R(x \upharpoonright n, y \upharpoonright n)\}.$$

That means basically that C is a recursive closed set.

The II classes are the complements of the Σ 's and Δ is the class of sets which are both II and Σ . The relativized classes, e.g. $\Sigma_1^1(x)$ are obtained by allowing R to be recursive in x, i.e., $R \leq_T x$. The boldface classes, e.g., Σ_1^1 , Π_1^1 , are obtained by taking arbitrary R's.

Lemma 17.1 $A \subseteq \omega^{\omega}$ is Σ_1^1 iff there exists set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ which is Π_1^0 and

$$A = \{ x \in \omega^{\omega} : \exists y \in \omega^{\omega} \ (x, y) \in C \}.$$

Lemma 17.2 The following are all true:

1. For every $s \in \omega^{<\omega}$ the basic clopen set $[s] = \{x \in \omega^{\omega} : s \subseteq x\}$ is Σ_1^1 ,

2. if $A \subseteq \omega^{\omega} \times \omega^{\omega}$ is Σ_1^1 , then so is

$$B = \{ x \in \omega^{\omega} : \exists y \in \omega \ (x, y) \in A \},\$$

3. if $A \subseteq \omega \times \omega^{\omega}$ is Σ_1^1 , then so is

$$B = \{x \in \omega^{\omega} : \exists n \in \omega \ (n, x) \in A\},\$$

4. if $A \subseteq \omega \times \omega^{\omega}$ is Σ_1^1 , then so is

$$B = \{ x \in \omega^{\omega} : \forall n \in \omega \ (n, x) \in A \},\$$

5. if $\langle A_n : n \in \omega \rangle$ is sequence of Σ_1^1 sets given by the recursive predicates R_n and $\langle R_n : n \in \omega \rangle$ is (uniformly) recursive, then both

$$\bigcup_{n\in\omega}A_n \text{ and } \bigcap_{n\in\omega}A_n \text{ are } \Sigma_1^1.$$

6. if the graph of $f: \omega^{\omega} \to \omega^{\omega}$ is Σ_1^1 and $A \subseteq \omega^{\omega}$ is Σ_1^1 , then $f^{-1}(A)$ is Σ_1^1 .

Of course, the above lemma is true with ω or $\omega \times \omega^{\omega}$, etc., in place of ω^{ω} . It also relativizes to any class $\Sigma_1^1(x)$. It follows from the Lemma that every Borel subset of ω^{ω} is Σ_1^1 and that the continuous pre-image of Σ_1^1 set is Σ_1^1 .

Theorem 17.3 There exists a Σ_1^1 set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ which is universal for all Σ_1^1 sets, i.e., for every Σ_1^1 set $A \subseteq \omega^{\omega}$ there exists $x \in \omega^{\omega}$ with

$$A = \{y : (x, y) \in U\}.$$

proof:

There exists $C \subseteq \omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ a Π_1^0 set which is universal for Π_1^0 subsets of $\omega^{\omega} \times \omega^{\omega}$. Let U be the projection of C on its second coordinate.

Similarly we can get Σ_1^1 sets contained in $\omega \times \omega$ (or $\omega \times \omega^{\omega}$) which are universal for Σ_1^1 subsets of ω (or ω^{ω}).

The usual diagonal argument shows that there are Σ_1^1 subsets of ω^{ω} which are not Π_1^1 and Σ_1^1 subsets of ω which are not Π_1^1 .

Theorem 17.4 (Normal form) A set $A \subseteq \omega^{\omega}$ is Σ_1^1 iff there exists a recursive map

$$\omega^{\omega} \to 2^{\omega^{<\omega}} \quad x \mapsto T_x$$

such that $T_x \subseteq \omega^{<\omega}$ is a tree for every $x \in \omega^{\omega}$, and $x \in A$ iff T_x is ill-founded. By recursive map we mean that there is a Turing machine $\{e\}$ such that for $x \in \omega^{\omega}$ the machine e computing with an oracle for x, $\{e\}^x$ computes the characteristic function of T_x .

proof:

Suppose

$$x \in A \text{ iff } \exists y \in \omega^{\omega} \ \forall n \in \omega \ R(x \upharpoonright n, y \upharpoonright n).$$

Define

$$T_x = \{s \in \omega^{<\omega} : \forall i \le |s| \ R(x \upharpoonright i, s \upharpoonright i)\}.$$

A similar thing is true for $A \subseteq \omega$, i.e., A is Σ_1^1 iff there is a uniformly recursive list of recursive trees $\langle T_n : n < \omega \rangle$ such that $n \in A$ iff T_n is ill-founded.

The connection between Σ_1^1 and well-founded trees, gives us the following:

Theorem 17.5 (Mostowski's Absoluteness) Suppose $M \subseteq N$ are two transitive models of ZFC^{*} and θ is Σ_1^1 sentence with parameters in M. Then

$$M \models \theta \text{ iff } N \models \theta.$$

proof:

ZFC^{*} is a nice enough finite fragment of ZFC to know that trees are wellfounded iff they have rank functions (Theorem 7.1). θ is Σ_1^1 sentence with parameters in M means there exists R in M such that

$$\theta = \exists x \in \omega^{\omega} \forall n \ R(x \restriction n).$$

This means that for some tree $T \subseteq \omega^{<\omega}$ in $M \theta$ is equivalent to "T has an infinite branch". So if $M \models \theta$ then $N \models \theta$ since a branch T exists in M. On the other hand if $M \models \neg \theta$, then

 $M \models \exists r : T \rightarrow OR$ a rank function"

and then for this same $r \in M$

$$N \models r : T \rightarrow OR$$
 is a rank function"

and so $N \models \neg \theta$.