Part II

Analytic sets

17 Analytic sets

Analytic sets were discovered by Souslin when he encountered a mistake of Lebesgue. Lebesgue had erroneously proved that the Borel sets were closed under projection. I think the mistake he made was to think that the countable intersection commuted with projection. A good reference is the volume devoted to analytic sets edited by Rogers [91]. For the more classical viewpoint of operation-A, see Kuratowski [57]. For the whole area of descriptive set theory and its history, see Moschovakis [87].

Definition. A set $A \subseteq \omega^{\omega}$ is Σ_{1}^{1} iff there exists a recursive

$$
R \subseteq \bigcup_{n \in \omega}\left(\omega^{n} \times \omega^{n}\right)
$$

such that for all $x \in \omega^{\omega}$

$$
x \in A \text { iff } \exists y \in \omega^{\omega} \forall n \in \omega R(x \upharpoonright n, y \upharpoonright n) .
$$

A similar definition applies for $A \subseteq \omega$ and also for $A \subseteq \omega \times \omega^{\omega}$ and so forth. For example, $A \subseteq \omega$ is Σ_{1}^{1} iff there exists a recursive $R \subseteq \omega \times \omega^{<\omega}$ such that for all $m \in \omega$

$$
m \in A \text { iff } \exists y \in \omega^{\omega} \forall n \in \omega R(m, y \upharpoonright n) .
$$

A set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ is Π_{1}^{0} iff there exists a recursive predicate

$$
R \subseteq \bigcup_{n \in \omega}\left(\omega^{n} \times \omega^{n}\right)
$$

such that

$$
C=\{(x, y): \forall n R(x \upharpoonright n, y \upharpoonright n)\} .
$$

That means basically that C is a recursive closed set.
The II classes are the complements of the Σ 's and Δ is the class of sets which are both Π and Σ. The relativized classes, e.g. $\Sigma_{1}^{1}(x)$ are obtained by allowing R to be recursive in x, i.e., $R \leq_{T} x$. The boldface classes, e.g., $\boldsymbol{\Sigma}_{1}^{1}, \boldsymbol{\Pi}_{1}^{1}$, are obtained by taking arbitrary R 's.

Lemma 17.1 $A \subseteq \omega^{\omega}$ is Σ_{1}^{1} iff there exists set $C \subseteq \omega^{\omega} \times \omega^{\omega}$ which is Π_{1}^{0} and

$$
A=\left\{x \in \omega^{\omega}: \exists y \in \omega^{\omega} \quad(x, y) \in C\right\} .
$$

Lemma 17.2 The following are all true:

1. For every $s \in \omega^{<\omega}$ the basic clopen set $[s]=\left\{x \in \omega^{\omega}: s \subseteq x\right\}$ is Σ_{1}^{1},
2. if $A \subseteq \omega^{\omega} \times \omega^{\omega}$ is Σ_{1}^{1}, then so is

$$
B=\left\{x \in \omega^{\omega}: \exists y \in \omega(x, y) \in A\right\}
$$

3. if $A \subseteq \omega \times \omega^{\omega}$ is Σ_{1}^{1}, then so is

$$
B=\left\{x \in \omega^{\omega}: \exists n \in \omega(n, x) \in A\right\}
$$

4. if $A \subseteq \omega \times \omega^{\omega}$ is Σ_{1}^{1}, then so is

$$
B=\left\{x \in \omega^{\omega}: \forall n \in \omega(n, x) \in A\right\}
$$

5. if $\left\langle A_{n}: n \in \omega\right\rangle$ is sequence of Σ_{1}^{1} sets given by the recursive predicates R_{n} and $\left\langle R_{n}: n \in \omega\right\rangle$ is (uniformly) recursive, then both

$$
\bigcup_{n \in \omega} A_{n} \text { and } \bigcap_{n \in \omega} A_{n} \text { are } \Sigma_{1}^{1}
$$

6. if the graph of $f: \omega^{\omega} \rightarrow \omega^{\omega}$ is Σ_{1}^{1} and $A \subseteq \omega^{\omega}$ is Σ_{1}^{1}, then $f^{-1}(A)$ is Σ_{1}^{1}.

Of course, the above lemma is true with ω or $\omega \times \omega^{\omega}$, etc., in place of ω^{ω}. It also relativizes to any class $\Sigma_{1}^{1}(x)$. It follows from the Lemma that every Borel subset of ω^{ω} is ${\underset{\sim}{\boldsymbol{\Sigma}}}_{1}^{1}$ and that the continuous pre-image of $\boldsymbol{\Sigma}_{1}^{1}$ set is $\boldsymbol{\Sigma}_{1}^{1}$.

Theorem 17.3 There exists a Σ_{1}^{1} set $U \subseteq \omega^{\omega} \times \omega^{\omega}$ which is universal for all ${\underset{\sim}{\boldsymbol{\Sigma}}}_{1}^{1}$ sets, i.e., for every $\boldsymbol{\Sigma}_{1}^{1}$ set $A \subseteq \omega^{\omega}$ there exists $x \in \omega^{\omega}$ with

$$
A=\{y:(x, y) \in U\}
$$

proof:
There exists $C \subseteq \omega^{\omega} \times \omega^{\omega} \times \omega^{\omega}$ a Π_{1}^{0} set which is universal for Π_{1}^{0} subsets of $\omega^{\omega} \times \omega^{\omega}$. Let U be the projection of C on its second coordinate.

Similarly we can get Σ_{1}^{1} sets contained in $\omega \times \omega$ (or $\omega \times \omega^{\omega}$) which are universal for Σ_{1}^{1} subsets of ω (or ω^{ω}).

The usual diagonal argument shows that there are Σ_{1}^{1} subsets of ω^{ω} which are not Π_{1}^{1} and Σ_{1}^{1} subsets of ω which are not Π_{1}^{1}.

Theorem 17.4 (Normal form) A set $A \subseteq \omega^{\omega}$ is Σ_{1}^{1} iff there exists a recursive map

$$
\omega^{\omega} \rightarrow 2^{\omega<\omega} \quad x \mapsto T_{x}
$$

such that $T_{x} \subseteq \omega^{<\omega}$ is a tree for every $x \in \omega^{\omega}$, and $x \in A$ iff T_{x} is ill-founded. By recursive map we mean that there is a Turing machine $\{e\}$ such that for $x \in \omega^{\omega}$ the machine e computing with an oracle for $x,\{e\}^{x}$ computes the characteristic function of T_{x}.
proof:
Suppose

$$
x \in A \text { iff } \exists y \in \omega^{\omega} \forall n \in \omega R(x \upharpoonright n, y \upharpoonright n)
$$

Define

$$
T_{x}=\left\{s \in \omega^{<\omega}: \forall i \leq|s| R(x \upharpoonright i, s \upharpoonright i)\right\}
$$

A similar thing is true for $A \subseteq \omega$, i.e., A is Σ_{1}^{1} iff there is a uniformly recursive list of recursive trees $\left\langle T_{n}: n<\omega\right\rangle$ such that $n \in A$ iff T_{n} is ill-founded.

The connection between Σ_{1}^{1} and well-founded trees, gives us the following:
Theorem 17.5 (Mostowski's Absoluteness) Suppose $M \subseteq N$ are two transitive models of $Z F C^{*}$ and θ is $\underset{\sim}{\boldsymbol{\Sigma}} 1$ sentence with parameters in M. Then

$$
M \models \theta \text { iff } N \vDash \theta .
$$

proof:
ZFC* is a nice enough finite fragment of ZFC to know that trees are wellfounded iff they have rank functions (Theorem 7.1). θ is ${\underset{\sim}{\boldsymbol{\Sigma}}}_{1}^{1}$ sentence with parameters in M means there exists R in M such that

$$
\theta=\exists x \in \omega^{\omega} \forall n R(x \upharpoonright n) .
$$

This means that for some tree $T \subseteq \omega^{<\omega}$ in $M \theta$ is equivalent to " T has an infinite branch". So if $M \vDash \theta$ then $N \models \theta$ since a branch T exists in M. On the other hand if $M \models \neg \theta$, then

$$
M \vDash \exists r: T \rightarrow \text { OR a rank function" }
$$

and then for this same $r \in M$

$$
N \vDash r: T \rightarrow \text { OR is a rank function" }
$$

and so $N \models \neg \theta$.

