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15 The random real model

In this section we consider the question of Borel orders in the random real model.
We conclude with a few remarks about perfect set forcing.

A set X C 2ω is a Sierpiriski set iff X is uncountable and for every measure
zero set Z we have X Π Z countable. Note that by Mahlo's Theorem 10.2 we
know that under CH Sierpiήski sets exists. Also it is easy to see that in the
random real model, the set of reals given by the generic filter is a Sierpiήski set.

Theorem 15.1 (Poprougenko [89]) If X is Sierpiήski, then oτd(X) = 2.

proof:

For any Borel set B C 2ω there exists an Fσ set with F C B and B\F

measure zero. Since X is Sierpiήski (B\F)Γ\X = Fo is countable, hence Fσ. So

BΠX = (FUF0)nX.

I had been rather hoping that every uncountable separable metric space in
the random real model has order either 2 or ω\. The following result shows that
this is definitely not the case.

Theorem 15.2 Suppose X E F is a subspace of2ω of order a and G is measure
algebra 2K-generic over V, i.e. adjoin K many random reals.

Then V[G] |= α < oτd(X) < α + 1.

The result will easily follow from the next two lemmas.
Presumably, ord(X) = a in V[G\} but I haven't been able to prove this.

Fremlin's proof (Theorem 13.4) having filled up one such missing gap, leaving
this gap here restores a certain cosmic balance of ignorance.5

Clearly, by the usual ccc arguments, we may assume that K = ω and G is just
a random real. In the following lemmas boolean values ( θ ] will be computed in
the measure algebra IB on 2ω. Let μ be the usual product measure on 2ω.

Lemma 15.3 Suppose c a real, 6 G l , and (j the name of a Π° subset of2ω in
V[G\. Then the set

{xe2ω :μ(bΛ[xeU |) > e}

is U°a in V.

proof:
The proof is by induction on a.

Case a = 1.
5 All things I thought I knew; but now confess, the more I know I know, I know the less.-

John Owen (1560-1622)
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0

If U is a name for a closed set, then

[* €17 ]=Jll[x\n]nuφ9\.

Consequently,

μ(bA\xeU ])>t

iff

VnEω μ(bΛ[ [x \ n]Γ\ Uφ 0 1) >

and the set is closed.

Case a > 1.
o o o

Suppose U= Γϊneω ~ Un w n e r e e a c n Un is a name for a Π ° n set for some
an < a. We can assume that the sequence ~ Un is descending. Consequently,

μ(bA[xeU\)>e

iff

μ(bΛ\xe f| ~ IΛ. 1) > €

iff
0

VnGω μ(6Λ[ x e~ Un ]) > c

iff

Vn G ω not μ(6 Λ[ i G ί/n 1) > μ(t) - c.

iff
0

Vn G ω not 3m £ω μ(b Λ\x eUn])> μ(b) - e + 1/m

By induction, each of the sets

{xe2ω : μ(b Λ[ x G t/n ]) > μ(6) - e + 1/m}

is Π ° n and so the result is proved.
• ~

It follows from this lemma that if X C 2ω and V (="ord(X) > αM, then
V[G] f="ord(X) > α". For suppose F C 2ω is Σ° such that for every ffC2ω

which is Π° we have F C\X φ H OX. Suppose for contradiction that

6|h "UCιX = FΠX and U

But then

is a Π^ set which must be equal to F on X, which is a contradiction.
To prove the other direction of the inequality we will use the following lemma.
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L e m m a 15.4 Let G be M-generic (where M is the measure algebra on 2ω) and
r £ 2ω is the associated random real. Then for any b £ IB

b £ G iffV°°n μ([r \ n]Λb) > ^μ([r \ n]).

proof:
Since G is an ultrafilter it is enough to show that b £ G implies

Let IB+ be the nonzero elements of M. To prove this it suffices to show:

Claim: For any 6 £ 1B+ and for every d < b in 1+ there exists a tree T C 2<ω

with [T] of positive measure, [T] < d, and

MM n *) >!*ι(M)

for all but finitely many s £ T.
proof:

Without loss we may assume that d is a closed set and let Td be a tree such
that d = [Td]. Let t 0 £ Td be such that

>

Define a subtree T C Td by r £ T iff r C tQ or < 0 C r and

3
W (<o C ί C r implies μ([ί] Π 6) > -μ([*]) ).

So we only need to see that [T] has positive measure. So suppose for contradic-
tion that μ([T]) = 0. Then for some sufficiently large N

For every s £ Td Π 2 N with to C s, if 5 £ T then there exists t with to C t C s
and μ([t] Π 6) < |μ([t]). Let Σ be a maximal antichain oft like this. But note
that

[<o]n[rd]c (J Wu|J(Wπ6).

By choice of Σ

and by choice of N

μ(
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which contradicts the choice of to:

M M n [τd]) < ( 1 + |)/*([<o]) = 6 ^ M M ) < ^

This proves the claim and the lemma.
•

In effect, what we have done in Lemma 15.4 is reprove the Lebesgue density
theorem, see Oxtoby [88].

So now suppose that the order of X in V is < a. We show that it is < a + 1
o

in V[G]. Let {/ be any name for a Borel subset of X in the extension. Then
we know that x G UG iff [ x £{/ J E G. By Lemma 15.3 we know that for any
s e 2<ω the set

Bs = {xeX:μ([s]Π\xeU ])>\μ([s])}

is a Borel subset of X in the ground model and hence is Π° (X). By Lemma
15.4 we have that for any x € X

xE t/iffV°°n xeBr\n

and so U is Σ° + 1 (X) in V[G].
This concludes the proof of Theorem 15.2.

•
Note that this result does allow us to get sets of order λ for any countable

limit ordinal λ by taking a clopen separated union of a sequence of sets whose
order goes up λ.

Also a Luzin set X from the ground model has order 3 in the random real
extension. Since (ord(X) = 3 ) v we know that (3 < ord(X) < 4)v^. To see
that (ord(X) < 3) F [ G ] suppose that 5 C I i s Borel in V[G). The above proof
shows that there exists Borel sets Bn each coded in V (but the sequence may
not be in V) such that

x£Bn.

For each Bn there exists an open set Un C X such that BnAUn is countable. If
we let

nζω m>n

then C is ΣSj(X) and BAC is countable. Since subtracting and adding a count-
able set from a Σ§(X) is still Σg(X) we have that B is Σ§(X) and so the order
ofX is < 3 i n V[G\.

Theorem 15.5 Suppose V models CH and G is measure algebra on 2*-generic
over V for some K>U>2. Then in V[G] for every I C 2 ω of cardinality ω2 there
exists Y E [X]ω2 with ord(y) = 2.

6Trust me on this, I have been teaching a lot of Math 99 "College Fractions".
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proof:
Using the same argument as in the proof of Theorem 14.11 we can get a

Sierpiήski set 5 C 2ω of cardinality ω<ι and a term r for any element of 2ω such
that Y = {τr : r G S} is a set of distinct elements of X. This Sierpiήski set has
two additional properties: every element of it is random over the ground model
and it meets every set of positive measure, i.e. it is a super Sierpiήski set.

We will show that the order of Y is 2.

Lemma 15.6 Let T C 1 be any subset of a measure algebra B closed under
finite conjunctions. Then Π§(^) = Σ^(^), i.e. T has order < 2.

proof:
Let μ be the measure on K.

(1) For any 6 G Π ^ J 7 ) and real e > 0 there exists a G T with b < a and
μ(a - 6) < e.

pf:7 b = Πn€ω α« ^et α = Πn<jv an f°Γ s o m e sufficiently large N.

(2) For any 6 G Σ ^ ί 7 ) and real e > 0 there exists a G Σ?(J*) with b < a and
μ(a -b) <e.

pf: b = Σn<ω i>n Applying (1) we get an G T with 6n < an and

Then let a =

Now suppose 6 G Σ ^ J 7 ) . Then by applying (2) there exists an G Σ j ( ^ ) with
b < an and μ(an — b) < 1/n. Consequently, if a = Πn£ω αn, then b < a and
μ(α — 6) = 0 and so a = 6.
•

Let
F = {[ r G C \ : C C T clopen }

where boolean values are in the measure algebra IB on 2ω. Let F be the complete
subalgebra of F which is generated by T.

Since the order of T is 2, by Lemma 14.12 we have that for any Borel set
B CY there exists a Σ§(Y) set F such that y G 5 iff y G F for all but countably
many j/EY. Thus we see that the order of Y is < 3. To get it down to 2 we
use the following lemma. If B = (F \ Fo) U F\ where Fo and F\ are countable
and F is Σ§, then by the lemma Fo would be Πξ and thus B would be §§

Lemma 15.7 Every countable subset ofY is Πί^Y).

proof:
It suffices to show that every countable subset of Y can be covered by a

countable Π^Y) since one can always subtract a countable set from a ί̂
and remain ^

7Pronounced 'puff'.
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For any s € 2<ω define

b, = I s C r | .

Working in the ground model let B8 be a Borel set with [Bs]% = b8. Since the
Sierpiήski set consists only of reals random over the ground model we know that
for every r € S

r£BsifΐsC τr.

Also since the Sierpiήski set meets every Borel set of positive measure we know
that for any z G Y the set Πn<u/ &z\n has measure zero. Now let Z = {zn :
n < ω} C Y be arbitrary but listed with infinitely many repetitions. For each n
choose m so that if sn = zn \ m, then μ(BSn) < l /2 n . Now for every r G S we
have that

re pi U5'~ i f fr ren UW
The set H = f]n<ω \Jm>n[

sm] covers Z and is Πί]. It has countable intersection
with y because the set f]n<ω U m >n ^*m n a s measure zero.

This proves the Lemma and Theorem 15.5.
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Perfect Set Forcing

In the iterated Sack's real model the continuum is u;2 and every set X C 2 W

of cardinality u>2 can be mapped continuously onto 2ω (Miller [79]). It follows
from Reclaw's Theorem 3.5 that in this model every separable metric space of
cardinality ω2 has order ω\. On the other hand this forcing (and any other with
the Sack's property) has the property that every meager set in the extension
is covered by a meager set in the ground model and every measure set in the
extension is covered by a measure zero set in the ground model (see Miller [76]).
Consequently, in this model there are Sierpiήski sets and Luzin sets of cardinality
ω\. Therefore in the iterated Sacks real model there are separable metric spaces
of cardinality ω\ of every order α with 2 < α < ω\, I do not know if there is
an uncountable separable metric space which is hereditarily of order ωι in this
model.

Another way to obtain the same orders is to use the construction of Theorem
22 of Miller [73]. What was done there implies the following:

For any model V there exists a ccc extension V[G] in which every
uncountable separable metric space has order ω\.

If we apply this result ω\ times with a finite support extension,
we get a model, F[G a : a < u>i], where there are separable metric spaces of

all orders of cardinality ω\, but every separable metric space of cardinality u>2
has order ω\.

To see the first fact note that ω\ length finite support iteration always adds
a Luzin set. Consequently, by Theorem 14.7, for each α with 2 < α < ω\ there
exists a separable metric space of cardinality ω\ which is hereditarily of order
α. Also there is such an X of order 2 by the argument used in Theorem 14.1.

On the other hand if X has cardinality u>2 in V[Gα ' α < ωi], then for some
β < ωι there exists and uncountable Y G V[GQ : α < β] with Y C X. Hence Y
will have order ω\ in V[Gα : & < β +1] and by examining the proof it is easily
seen that it remains of order ω\ in V[Gα : α < ωχ\.




