7α-forcing

In this section we generalize the forcing which produced a generic G_{δ} to arbitrarily high levels of the Borel hierarchy. Before doing so we must prove some elementary facts about well-founded trees.

Let OR denote the class of all ordinals. Define $T \subseteq Q^{<\omega}$ to be a tree iff $s \subseteq t \in T$ implies $s \in T$. Define the rank function $r: T \rightarrow \mathrm{OR} \cup\{\infty\}$ of T as follows:

1. $r(s) \geq 0$ iff $s \in T$,
2. $r(s) \geq \alpha+1$ iff $\exists q \in Q \quad r\left(s^{\wedge} q\right) \geq \alpha$,
3. $r(s) \geq \lambda$ (for λ a limit ordinal) iff $r(s) \geq \alpha$ for every $\alpha<\lambda$.

Now define $r(s)=\alpha$ iff $r(s) \geq \alpha$ but not $r(s) \geq \alpha+1$ and $r(s)=\infty$ iff $r(s) \geq \alpha$ for every ordinal α.

Define $[T]=\left\{x \in Q^{\omega}: \forall n \quad x \mid n \in T\right\}$. We say that T is well-founded iff $[T]=\emptyset$.

Theorem 7.1 T is well-founded iff $r(\rangle) \in \mathrm{OR}$.
proof:
It follows easily from the definition that if $r(s)$ is an ordinal, then

$$
r(s)=\sup \left\{r\left(s^{\wedge} q\right)+1: q \in Q\right\} .
$$

Hence, if $r(\rangle)=\alpha \in$ OR and $x \in[T]$, then

$$
r(x \upharpoonright(n+1))<r(x \upharpoonright n)
$$

is a descending sequence of ordinals.
On the other hand, if $r(s)=\infty$ then for some $q \in Q$ we must have $r\left(s^{\wedge} q\right)=$ ∞. So if $r(\rangle)=\infty$ we can construct (using the axiom of choice) a sequence $s_{n} \in T$ with $r\left(s_{n}\right)=\infty$ and $s_{n+1}=s_{n}{ }^{\wedge} x(n)$. Hence $x \in[T]$.

Definition. T is a nıce α-tree iff

1. $T \subseteq \omega^{<\omega}$ is a tree,
2. $r: T \rightarrow(\alpha+1)$ is its rank function $(r(\rangle)=\alpha)$,
3. if $r(s)>0$, then for every $n \in \omega s^{\wedge} n \in T$,
4. if $r(s)=\beta$ is a successor ordinal, then for every $n \in \omega r\left(s^{\wedge} n\right)=\beta-1$, and
5. if $r(s)=\lambda$ is a limit ordinal, then $r\left(s^{\wedge} 0\right) \geq 2$ and $r\left(s^{\wedge} n\right)$ increases to λ as $n \rightarrow \infty$.

It is easy to see that for every $\alpha<\omega_{1}$ nice α-trees exist. For X a Hausdorff space with countable base, \mathcal{B}, and T a nice α-tree ($\alpha \geq 2$), define the partial order $\mathbb{P}=\mathbb{P}(X, \mathcal{B}, T)$ which we call α-forcing as follows:
$p \in \mathbb{P}$ iff $p=(t, F)$ where

1. $t: D \rightarrow \mathcal{B}$ where $D \subseteq T^{0}=\{s \in T: r(s)=0\}$ is finite,
2. $F \subseteq T^{>0} \times X$ is finite where

$$
T^{>0}=T \backslash T^{0}=\{s \in T: r(s)>0\}
$$

3. if $(s, x),\left(s^{\wedge} n, y\right) \in F$, then $x \neq y$, and
4. if $(s, x) \in F$ and $t\left(s^{\wedge} n\right)=B$, then $x \notin B$.

The ordering on \mathbb{P} is given by $p \leq q$ iff $t_{p} \supseteq t_{q}$ and $F_{p} \supseteq F_{q}$.
Lemma $7.2 \mathbb{P}$ has ccc.
proof:
Suppose A is uncountable antichain. Since there are only countably many different t_{p} without loss we may assume that there exists t such that $t_{p}=t$ for all $p \in A$. Consequently for $p, q \in A$ the only thing that can keep $p \cup q$ from being a condition is that there must be an $x \in X$ and an $s, s^{\wedge} n \in T^{>0}$ such that

$$
(s, x),\left(s^{\wedge} n, x\right) \in\left(F_{p} \cup F_{q}\right)
$$

But now for each $p \in A$ let $H_{p}: X \rightarrow\left[T^{>0}\right]^{<\omega}$ be the finite partial function defined by

$$
H_{p}(x)=\left\{s \in T^{>0}:(s, x) \in F_{p}\right\}
$$

where domain H_{p} is $\left\{x: \exists s \in T^{>0}(s, x) \in F_{p}\right\}$. Then $\left\{H_{p}: p \in A\right\}$ is an uncountable antichain in the order of finite partial functions from X to $\left[T^{>0}\right]^{<\omega}$, a countable set.

Define for G a \mathbb{P}-filter the set $U_{s} \subseteq X$ for $s \in T$ as follows:

1. for $s \in T^{0}$ let $U_{s}=B$ iff $\exists p \in G$ such that $t_{p}(s)=B$ and
2. for $s \in T^{>0}$ let $U_{s}=\bigcap_{n \in \omega} \sim U_{s}{ }^{\wedge} n$

Note that U_{s} is a $\Pi_{\beta}^{0}(X)$-set where $r(s)=\beta$.
Lemma 7.3 If G is \mathbb{P}-generic over V then in $V[G]$ we have that for every $x \in X$ and $s \in T^{>0}$

$$
x \in U_{s} \Longleftrightarrow \exists p \in G(s, x) \in F_{p}
$$

proof:
First suppose that $r(s)=1$ and note that the following set is dense:

$$
D=\left\{p \in \mathbb{P}:(s, x) \in F_{p} \text { or } \exists n \exists B \in \mathcal{B} x \in B \text { and } t_{p}\left(s^{\wedge} n\right)=B\right\}
$$

To see this let $p \in \mathbb{P}$ be arbitrary. If $(s, x) \in F_{p}$ then $p \in D$ and we are already done. If $(s, x) \notin F_{p}$ then let

$$
Y=\left\{y:(s, y) \in F_{p}\right\}
$$

Choose $B \in \mathcal{B}$ with $x \in B$ and Y disjoint from B. Choose $s^{\wedge} n$ not in the domain of t_{p}, and let $q=\left(t_{q}, F_{p}\right)$ be defined by $t_{q}=t_{p} \cup\left(s^{\wedge} n, B\right)$. So $q \leq p$ and $q \in D$. Hence D is dense.

Now by definition $x \in U_{s}$ iff $x \in \bigcap_{n \in \omega} \sim U_{s}{ }^{\wedge}$. So let G be a generic filter and $p \in G \cap D$. If $(s, x) \in F_{p}$ then we know that for every $q \in G$ and for every n, if $t_{q}\left(s^{\wedge} n\right)=B$ then $x \notin B$. Consequently, $x \in U_{s}$. On the other hand if $t_{p}\left(s^{\wedge} n\right)=B$ where $x \in B$, then $x \notin U_{s}$ and for every $q \in G$ it must be that ($s, x) \notin F_{q}$ (since otherwise p and q would be incompatible).

Now suppose $r(s)>1$. In this case note that the following set is dense:

$$
E=\left\{p \in \mathbb{P}:(s, x) \in F_{p} \text { or } \exists n\left(s^{\wedge} n, x\right) \in F_{p}\right\}
$$

To see this let $p \in \mathbb{P}$ be arbitrary. Then either $(s, x) \in F_{p}$ and already $p \in E$ or by choosing n large enough $q=\left(t_{p}, F_{p} \cup\left\{\left(s^{\wedge} n, x\right)\right\}\right) \in E$. (Note $r\left(s^{\wedge} n\right)>0$.)

Now assume the result is true for all $U_{s^{\wedge} n}$. Let $p \in G \cap E$. If $(s, x) \in F_{p}$ then for every $q \in G$ and n we have $\left(s^{\wedge} n, x\right) \notin F_{q}$ and so by induction $x \notin U_{s^{\wedge} n}$ and so $x \in U_{s}$. On the other hand if $\left(s^{\wedge} n, x\right) \in F_{p}$, then by induction $x \in U_{s} \wedge n$ and so $x \notin U_{s}$, and so again for every $q \in G$ we have $(s, x) \notin F_{q}$.

The following lemma is the heart of the old switcheroo argument used in Theorem 6.2. Given any $Q \subset X$ define the $\operatorname{rank}(p, Q)$ as follows:

$$
\operatorname{rank}(p, Q)=\max \left\{r(s):(s, x) \in F_{p} \text { for some } x \in X \backslash Q\right\}
$$

Lemma 7.4 (Rank Lemma). For any $\beta \geq 1$ and $p \in \mathbb{P}$ there exists \hat{p} compatible with p such that

1. $\operatorname{rank}(\hat{p}, Q)<\beta+1$ and
2. for any $q \in \mathbb{P}$ if $\operatorname{rank}(q, Q)<\beta$, then
\hat{p} and q compatible implies p and q compatible.
proof:
Let $p_{0} \leq p$ be any extension which satisfies: for any $(s, x) \in F_{p}$ and $n \in \omega$, if $r(s)=\lambda>\beta$ is a limit ordinal and $r\left(s^{\wedge} n\right)<\beta+1$, then there exist $m \in \omega$ such that $\left(s^{\wedge} n^{\wedge} m, x\right) \in F_{p_{0}}$. Note that since $r\left(s^{\wedge} n\right)$ is increasing to λ there are
only finitely many (s, x) and $s^{\wedge} n$ to worry about. Also $r\left(s^{\wedge} n^{\wedge} m\right)>0$ so this is possible to do.

Now let \hat{p} be defined as follows:

$$
t_{\hat{p}}=t_{p}
$$

and

$$
F_{\hat{p}}=\left\{(s, x) \in F_{p_{0}}: x \in Q \text { or } r(s)<\beta+1\right\} .
$$

Suppose for contradiction that there exists q such that $\operatorname{rank}(q, Q)<\beta, \hat{p}$ and q compatible, but p and q incompatible. Since p and q are incompatible either

1. there exists $(s, x) \in F_{q}$ and $t_{p}\left(s^{\wedge} n\right)=B$ with $x \in B$, or
2. there exists $(s, x) \in F_{p}$ and $t_{q}\left(s^{\wedge} n\right)=B$ with $x \in B$, or
3. there exists $(s, x) \in F_{p}$ and $\left(s^{\wedge} n, x\right) \in F_{q}$, or
4. there exists $(s, x) \in F_{q}$ and $\left(s^{\wedge} n, x\right) \in F_{p}$.
(1) cannot happen since $t_{\hat{p}}=t_{p}$ and so \hat{p}, q would be incompatible. (2) cannot happen since $r(s)=1$ and $\beta \geq 1$ means that $(s, x) \in F_{\hat{p}}$ and so again \hat{p} and q are incompatible. If (3) or (4) happens for $x \in Q$ then again (in case 3) $(s, x) \in F_{\hat{p}}$ or (in case 4) $\left(s^{\wedge} n, x\right) \in F_{\hat{p}}$ and so \hat{p}, q incompatible.

So assume $x \notin Q$. In case (3) by the definition of $\operatorname{rank}(q, Q)<\beta$ we know that $r\left(s^{\wedge} n\right)<\beta$. Now since T is a nice tree we know that either $r(s) \leq \beta$ and so $(s, x) \in F_{\hat{p}}$ or $r(s)=\lambda$ a limit ordinal. Now if $\lambda \leq \beta$ then $(s, x) \in F_{\hat{p}}$. If $\lambda>\beta$ then by our construction of p_{0} there exist m with $\left(s^{\wedge} n^{\wedge} m, x\right) \in F_{\hat{p}}$ and so \hat{p}, q are incompatible. Finally in case (4) since $x \notin Q$ and so $r(s)<\beta$ we have that $r\left(s^{\wedge} n\right)<\beta$ and so $\left(s^{\wedge} n, x\right) \in F_{\hat{p}}$ and so \hat{p}, q are incompatible.

Intuitively, it should be that statements of small rank are forced by conditions of small rank. The next lemma will make this more precise. Let $L_{\infty}\left(P_{\alpha}: \alpha<\kappa\right)$ be the infinitary propositional logic with $\left\{P_{\alpha}: \alpha<\kappa\right\}$ as the atomic sentences. Let Π_{0}-sentences be the atomic ones, $\left\{P_{\alpha}: \alpha<\kappa\right\}$. For any $\beta>0$ let θ be a Π_{β}-sentence iff there exists $\Gamma \subseteq \bigcup_{\delta<\beta} \Pi_{\delta}$-sentences and

$$
\theta=\bigwedge_{\psi \in \Gamma} \neg \psi .
$$

Models for this propositional language can naturally be regarded as subsets $Y \subseteq \kappa$ where we define

1. $Y \vDash P_{\alpha}$ iff $\alpha \in Y$,
2. $Y \vDash \neg \theta$ iff not $Y \vDash \theta$, and
3. $Y \vDash M \Gamma$ iff $Y \vDash \theta$ for every $\theta \in \Gamma$.

Lemma 7.5 (Rank and Forcing Lemma) Suppose rank: $\mathbb{P} \rightarrow \mathrm{OR}$ is any function on a poset \mathbb{P} which satisfies the Rank Lemma 7.4. Suppose $\vdash_{\mathbb{P}}{ }^{\circ} \subset \kappa$ and for every $p \in \mathbb{P}$ and $\alpha<\kappa$ if

$$
p \Vdash \alpha \in \stackrel{\circ}{Y}
$$

then there exist \hat{p} compatible with p such that $\operatorname{rank}(\hat{p})=0$ and

$$
\hat{p} \Vdash \alpha \in \stackrel{\circ}{Y}^{\text {. }}
$$

Then for every Π_{β}-sentence θ (in the ground model) and every $p \in \mathbb{P}$, if

$$
p \Vdash " \stackrel{\circ}{Y} \models \theta "
$$

then there exists \hat{p} compatible with p such that $\operatorname{rank}(\hat{p}) \leq \beta$ and

$$
\hat{p} \Vdash \vdash^{\prime} \stackrel{\circ}{Y} \models \theta "
$$

proof:
This is one of those lemmas whose statement is longer than its proof. The proof is induction on β and for $\beta=0$ the conclusion is true by assumption. So suppose $\beta>0$ and $\theta=M_{\psi \in \Gamma} \neg \psi$ where $\Gamma \subseteq \bigcup_{\delta<\beta} \Pi_{\delta}$-sentences. By the rank lemma there exists \hat{p} compatible with p such that $\operatorname{rank}(\hat{p}) \leq \beta$ and for every $q \in \mathbb{P}$ with $\operatorname{rank}(q)<\beta$ if \hat{p}, q compatible then p, q compatible. We claim that

$$
\hat{p} \Vdash " \stackrel{\circ}{Y} \models \theta "
$$

Suppose not. Then there exists $r \leq \hat{p}$ and $\psi \in \Gamma$ such that

$$
r \Vdash \vdash^{Y} \stackrel{\circ}{\models}=\psi "
$$

By inductive assumption there exists \hat{r} compatible with r such that

$$
\operatorname{rank}(\hat{r})<\beta
$$

such that

$$
\hat{r} \Vdash^{\prime} \stackrel{\circ}{Y} \models \psi "
$$

But \hat{r}, \hat{p} compatible implies \hat{r}, p compatible, which is a contradiction because $\theta \rightarrow \neg \psi$ and so

$$
p \Vdash \vdash^{\prime} \stackrel{\circ}{Y} \models \neg \psi "
$$

Some earlier uses of rank in forcing arguments occur in Steel's forcing, see Steel [106], Friedman [29], and Harrington [36]. It also occurs in Silver's analysis of the collapsing algebra, see Silver [99].

