7 α -forcing

In this section we generalize the forcing which produced a generic G_{δ} to arbitrarily high levels of the Borel hierarchy. Before doing so we must prove some elementary facts about well-founded trees.

Let OR denote the class of all ordinals. Define $T \subseteq Q^{<\omega}$ to be a *tree* iff $s \subseteq t \in T$ implies $s \in T$. Define the rank function $r: T \to OR \cup \{\infty\}$ of T as follows:

- 1. $r(s) \ge 0$ iff $s \in T$,
- 2. $r(s) \ge \alpha + 1$ iff $\exists q \in Q \ r(s \ q) \ge \alpha$,
- 3. $r(s) \ge \lambda$ (for λ a limit ordinal) iff $r(s) \ge \alpha$ for every $\alpha < \lambda$.

Now define $r(s) = \alpha$ iff $r(s) \ge \alpha$ but not $r(s) \ge \alpha + 1$ and $r(s) = \infty$ iff $r(s) \ge \alpha$ for every ordinal α .

Define $[T] = \{x \in Q^{\omega} : \forall n \ x \upharpoonright n \in T\}$. We say that T is well-founded iff $[T] = \emptyset$.

Theorem 7.1 T is well-founded iff $r(\langle \rangle) \in OR$.

proof:

It follows easily from the definition that if r(s) is an ordinal, then

$$r(s) = \sup\{r(s \, \hat{q}) + 1 : q \in Q\}.$$

Hence, if $r(\langle \rangle) = \alpha \in OR$ and $x \in [T]$, then

$$r(x \upharpoonright (n+1)) < r(x \upharpoonright n)$$

is a descending sequence of ordinals.

On the other hand, if $r(s) = \infty$ then for some $q \in Q$ we must have $r(s \circ q) = \infty$. So if $r(\langle \rangle) = \infty$ we can construct (using the axiom of choice) a sequence $s_n \in T$ with $r(s_n) = \infty$ and $s_{n+1} = s_n \circ x(n)$. Hence $x \in [T]$.

Definition. T is a nucle α -tree iff

- 1. $T \subseteq \omega^{<\omega}$ is a tree,
- 2. $r: T \to (\alpha + 1)$ is its rank function $(r(\langle \rangle) = \alpha)$,
- 3. if r(s) > 0, then for every $n \in \omega$ $s n \in T$,
- 4. if $r(s) = \beta$ is a successor ordinal, then for every $n \in \omega$ $r(s n) = \beta 1$, and
- 5. if $r(s) = \lambda$ is a limit ordinal, then $r(s \circ 0) \ge 2$ and $r(s \circ n)$ increases to λ as $n \to \infty$.

It is easy to see that for every $\alpha < \omega_1$ nice α -trees exist. For X a Hausdorff space with countable base, \mathcal{B} , and T a nice α -tree ($\alpha \ge 2$), define the partial order $\mathbb{P} = \mathbb{P}(X, \mathcal{B}, T)$ which we call α -forcing as follows:

 $p \in \mathbb{P}$ iff p = (t, F) where

- 1. $t: D \to \mathcal{B}$ where $D \subseteq T^0 = \{s \in T : r(s) = 0\}$ is finite,
- 2. $F \subseteq T^{>0} \times X$ is finite where

$$T^{>0} = T \setminus T^0 = \{s \in T : r(s) > 0\},\$$

- 3. if $(s, x), (s n, y) \in F$, then $x \neq y$, and
- 4. if $(s, x) \in F$ and t(s n) = B, then $x \notin B$.

The ordering on \mathbb{P} is given by $p \leq q$ iff $t_p \supseteq t_q$ and $F_p \supseteq F_q$.

Lemma 7.2 \mathbb{P} has ccc.

proof:

.

Suppose A is uncountable antichain. Since there are only countably many different t_p without loss we may assume that there exists t such that $t_p = t$ for all $p \in A$. Consequently for $p, q \in A$ the only thing that can keep $p \cup q$ from being a condition is that there must be an $x \in X$ and an $s, s^n \in T^{>0}$ such that

$$(s,x), (s^n,x) \in (F_p \cup F_q).$$

But now for each $p \in A$ let $H_p : X \to [T^{>0}]^{<\omega}$ be the finite partial function defined by

$$H_{p}(x) = \{s \in T^{>0} : (s, x) \in F_{p}\}$$

where domain H_p is $\{x : \exists s \in T^{>0} (s, x) \in F_p\}$. Then $\{H_p : p \in A\}$ is an uncountable antichain in the order of finite partial functions from X to $[T^{>0}]^{<\omega}$, a countable set.

Define for G a \mathbb{P} -filter the set $U_s \subseteq X$ for $s \in T$ as follows:

- 1. for $s \in T^0$ let $U_s = B$ iff $\exists p \in G$ such that $t_p(s) = B$ and
- 2. for $s \in T^{>0}$ let $U_s = \bigcap_{n \in \omega} \sim U_{s n}$

Note that U_s is a $\Pi^0_\beta(X)$ -set where $r(s) = \beta$.

Lemma 7.3 If G is \mathbb{P} -generic over V then in V[G] we have that for every $x \in X$ and $s \in T^{>0}$

$$x \in U_s \iff \exists p \in G(s, x) \in F_p.$$

proof:

First suppose that r(s) = 1 and note that the following set is dense:

$$D = \{ p \in \mathbb{P} : (s, x) \in F_p \text{ or } \exists n \exists B \in \mathcal{B} \ x \in B \text{ and } t_p(s \cap n) = B \}.$$

To see this let $p \in \mathbb{P}$ be arbitrary. If $(s, x) \in F_p$ then $p \in D$ and we are already done. If $(s, x) \notin F_p$ then let

$$Y = \{ y : (s, y) \in F_p \}.$$

Choose $B \in \mathcal{B}$ with $x \in B$ and Y disjoint from B. Choose s n not in the domain of t_p , and let $q = (t_q, F_p)$ be defined by $t_q = t_p \cup (s n, B)$. So $q \leq p$ and $q \in D$. Hence D is dense.

Now by definition $x \in U_s$ iff $x \in \bigcap_{n \in \omega} \sim U_{s \cap n}$. So let G be a generic filter and $p \in G \cap D$. If $(s, x) \in F_p$ then we know that for every $q \in G$ and for every n, if $t_q(s \cap n) = B$ then $x \notin B$. Consequently, $x \in U_s$. On the other hand if $t_p(s \cap n) = B$ where $x \in B$, then $x \notin U_s$ and for every $q \in G$ it must be that $(s, x) \notin F_q$ (since otherwise p and q would be incompatible).

Now suppose r(s) > 1. In this case note that the following set is dense:

$$E = \{ p \in \mathbb{P} : (s, x) \in F_p \text{ or } \exists n \ (s^n, x) \in F_p \}.$$

To see this let $p \in \mathbb{P}$ be arbitrary. Then either $(s, x) \in F_p$ and already $p \in E$ or by choosing n large enough $q = (t_p, F_p \cup \{(s \cap n, x)\}) \in E$. (Note $r(s \cap n) > 0$.)

Now assume the result is true for all $U_{s \uparrow n}$. Let $p \in G \cap E$. If $(s, x) \in F_p$ then for every $q \in G$ and n we have $(s \uparrow n, x) \notin F_q$ and so by induction $x \notin U_{s \uparrow n}$ and so $x \in U_s$. On the other hand if $(s \uparrow n, x) \in F_p$, then by induction $x \in U_{s \uparrow n}$ and so $x \notin U_s$, and so again for every $q \in G$ we have $(s, x) \notin F_q$.

The following lemma is the heart of the old *switcheroo* argument used in Theorem 6.2. Given any $Q \subset X$ define the rank(p, Q) as follows:

$$\operatorname{rank}(p,Q) = \max\{r(s) : (s,x) \in F_p \text{ for some } x \in X \setminus Q\}$$

Lemma 7.4 (Rank Lemma). For any $\beta \geq 1$ and $p \in \mathbb{P}$ there exists \hat{p} compatible with p such that

- 1. rank $(\hat{p}, Q) < \beta + 1$ and
- 2. for any $q \in \mathbb{P}$ if $\operatorname{rank}(q, Q) < \beta$, then

 \hat{p} and q compatible implies p and q compatible.

proof:

Let $p_0 \leq p$ be any extension which satisfies: for any $(s, x) \in F_p$ and $n \in \omega$, if $r(s) = \lambda > \beta$ is a limit ordinal and $r(s \cap n) < \beta + 1$, then there exist $m \in \omega$ such that $(s \cap m, x) \in F_{p_0}$. Note that since $r(s \cap n)$ is increasing to λ there are Now let \hat{p} be defined as follows:

$$t_{\hat{p}} = t_p$$

and

$$F_{\hat{p}} = \{ (s, x) \in F_{p_0} : x \in Q \text{ or } r(s) < \beta + 1 \}.$$

Suppose for contradiction that there exists q such that $\operatorname{rank}(q, Q) < \beta$, \hat{p} and q compatible, but p and q incompatible. Since p and q are incompatible either

1. there exists $(s, x) \in F_q$ and $t_p(s n) = B$ with $x \in B$, or

2. there exists $(s, x) \in F_p$ and $t_q(s n) = B$ with $x \in B$, or

3. there exists $(s, x) \in F_p$ and $(s n, x) \in F_q$, or

4. there exists $(s, x) \in F_q$ and $(s n, x) \in F_p$.

(1) cannot happen since $t_{\hat{p}} = t_p$ and so \hat{p}, q would be incompatible. (2) cannot happen since r(s) = 1 and $\beta \ge 1$ means that $(s, x) \in F_{\hat{p}}$ and so again \hat{p} and q are incompatible. If (3) or (4) happens for $x \in Q$ then again (in case 3) $(s, x) \in F_{\hat{p}}$ or (in case 4) $(s \cap x, x) \in F_{\hat{p}}$ and so \hat{p}, q incompatible.

So assume $x \notin Q$. In case (3) by the definition of $\operatorname{rank}(q, Q) < \beta$ we know that $r(s \, n) < \beta$. Now since T is a nice tree we know that either $r(s) \leq \beta$ and so $(s, x) \in F_{\hat{p}}$ or $r(s) = \lambda$ a limit ordinal. Now if $\lambda \leq \beta$ then $(s, x) \in F_{\hat{p}}$. If $\lambda > \beta$ then by our construction of p_0 there exist m with $(s \, n \, m, x) \in F_{\hat{p}}$ and so \hat{p}, q are incompatible. Finally in case (4) since $x \notin Q$ and so $r(s) < \beta$ we have that $r(s \, n) < \beta$ and so $(s \, n, x) \in F_{\hat{p}}$ and so \hat{p}, q are incompatible.

Intuitively, it should be that statements of small rank are forced by conditions of small rank. The next lemma will make this more precise. Let $L_{\infty}(P_{\alpha} : \alpha < \kappa)$ be the infinitary propositional logic with $\{P_{\alpha} : \alpha < \kappa\}$ as the atomic sentences. Let Π_0 -sentences be the atomic ones, $\{P_{\alpha} : \alpha < \kappa\}$. For any $\beta > 0$ let θ be a Π_{β} -sentence iff there exists $\Gamma \subseteq \bigcup_{\delta < \beta} \Pi_{\delta}$ -sentences and

$$\theta = \bigwedge_{\psi \in \Gamma} \neg \psi.$$

Models for this propositional language can naturally be regarded as subsets $Y \subseteq \kappa$ where we define

- 1. $Y \models P_{\alpha}$ iff $\alpha \in Y$,
- 2. $Y \models \neg \theta$ iff not $Y \models \theta$, and
- 3. $Y \models \bigwedge \Gamma$ iff $Y \models \theta$ for every $\theta \in \Gamma$.

Lemma 7.5 (Rank and Forcing Lemma) Suppose rank : $\mathbb{P} \to OR$ is any function on a poset \mathbb{P} which satisfies the Rank Lemma 7.4. Suppose $\models_{\mathbb{P}} \stackrel{\circ}{Y} \subset \kappa$ and for every $p \in \mathbb{P}$ and $\alpha < \kappa$ if

$$p \Vdash \alpha \in \check{Y}$$

then there exist \hat{p} compatible with p such that $\operatorname{rank}(\hat{p}) = 0$ and

$$\hat{p} \models \alpha \in \overset{\circ}{Y}$$
.

Then for every Π_{β} -sentence θ (in the ground model) and every $p \in \mathbb{P}$, if

$$p \models " \mathring{Y} \models \theta$$

then there exists \hat{p} compatible with p such that $\operatorname{rank}(\hat{p}) \leq \beta$ and

$$\hat{p} \Vdash " \stackrel{\circ}{Y} \models \theta ".$$

proof:

This is one of those lemmas whose statement is longer than its proof. The proof is induction on β and for $\beta = 0$ the conclusion is true by assumption. So suppose $\beta > 0$ and $\theta = \bigwedge_{\psi \in \Gamma} \neg \psi$ where $\Gamma \subseteq \bigcup_{\delta < \beta} \prod_{\delta}$ -sentences. By the rank lemma there exists \hat{p} compatible with p such that rank $(\hat{p}) \leq \beta$ and for every $q \in \mathbb{P}$ with rank $(q) < \beta$ if \hat{p}, q compatible then p, q compatible. We claim that

$$\hat{p} \Vdash " \mathring{Y} \models \theta$$
".

Suppose not. Then there exists $r \leq \hat{p}$ and $\psi \in \Gamma$ such that

$$r \Vdash " \mathring{Y} \models \psi"$$
.

By inductive assumption there exists \hat{r} compatible with r such that

$$\operatorname{rank}(\hat{r}) < \beta$$

such that

$$\hat{r} \Vdash " \stackrel{\circ}{Y} \models \psi"$$
.

But \hat{r}, \hat{p} compatible implies \hat{r}, p compatible, which is a contradiction because $\theta \to \neg \psi$ and so

$$p \Vdash " \mathring{Y} \models \neg \psi".$$

Some earlier uses of rank in forcing arguments occur in Steel's forcing, see Steel [106], Friedman [29], and Harrington [36]. It also occurs in Silver's analysis of the collapsing algebra, see Silver [99].