3 Abstract Borel hierarchies

Suppose $F \subseteq P(X)$ is a family of sets. Most of the time we would like to think of F as a countable *field of sets* (i.e. closed under complements and finite intersections) and so analogous to the family of clopen subsets of some space.

We define the classes $\Pi^0_{\alpha}(F)$ analogously. Let $\Pi^0_0(F) = F$ and for every $\alpha > 0$ define $A \in \Pi^0_{\alpha}(F)$ iff there exists $B_n \in \Pi^0_{\beta_n}$ for some $\beta_n < \alpha$ such that

$$A=\bigcap_{n\in\omega}\sim B_n.$$

Define

- $\Sigma^0_{\alpha}(F) = \{ \sim B : B \in \Pi^0_{\alpha}(F) \},\$
- $\mathbf{\Delta}^{0}_{\alpha}(F) = \mathbf{\Pi}^{0}_{\alpha}(F) \cap \mathbf{\Sigma}^{0}_{\alpha}(F),$
- Borel $(F) = \bigcup_{\alpha < \omega_1} \Sigma^0_{\alpha}(F)$, and
- let $\operatorname{ord}(F)$ be the least α such that $\operatorname{Borel}(F) = \sum_{\alpha}^{0} (F)$.

Theorem 3.1 (Bing, Bledsoe, Mauldin [12]) Suppose $F \subseteq P(2^{\omega})$ is a countable family such that $Borel(2^{\omega}) \subseteq Borel(F)$. Then $ord(F) = \omega_1$.

Corollary 3.2 Suppose X is any space containing a perfect set and $F \subseteq P(X)$ is a countable family such that $Borel(X) \subseteq Borel(F)$. Then $ord(F) = \omega_1$.

proof:

Suppose $2^{\omega} \subseteq X$ and let $\hat{F} = \{A \cap 2^{\omega} : A \in F\}$. By Theorem 2.3 we have that $Borel(2^{\omega}) \subseteq Borel(\hat{F})$ and so by Theorem 3.1 we know $ord(\hat{F}) = \omega_1$. But this implies $ord(F) = \omega_1$.

The proof of Theorem 3.1 is a generalization of Lebesgue's universal set argument. We need to prove the following two lemmas.

Lemma 3.3 (Universal sets) Suppose $H \subseteq P(X)$ is countable and define

 $R = \{A \times B : A \subseteq 2^{\omega} \text{ is clopen and } B \in H\}.$

Then for every α with $1 \leq \alpha < \omega_1$ there exists $U \subseteq 2^{\omega} \times X$ with $U \in \prod_{\alpha}^0(R)$ such that for every $A \in \prod_{\alpha}^0(H)$ there exists $x \in 2^{\omega}$ with $A = U_x$.

proof:

This is proved exactly as Theorem 2.6, replacing the basis for X with H. Note that when we replace U_n by U_n^* it is necessary to prove by induction on β that for every set $A \in \mathbf{\Pi}^0_{\beta}(R)$ and $n \in \omega$ that the set

$$A^* = \{(x,y) : (x_n,y) \in A\}$$

is also in $\mathbf{\Pi}^0_{\beta}(R)$.

Lemma 3.4 Suppose $H \subseteq P(2^{\omega})$, R is defined as in Lemma 3.3, and Borel $(2^{\omega}) \subset Borel(H)$.

Then for every set $A \in Borel(R)$ the set $D = \{x : (x, x) \in A\}$ is in Borel(H). proof:

If $A = B \times C$ where B is clopen and $C \in H$, then $D = B \cap C$ which is in Borel(H) by assumption. Note that

$$\{x:(x,x)\in\bigcap_nA_n\}=\bigcap_n\{x:(x,x)\in A_n\}$$

 \mathbf{and}

 $\{x:(x,x)\in \sim A\}=\sim \{x:(x,x)\in A\},$

so the result follows by induction.

Proof of Theorem 3.1:

Suppose Borel $(H) = \prod_{\alpha}^{0}(H)$ and let $U \subseteq 2^{\omega} \times 2^{\omega}$ be universal for $\prod_{\alpha}^{0}(H)$ given by Lemma 3.3. By Lemma 3.4 the set $D = \{x : (x, x) \in U\}$ is in Borel(H) and hence its complement is in Borel $(H) = \prod_{\alpha}^{0}(H)$. Hence we get the same old contradiction: if $U_x = \sim D$, then $x \in D$ iff $x \notin D$.

Theorem 3.5 (Recław) If X is a second countable space and X can be mapped continuously onto the unit interval, [0, 1], then $ord(X) = \omega_1$.

proof:

Let $f: X \to [0, 1]$ be continuous and onto. Let \mathcal{B} be a countable base for Xand let $H = \{f(B) : B \in \mathcal{B}\}$. Since the preimage of an open subset of [0, 1] is open in X it is clear that Borel([0, 1]) \subseteq Borel(H). So by Corollary 3.2 it follows that $\operatorname{ord}(H) = \omega_1$. But f maps the Borel hierarchy of X directly over to the hierarchy generated by H, so $\operatorname{ord}(X) = \omega_1$.

Note that if X is a discrete space of cardinality the continuum then there is a continuous map of X onto [0, 1] but $\operatorname{ord}(X) = 1$.

The Cantor space 2^{ω} can be mapped continuously onto [0, 1] via the map

$$x\mapsto \sum_{n=0}^{\infty}rac{x(n)}{2^{n+1}}$$

This map is even one-to-one except at countably many points where it is twoto-one. It is also easy to see that \mathbb{R} can be mapped continuously onto [0,1] and ω^{ω} can be mapped onto 2^{ω} . It follows that in Theorem 3.5 we may replace [0,1]by 2^{ω} , ω^{ω} , or \mathbb{R} .

Myrna Dzamonja points out that any completely regular space Y which contains a perfect set can be mapped onto [0, 1]. This is true because if $P \subseteq Y$ is perfect, then there is a continuous map f from P onto [0, 1]. But since Y is completely regular this map extends to Y.

Reclaw did not publish his result, but I did, see Miller [84] and [85].