Model Theory of Differential Fields

David Marker
University of Illinois at Chicago

§1 Differential Algebra.

Throughout these notes ring will mean commutative ring with identity.
A derivation on a ring R is an additive homomorphism $D: R \rightarrow R$ such that $D(x y)=x D(y)+y D(x)$. A differential ring is a ring equipped with a derivation.

Derivations satisfy all of the usual rules for derivatives. Let D be a derivation on R.

Lemma 1.1. For all $x \in R, D\left(x^{n}\right)=n x^{n-1} D(x)$.

Proof.

By induction on n. $D\left(x^{1}\right)=D(x)$.

$$
\begin{aligned}
D\left(x^{n+1}\right) & =D\left(x x^{n}\right)=x D\left(x^{n}\right)+x^{n} D(x) \\
& =n x^{n} D(x)+x^{n} D(x) \\
& =(n+1) x^{n} D(x)
\end{aligned}
$$

Lemma 1.2. If b is a unit of $R, D\left(\frac{a}{b}\right)=\frac{b D(a)-a D(b)}{b^{2}}$.
Proof.
$D(a)=D\left(b \cdot \frac{a}{b}\right)=b D\left(\frac{a}{b}\right)+\frac{a}{b} D(b)$.
Thus $D\left(\frac{a}{b}\right)=\frac{1}{b} D(a)-\frac{a}{b^{2}} D(b)=\frac{b D(a)-a D(b)}{b^{2}}$.
examples.

1) (trivial derivation) $D: R \rightarrow\{0\}$.
2) Let C^{∞} be the ring of infinitely differentiable real functions on $(0,1)$ and let D be the usual derivative.
3) Let U be a nonempty connected open subset of \mathbf{C}. Let O_{U} be the ring of analytic functions $f: U \rightarrow \mathbf{C}$ and let $D: O_{U} \rightarrow O_{U}$ be the usual derivative. [Note: O_{U} is an integral domain, while the ring of C^{∞} functions is not.] Similarly the field of meromorphic functions on U is a differential field. In appendix A, we show that every countable differential field can be embedded into a field of germs of meromorphic functions.
4) Let $a \in R$. Let $D: R[X] \rightarrow R[X]$ by $D\left(\sum a_{i} X^{i}\right)=a\left(\sum i a_{i} X^{i-1}\right)$. [Note: If $a=1$, then D is $\frac{d}{d X}$.]
5) Let $D_{0}: R \rightarrow R$ be a derivation. We form $R\{X\}$, the ring of differential polynomials as follows. $R\{X\}=R\left[X_{0}, X_{1}, \ldots\right]$. Let D extend D_{0} by $D\left(X_{n}\right)=$ X_{n+1}.

We identify X_{0} with X and X_{n} with $X^{(n)}$, the $n^{\text {th }}$ derivative of X.
Definition. If D is a derivation on R, we let C_{R} denote the kernel of D. We call C_{R} the constants of R. (If no ambiguity arises we will often drop the subscript R).
$-C$ is a subring of R. Moreover if $b \in C$ is a unit in R and $a \in C$ then $\frac{a}{b}$ is in C. In particular, if R is a field then so is C.
-If $a \in C$, then $D(a x)=a D(x)$, thus D is C-linear.
Our first goal is to develop the basic ideal theory for differential ideals. We will be studying $K \subset L$ where K and L are differential fields. If $\alpha \in L$ we will want to consider the ideal of differential polynomials over K which vanish at α.

Definition. We say that an ideal $I \subset R\{X\}$ is a differential ideal if for all $f \in I$, $D(f) \in I$.

In general if $K \subset L$ and $\alpha \in L$ then the ideal $\{f(X) \in K\{X\}: f(\alpha)=0\}$ is a prime differential ideal. For $f(X) \in R\{X\}$, we let $\langle f(X)\rangle$ be the differential ideal generated by $f(X)$. Even if $f(X)$ is irreducible, $\langle f(X)\rangle$ may not be prime. For example let $f(X)=\left(X^{\prime \prime}\right)^{2}-2 X^{\prime}$. Then $D(f)=2 X^{\prime \prime}\left(X^{\prime \prime \prime}-1\right)$ is in $\langle f(X)\rangle$, but neither $2 X^{\prime \prime}$ nor $X^{\prime \prime \prime}-1$ is in $\langle f(X)\rangle$.

Definition. If $f(X) \in R\{X\} \backslash R$, the order of f is the largest n such that $X^{(n)}$ occurs in f. (For completeness if $\mathrm{f} f \in R$ we say f has order -1.) If f has order n we can write

$$
f(X)=\sum_{i=0}^{m} g_{i}\left(X, X^{\prime}, \ldots X^{(n-1)}\right)\left(X^{(n)}\right)^{i}
$$

where $g_{i} \in R\left[X, X^{\prime}, \ldots, X^{(n-1)}\right]$. If $g_{m} \neq 0$, we say that f has degree m.
We say that $f(X)$ is simpler that $g(X)$ and write $f \ll g$, if either the order of f is less that the order of g or the orders are equal and f has lower degree.
Definition. Let $f(X) \in R\{X\}$ have order $n \geq 0$. The separant of f is

$$
s(X)=\frac{\partial f}{\partial X^{(n)}}
$$

For example if $f(X)=\left(X^{\prime \prime}\right)^{2}-2 X^{\prime}$, then $s(X)=2 X^{\prime \prime}$.
If $f(X)=\sum_{i=0}^{m} g_{i}\left(X, \ldots, X^{(n-1)}\right)\left(X^{(n)}\right)^{i}$, then

$$
s(X)=\sum_{i=0}^{m-1}(i+1) g_{i+1}\left(X, \ldots, X^{(n-1)}\right)\left(X^{(n)}\right)^{i}
$$

So $s(X) \ll f(X)$.

Definition. For $f(X) \in R\{X\}$ let $I(f)=\left\{g \in R\{X\}: s^{k} g \in\langle f\rangle\right.$ for some $\left.k\right\}$.
We will show that if R is a differential field and $f \in R\{X\}$ is irreducible, then $I(f)$ is a prime differential ideal and that every prime differential ideal is of this form.

Lemma 1.3. $I(f)$ is a differential ideal.

Proof.

Clearly $R\{X\} I(f) \subseteq I(f)$. If $s^{n} g_{0}, s^{m} g_{1} \in\langle f\rangle$, and $n \leq m$, then $s^{m}\left(g_{0}+\right.$ $\left.g_{1}\right) \in\langle f\rangle$. Thus $I(f)$ is an ideal.

If $s^{n} g \in\langle f\rangle$, then $D\left(s^{n+1} g\right) \in\langle f\rangle$. But $D\left(s^{n+1} g\right)=(n+1) s^{n} g D(s)+s^{n+1} g^{\prime}$. Hence $s^{n+1} g^{\prime} \in\langle f\rangle$. Thus if $g \in I(f)$, then $g^{\prime} \in I(f)$.

The following division lemma is central to our analysis of differential ideals. For the rest of this section we will consider the case that is most important to us. We assume that R is a differential field K of characteristic zero. (The next lemma is false if K has characteristic $p>0$.)

Lemma 1.4. If f is irreducible of order n and $g \in\langle f\rangle \backslash\{0\}$, then g has order at least n and if g has order n, then f divides g.
Proof.
Let s be the separant of f. We need the following claim.
claim: We can write $f^{(l)}=s X^{(n+l)}+f_{l}\left(X, \ldots, X^{(n+l-1)}\right)$, for $l \geq 1$.
Let $f=\sum_{i=0}^{m} h_{i}\left(X^{(n)}\right)^{i}$, where h_{i} has order at most $n-1$. Then

$$
\begin{aligned}
f^{\prime} & =\sum_{i=0}^{m}\left(h_{i}^{\prime}\left(X^{(n)}\right)^{i}+i h_{i}\left(X^{(n)}\right)^{i-1} X^{(n+1)}\right) \\
& =s X^{(n+1)}+f_{1}
\end{aligned}
$$

where $f_{1}=\sum h_{i}^{\prime}\left(X^{(n)}\right)^{i}$. Thus the claim is true for $l=1$.
Given $f^{(l)}=s X^{(n+l)}+f_{l}$, where f_{l} has order at most $n+l-1, l \geq 1$, we have $f^{(l+1)}=s^{\prime} X^{(n+l)}+s X^{(n+l+1)}+f_{l}^{\prime}$. Let $f_{l+1}=f_{l}^{\prime}+s^{\prime} X^{(n+l)}$. Then f_{l+1} has order at most $n+l$ and $f^{(l+1)}=s X^{(n+l+1)}+f_{l+1}$.

Let $g=a_{0} f+\ldots+a_{k} f^{(k)}$. If $k=0$, the lemma holds, so we assume $k \geq 1$. Assume g has order at most n.

Replace all instances of $X^{(n+k)}$ by $-\frac{f_{k}}{s}$. Since $X^{(n+k)}$ does not occur in g, and $f^{(k)}=s X^{(n+k)}+f_{k}$, we get a new equation (after clearing denominators)

$$
s^{m} g=b_{0} f+\ldots+b_{k-1} f^{(k-1)}
$$

We next replace all instances of $X^{(n+k-1)}$ by $-\frac{f_{k-1}}{s}$.
Continuing we find an m and $c \in K\{X\}$ such that $s^{m} g=c f$. The degree of s is less than the degree of f. Thus f does not divide s. Since f is irreducible, f divides g. In particular, g has order exactly n.

Repeating the previous proof starting with $s^{m} g$, we can prove the following lemma.

Lemma 1.5. Let f be irreducible of order n and let $g \in I(f) \backslash\{0\}$. Then g has order greater than or equal to n and if g has order n, then f divides g.

Lemma 1.6. Let f be irreducible of order n. For any differential polynomial g, we can find g_{1} of order at most n such that for some $m, s^{m} g=g_{1}(\bmod \langle f\rangle)$.
Proof. Suppose g has order $n+k$, where $k \geq 1$. Suppose the lemma is true for all $h \ll g$. As above we can find f_{k} of order at most $n+k-1$ such that $f^{(k)}=s X^{(n+k)}+f_{k}$. Suppose g has degree m and $g=\sum_{i=0}^{m} h_{i}\left(X^{(n+k)}\right)^{i}$. Let $g_{1}=s^{m} g-\left(f^{(k)}\right)^{m} h_{m}$. Then $g_{1}=s^{m} g(\bmod \langle f\rangle)$. Moreover g_{1} is simpler than g (if $m=1, g_{1}$ is of lower order, otherwise it is of lower degree). Thus, by induction on \ll, we are done.

Corollary 1.7. Let f be irreducible of order n. Then $I(f)$ is a prime differential ideal.

Proof.

Suppose $u_{0} u_{1} \in I(f)$. There are v_{0}, v_{1} of order $\leq n$ and m_{0} and m_{1} such that $s^{m_{i}} u_{i}=v_{i}(\bmod \langle f\rangle)$. Thus $s^{m_{0}+m_{1}} u_{0} u_{1}=v_{0} v_{1}(\bmod \langle f\rangle)$. Since $u_{0} u_{1} \in I(f)$, $v_{0} v_{1} \in I(f)$. Since $v_{0} v_{1}$ has order at most n, lemma 1.5 implies $f \mid v_{0} v_{1}$. Since f is irreducible $f \mid v_{0}$ or $f \mid v_{1}$. If $f \mid v_{i}$, then $s^{m_{i}} u_{i} \in\langle f\rangle$ and $u_{i} \in I(f)$.

Lemma 1.8. Every nonzero prime differential ideal is of the form $I(f)$ for some irreducible f.

Proof.

Let I be a prime differential ideal. Let $f \in I$ be irreducible such that there is no $g \in I$ with $g \neq 0$ and $g \ll f$. We call f a minimal polynomial of I. We claim that $I=I(f)$.

Suppose $g \in I(f)$ and $s^{m} g \in\langle f\rangle \subseteq I$. Since I is prime and $s \notin I, g \in I$. Thus $I(f) \subseteq I$.

Let $g \in I$. Let g_{1} have order at most the order of f and m be such that $s^{m} g=g_{1}(\bmod \langle f\rangle)$. Let d be the degree of f. Using the division algorithm we can write $g_{1}=a f+r_{1}$, where $a, r_{1} \in K\left(X \ldots X^{(n-1)}\right)\left[X^{(n)}\right]$ and r_{1} has degree $<d$. Clearing denominators, there are $a_{1}, a_{2}, r_{2} \in K\left[X, \ldots X^{(n)}\right]$ such that r_{2} has degree $<d, a_{1}$ is of order $<n$ and $a_{1} g_{1}=a_{2} f+r_{2}$. Since $g \in I$ and $\langle f\rangle \subseteq I$, $g_{1} \in I$. Thus $r_{2} \in I$. But $r_{2} \ll f$, so $r_{2}=0$. Thus $f \mid a_{1} g_{1}$. Since a_{1} has order $<n, f \mid g_{1}$. Hence $s^{m} g \in\langle f\rangle$ and $g \in I(f)$.

Definition. $R D(I)$, the differential rank of I, is the order of the minimal polynomial of I. If $I=\{0\}$, we define $R D(I)=\omega$.

Let L / K be differential fields with $\alpha \in L$. We let $I(\alpha / K)$ denote the ideal of differential polynomials in $K\{X\}$ which vanish at α. Clearly $I(\alpha / K)$ is a prime differential ideal. If $I(\alpha / K)$ is not $\{0\}$, we say α is differentially algebraic over K.

Otherwise α is differentially transcendental. [Warning: differentially algebraic does not imply algebraic in the model theoretic sense, as differential equations usually have infinitely many solutions.] We let $K\langle\alpha\rangle$ denote the differential field generated by α over K.

Lemma 1.9. If L / K are differential fields and $\alpha \in L$ then $R D(I(\alpha / K))$ is equal to the transcendence degree of $K\langle\alpha\rangle / K$.

Proof.

If $I(\alpha / K)=\{0\}$, then $K\langle\alpha\rangle$ is isomorphic to $K\left(X_{0}, X_{1}, X_{2}, \ldots\right)$, a purely transcendental extension of K. Thus $K\langle\alpha\rangle / K$ has transcendence degree ω.

If not we can assume $I(\alpha / K)=I(f)$ where f is a minimal polynomial. Then f has order $R D(I)=n$. Clearly $\alpha, \alpha^{\prime}, \ldots, \alpha^{(n-1)}$ are algebraically independent over K, so the transcendence degree is at least n. It is also clear that $\alpha^{(n)}$ depends on $\alpha, \alpha^{\prime}, \ldots, \alpha^{(n-1)}$ over K.

For all $k \geq 1$ we can write $f^{(k)}=s X^{n+k}+f_{k}$, where f_{k} has order $<n+k$ (this is the claim in the proof of lemma 1.4). Then $f^{(k)} \in I(f)$, thus $f^{(k)}(\alpha)=0$ for all $k \geq 1$. So

$$
f^{(k)}(\alpha)=s(\alpha) \alpha^{(n+k)}+f_{k}\left(\alpha, \ldots, \alpha^{(n+k-1)}\right)
$$

Thus $\alpha^{(n+k)}$ depends on $\alpha, \ldots, \alpha^{(n+k-1)}$ over K. Thus, by induction, $\alpha, \ldots, \alpha^{(n-1)}$ is a transcendence base for $K\langle\alpha\rangle / K$. So $K\langle\alpha\rangle / K$ has transcendence degree n.

Note that we have shown that in the later case

$$
K\langle\alpha\rangle=K\left(\alpha, \alpha^{\prime}, \ldots, \alpha^{(n-1)}\right)\left[\alpha^{(n)}\right] .
$$

We next show differential prime ideals extend when we extend the base field.
Lemma 1.10. Suppose L / K are differential fields. Let $f \in K\{X\}$ be irreducible and let $f_{1} \in L\{X\}$ be an irreducible factor of f in $L\{X\}$. Then $I_{K}(f)=$ $I_{L}\left(f_{1}\right) \cap K\{X\}$.
Proof.
Suppose f has order n. If f factors in $L\{X\}$, then f factors in $L\left[X, X^{\prime}, \ldots, X^{(n)}\right]$. Moreover any irreducible factor must have order n, since whenever $k \subset l$ are fields of characteristic zero, $f \in k[\bar{X}]$ is irreducible and X_{n} occurs in f, then X_{n} occurs in any irreducible factor of f in $l[\bar{X}]$. (This is an interesting exercise in Galois theory).

Let s_{f} and $s_{f_{1}}$ be the separants of f and f_{1}. Suppose $g \in I_{L}\left(f_{1}\right) \cap K\{X\}$. Let g_{1} be of order at most n such that for some $m s_{f}^{m} g=g_{1}(\bmod \langle f\rangle)$. Then $s_{f}^{m} g=g_{1}\left(\bmod \left\langle f_{1}\right\rangle\right)$ and $g_{1} \in I_{L}\left(f_{1}\right)$. Thus $f_{1} \mid g_{1}$. Since $g_{1} \in K\{X\}$, all conjugates of f_{1} (over the algebraic closure of K) divide g_{1}. Thus $f \mid g_{1}$. So $g \in I_{K}(f)$.

Suppose $g \in I_{K}(f)$. Say $s_{f}^{m} g \in\langle f\rangle$. Let $f=f_{1} f_{2}$. Since f is irreducible, $f_{1} \not \backslash f_{2}$. Since $s_{f}=f_{2} s_{f_{1}}+f_{1} s_{f_{2}}, s_{f}^{m} g=f_{2}^{m} s_{f_{1}}^{m} g\left(\bmod \left\langle f_{1}\right\rangle\right)$. Thus $f_{2}^{m} g \in I_{L}\left(f_{1}\right)$.

If $f_{2} \in I_{L}\left(f_{1}\right)$, then, by $1.4, f_{1} \mid f_{2}$, a contradiction.
If $f_{2} \notin I_{L}\left(f_{1}\right)$, then $g \in I_{L}\left(f_{1}\right)$.

Our next goal is to prove a version of Hilbert's Basis Theorem for differential ideals. Strictly speaking this is false. Even in $K\{X\}$ we do not have ACC for differential ideals. For example consider the ideals, $I_{0} \subset I_{1} \subset \ldots$, where:

$$
I_{n}=\left\langle X^{2},\left(X^{\prime}\right)^{2}, \ldots\left(X^{(n)}\right)^{2}\right\rangle
$$

For the rings we care about we will be able to prove ACC for radical differential ideals. Recall that if I is an ideal, then $\sqrt{I}=\left\{a: \exists n a^{n} \in I\right\}$. We say that I is a radical ideal if $I=\sqrt{I}$.

Let R be a differential ring.
Lemma 1.11. If I is a radical differential ideal and $a b \in I$, then $a D(b) \in I$ and $D(a) b \in I$.

Proof.

If $a b \in I$, then $a D(b)+b D(a) \in I$. Multiplying by $D(a) b$ we see that $D(a) D(b) a b+(D(a) b)^{2} \in I$. Since I is radical, $D(a) b \in I$. Similarly $a D(b) \in I$.

Lemma 1.12. Let I be a radical differential ideal, let $S \subset R$ be closed under multiplication and let $T=\{x \in R: x S \subset I\}$. Then T is a radical differential ideal.

Proof.

Clearly T is an ideal. If $x S \subseteq I$, then, by lemma $1.11, D(x) S \subseteq I$. Thus T is a differential ideal. Suppose $x^{n} \in T$. Then for all $s \in S, x^{n} s \in I$. In particular for all $s \in S, x^{n} s^{n} \in I$. Since I is radical, for all $s \in S, x s \in I$. Thus $x \in T$.

For any $S \subseteq R$, let $\{S\}$ denote the smallest radical differential ideal containing S.

Lemma 1.13. $a\{S\} \subseteq\{a S\}$.
Proof.
By lemma $1.12, T=\{x: a x \in\{a S\}\}$ is a radical differential ideal. Since $S \subseteq T,\{S\} \subseteq T$.

Lemma 1.14. Let $S, T \subseteq R$. Then $\{S\}\{T\} \subseteq\{S T\}$.
Proof.
By the previous lemma $\{x: x\{T\} \subseteq\{S T\}\}$ contains $\{S\}$.
Lemma 1.15. Let $R \supseteq \mathbf{Q}$ be a differential ring. If I is a differential ideal, then \sqrt{I} is a radical differential ideal.

Proof.

Suppose $a^{n} \in I$. We will prove by induction that $a^{n-k} D(a)^{2 k-1} \in I$.

We know $D\left(a^{n}\right) \in I$. But $D\left(a^{n}\right)=n a^{n-1} D(a)$. Since $\mathbf{Q} \subseteq R, a^{n-1} D(a) \in$ I, so the claim is true for $k=1$.

Suppose $a^{n-k} D(a)^{2 k-1} \in I$. Then

$$
(n-k) a^{n-(k+1)} D(a)^{2 k}+(2 k-1) a^{n-k} D(a)^{2 k-2} D(D(a)) \in I .
$$

Multiplying by by $D(a)$, we see that

$$
(n-k) a^{n-(k+1)} D(a)^{2 k+1}+(2 k-1) a^{n-k} D(a)^{2 k-1} D(D(a)) \in I .
$$

But $(2 k-1) a^{n-k} D(a)^{2 k-1} D(D(a)) \in I$. So $(n-k) a^{n-(k+1)} D(a)^{2 k+1} \in I$. Since $R \supseteq \mathbf{Q}, a^{n-(k+1)} D(a)^{k+1} \in I$.

Thus $D(a)^{2 n-1} \in I$, so $D(a) \in \sqrt{I}$.
We can now prove the relevant version of Hilbert's Basis Theorem. We say that a radical differential ideal I is finitely generated if there are $\beta_{1} \ldots \beta_{n} \in I$ such that $I=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. It is easy to see that R has ACC on radical differential ideals if and only if every radical differential ideal is finitely generated.

Theorem 1.16 [Ritt-Raudenbush Basis Theorem]. Let $R \supseteq \mathbf{Q}$ be a differential ring such that every radical differential ideal is finitely generated. Then every radical differential ideal in $R\{X\}$ is finitely generated.

Proof.

Suppose not. By Zorn's lemma there is a non-finitely generated radical differential ideal I which is maximal among the non-finitely generated radical differential ideals. We claim that I is prime. Suppose $a b \in I, a \notin I$, and $b \notin I$. Then $\{a, I\}$ and $\{b, I\}$ are larger radical differential ideals and hence finitely generated. Let $c_{1}, \ldots, c_{r}, d_{1}, \ldots, d_{s} \in I$ be such that $\{a, I\}=\left\{a, c_{1}, \ldots, c_{r}\right\}$ and $\{b, I\}=\left\{b, d_{1}, \ldots, d_{s}\right\}$. [In general: suppose $\{a, S\}$ is generated by $\alpha_{1} \ldots \alpha_{s}$. By lemma $1.15\{a, S\}=\sqrt{\langle a, S\rangle}$. Thus for each i, there are $b_{i, j} \in S$ and $r_{j}, r_{i, j, k} \in R$ such that:

$$
\alpha_{i}^{n_{1}}=\sum r_{j} a^{(j)}+\sum r_{i, j, k} b_{i, j}^{(k)} .
$$

In this case $\{a, S\}=\left\{a, b_{i, j}\right\}$.]
Thus $\{a, I\}\{I, b\} \subseteq\left\{a b, \ldots, c_{r} d_{s}\right\} \subseteq I$, by lemma 1.14. If $z \in I$, then $z^{2} \in\{a, I\}\{b, I\}$ which is contained in $\left\{a b, \ldots, c_{r} d_{s}\right\}$, a radical ideal. Thus $z \in\left\{a b, \ldots, c_{r} d_{s}\right\}$, so $\left\{a b, \ldots, c_{r} d_{s}\right\}=I$. Since I is not finitely generated we have a contradiction. Thus I is prime.

To complete the proof we need the following stronger form of lemma 1.6:
Lemma 1.17. Let $R \supseteq \mathbf{Q}$ be a differential ring and let $f \in R\{X\} \backslash R$ be irreducible. Suppose $f(X)=\sum_{i=0}^{d} a_{i}\left(X^{(n)}\right)^{i}$, where each a_{i} has order at most $n-1$. Let s be the separant of f. For any $g \in R\{X\}$ there is $g_{1} \in R\{X\}$ such that $g_{1} \ll f$ and for some l and $t, a_{d}^{l} s^{t} g=g_{1}(\bmod \langle f\rangle)$.
Proof. We first note that the proof of lemma 1.6 we will work since $R \supseteq \mathbf{Q}$. Thus we can find g_{2} of order at most n such that $s^{t} g=g_{2}(\bmod \langle f\rangle)$. Using the
standard division algorithm for polynomials we can find g_{1} of degree $<d$ such that $a_{d}^{l} g_{2}=g_{1}(\bmod \langle f\rangle)$.

We return to the proof of 1.16 .
We have I a non-finitely generated differential prime ideal. By assumption $I \cap R$ is finitely generated. Let J be the finitely generated radical differential ideal of $R\{X\}$ generated by $I \cap R$. Let $f(X) \in I-J$ be of minimal order and degree. Say $f(X)=a\left(X^{(n)}\right)^{d}+f_{0}(X)$, where $f_{0}(X) \ll f(X)$. If $a \in I$, then $f_{0} \in I$, contradicting the choice of f. Thus $a \notin I$.

Further, s, the separant of f, is not in I. If $s \in I$, then, since $s \ll f, s \in J$. But then $f(X)-\frac{1}{d} X^{(n)} s$ would be in $I-J$, contradicting the minimality of f. Since I is prime as $\notin I$. Thus $\{a s, I\}$ is a radical differential ideal extending I and hence finitely generated. Let $\{a s, I\}=\left\{a s, c_{1}, \ldots, c_{m}\right\}$, where each $c_{z} \in I$.

Let $g(X) \in I$. There are l, t such that $a^{l} s^{t} g=g_{1}(\bmod \langle f\rangle)$, where $g_{1} \ll f$. Thus $g_{1} \in I$. Since $g_{1} \ll f$, we must have $g_{1} \in J$. Thus $a^{l} s^{t} g \in\{J, f\}$. Since this is a radical ideal, asg $\in\{J, f\}$. Thus asI $\subseteq\{J, f\}$. Thus

$$
\begin{aligned}
I & \subseteq I\{a s, I\}=I\left\{a s, c_{1}, \ldots, c_{m}\right\} \\
& \subseteq\left\{a s I, I c_{1}, \ldots, I c_{m}\right\} \\
& \subseteq\left\{J, f, c_{1}, \ldots, c_{m}\right\} \subseteq I
\end{aligned}
$$

If $z \in I$, then $z^{2} \in I^{2}$. Thus $z^{2} \in\left\{J, f, c_{1} \ldots, c_{m}\right\}$. Since this is a radical ideal, $z \in\left\{J, f, c_{1} \ldots c_{m}\right\}$. Thus I is finitely generated.

Let k be a differential field. We say that $X \subseteq k^{n}$ is D-closed if there are $f_{1}, \ldots, f_{m} \in k\{\bar{X}\}$ such that

$$
X=\left\{\bar{x} \in k^{n}: f_{1}(\bar{x})=\cdots=f_{m}(\bar{x})=0\right\}
$$

The basis theorem insures that the intersection of any collection of D-closed sets is equal to the intersection of a finite subcollection. Thus the D-topology is Noetherian.

The next theorem gives the differential version of primary decomposition in Noetherian rings.

Theorem 1.19 [Decomposition Theorem]. Let R be a differential ring with ACC on radical differential ideals. Any radical differential ideal is the intersection of a finite number of prime differential ideals.

Proof.

Suppose not. By ACC there is a radical differential ideal I which is not the intersection of finitely many prime differential ideals and is maximal with this property. As I is not prime, we have $a b \in I, a, b \notin I$. Then $\{I, a\}$ and $\{I, b\}$ are intersections of finitely many prime differential ideals.

Note that $\{I, a\}\{I, b\} \subseteq\{a b, I\} \subseteq I$. For $c \in\{I, a\} \cap\{I, b\}, c^{2} \in I$, so $c \in I$. Thus $\{I, a\} \cap\{I, b\}=I$, and I is a finite intersection of prime differential ideals.

As usual there is a unique irredundant representation of I as a finite intersection of prime differential ideals. We say that a D-closed set is irreducible if it can not be written as the union of two proper D-closed subsets. The decomposition theorem implies that any D-closed set is a finite union of irreducible D-closed sets.

References

For the most part the work in this section is due to Ritt.
Kaplansky's monograph Differential Algebra is an excellent reference for the material in this section. It is very thin and elegantly written. In particular our treatment of the Ritt basis theorem is taken from there. Kolchin's Differential Algebra and Algebraic Groups is encyclopedic but notationally dense.

Buium's Differential Algebra and Diophantine Geometry and Magid's Lectures on Differential Galois Theory are two excellent recent references.

Much of the basic material on differential polynomial rings can also be found in Poizat's book Cours de Théorie des Modèles.

§2 Basic Model Theory of Differentially Closed Fields.

We begin by defining the theory of differentially closed fields (DCF). Let \mathcal{L} be the language with binary function symbols $+, \cdot,-$, unary function symbol D, and constant symbols 0 and 1. $D C F$ is axiomatized as follows:
i) axioms for algebraically closed fields of characteristic zero
ii) $\forall x, y D(x+y)=D(x)+D(y)$
iii) $\forall x, y D(x y)=x D(y)+y D(x)$.
iv) For any non-constant differential polynomials $f(X)$ and $g(X)$ where the order of g is less than the order of f, there is an x such that $f(x)=0 \wedge g(x) \neq 0$.

One could also consider the theory $D C F_{p}$ of differentially closed fields of characteristic $p>0$. This theory is much less well behaved (see [Wood]). Henceforth all fields will be assumed to have characteristic 0 .

Suppose K is a differentially closed field. Then as a pure field $(K,+, \cdot)$ is algebraically closed. Moreover the next lemma shows that the field of constants is also algebraically closed. To avoid confusion between the field theoretic and model theoretic notions of "algebraic", we say that a is strongly algebraic over k if there is a polynomial $p(X) \in k[X]-\{0\}$ such that $p(a)=0$. [In $\oint 5$ we will give the precise relation between algebraic and strongly algebraic.]

Lemma 2.1. Let K be a differentially closed field. If $a \in K$ is strongly algebraic over C the field of constants, then $a \in C$.

Proof.
Let $p(X)=\sum_{i=0}^{m} b_{i} X^{i}$ be the minimal polynomial of a over C. Since $p(a)=0, D(p(a))=0$. But $D(p(a))=\left(\sum_{i=0}^{m-1}(i+1) b_{i+1} a^{i}\right) D(a)$. Since p is the minimal polynomial of $a, \sum_{i=0}^{m-1}(i+1) b_{i+1} a^{i} \neq 0$. Thus $D(a)=0$, so $a \in C$.

Lemma 2.2. Every differential field k has an extension K which is differentially closed.

Proof.

Given k let f be of order n and let g be of order $<n$. Let f_{1} be an irreducible factor of f of order n. Let $I=I\left(f_{1}\right)$. Then $g \notin I$. Let F be the fraction field of $k\{X\} / I$. [Note: the quotient rule gives us a way of extending a derivation on an integral domain to its fraction field.] Let $a \in F$ be the image of $X(\bmod I)$. Since $f \in I, f(a)=0$. Since $g \notin I, g(a) \neq 0$.

Iterating this process we can build $K \supseteq k$ a differentially closed field.
The next lemma is crucial for quantifier elimination.
Lemma 2.3. Let K and L be ω-saturated models of $D C F$. Let $\bar{a} \in K, \bar{b} \in L$, $k=\mathbf{Q}\langle\bar{a}\rangle$ and $l=\mathbf{Q}\langle\bar{b}\rangle$. Suppose $\sigma: k \rightarrow l$ is an isomorphism such that $\sigma(\bar{a})=\bar{b}$. For all $\alpha \in K$ there is an extension of σ to an isomorphism σ^{*} from $k\langle\alpha\rangle$ into L.

Proof.

Let $\alpha \in K$. First suppose α is differentially algebraic over k. Let f be the minimal polynomial of $I(\alpha / k)$, the ideal of differential polynomials in $k\{X\}$ which vanish at α. Say f has order N. Let g be the image of f under σ. Let $\Gamma(v)=\{g(v)=0\} \cup\{h(v) \neq 0: h(X) \in l\{X\}$ where h has order $<N\}$. For any $h_{1}, \ldots, h_{n} \in l\{X\}$, where each h_{i} has order $<N$, we can find $\beta \in L$ such that $g(\beta)=0 \wedge \prod h_{i}(\beta) \neq 0$. Thus by ω-saturation there is β in L realizing $\Gamma(v)$. Extend σ by setting $\sigma^{*}(\alpha)=\beta$. It is easy to see that $I(\beta / l)$ is the image under σ of $I(\alpha / k)$. Thus $k\langle\alpha\rangle \cong l\langle\beta\rangle$.

If α is differentially transcendental over k, we use ω-saturation to find $\beta \in L$, β differentially transcendental over l. We can now extend σ by sending $\alpha \mapsto \beta$.

Theorem 2.4. DCF has elimination of quantifiers.

Proof.

It sufficed to show that if $K, L \models D C F, k \subseteq K, k \subseteq L, \bar{a} \in k, b \in K$, $\phi(v, \bar{w})$ is quantifier free and $K \vDash \phi(b, \bar{a})$, then $L \vDash \exists v \phi(v, \bar{a})$ (see [Marker] 1.5).

Since we may replace K and L by elementary extensions if necessary, we may without loss of generality assume that they are ω-saturated. We may also assume that k is the differential field generated by \bar{a}. By lemma 2.3, we can find $\beta \in L$ such that $k\langle b\rangle \cong k\langle\beta\rangle$. Thus $L \models \phi(\beta, \bar{a})$. So $L \models \exists v \phi(v, \bar{a})$.

Corollary 2.5. DCF is complete and model complete.
Proof. Let K and L be models of $D C F$. Then \mathbf{Q} (with the trivial derivation) is a substructure of both fields. Every sentence ϕ is provably equivalent with a quantifier free sentence ψ. But

$$
\begin{aligned}
K \models \phi & \Leftrightarrow K \vDash \psi \\
& \Leftrightarrow \mathbf{Q} \vDash \psi \\
& \Leftrightarrow L \models \psi \\
& \Leftrightarrow L \vDash \phi
\end{aligned}
$$

Thus $K \equiv L$, so DCF is complete.
Every quantifier eliminable theory is model complete.
Quantifier elimination leads to the following Nullstellensatz of Seidenberg.
Corollary 2.6 (Differential Nullstellensatz). If k is a differential field and Σ is a finite system of differential equations and inequations over k such that Σ has a solution in some $l \supseteq k$, then Σ has a solution in any differentially closed $K \supseteq k$.

Proof.

By quantifier elimination the assertion that there is a solution to Σ is equivalent in DCF to a quantifier free formula with parameters from k. Thus if there is any differentially closed $L \supseteq k$ containing a solution to Σ, then every differentially closed $K \supseteq k$ contains a solution to Σ. But if there is any differential field $l \supseteq k$ containing a solution to Σ, then by lemma 2.2 there is a differentially closed $L \supseteq l$. Thus Σ has a solution in any differentially closed $K \supseteq k$.

Exercise. Let K be differentially closed. Let Σ be any set of differential polynomials in $X_{1} \ldots X_{n}$. Let $V(\Sigma)=\left\{\bar{x} \in K^{n}: f(\bar{x})=0\right.$ for all $\left.f \in \Sigma\right\}$ and let $I(V)=\left\{g \in K\left\{X_{1} \ldots X_{n}\right\}: g(\bar{x})=0\right.$ for all $\left.\bar{x} \in V(\Sigma)\right\}$. Then $I(V(\Sigma))=\{\Sigma\}$ the smallest radical differential ideal containing Σ.

Let's make the quantifier elimination explicit. The atomic formulas in \mathcal{L} are of the form $f(\bar{x})=0$ where f is a differential polynomial. Thus by quantifier elimination every formula $\phi(\bar{v}, \bar{a})$ over a differential field k is equivalent to one of the form:

$$
\bigvee_{i=1}^{n}\left[\bigwedge_{j=1}^{m_{2}} f_{i, j}(\bar{v})=0 \wedge \bigwedge_{k=1}^{r_{i}} g_{i, j}(\bar{v}) \neq 0\right]
$$

where $f_{i, j}, g_{i, j} \in k\{\bar{X}\rangle$. Of course $\bigwedge g_{i, j}(\bar{v}) \neq 0$ if and only if $\prod g_{i, j}(\bar{v}) \neq 0$. Thus every formula is equivalent to one of the form:

$$
\bigvee_{i=1}^{n}\left[\bigwedge_{j=1}^{m_{i}} f_{i, j}(\bar{v})=0 \wedge g_{i}(\bar{v}) \neq 0\right]
$$

We next show that there is an intimate relationship between types for DCF and differential prime ideals. Let k be a differential field and let $S_{1}(k)$ be the 1-types of DCF with parameters from k. For each 1-type $p(v) \in S_{1}(k)$. Let $I_{p}=\{f \in k\{X\}:$ " $f(v)=0 " \in p\}$. It is easy to see that I_{p} is a prime differential ideal.

Lemma 2.7. $p \mapsto I_{p}$ is a bijection from $S_{1}(k)$ to the space of prime differential ideals over $k\{X\}$.

Proof.

Suppose $p, q \in S_{1}(k)$ and $p \neq q$. Then there is a formula $\phi(v, \bar{a}) \in p \backslash q$. By quantifier elimination there are differential polynomials $f_{i, j}, g_{i}$ such that

$$
\phi(v, \bar{a}) \Leftrightarrow \bigvee\left[\bigwedge f_{i, j}(v)=0 \wedge g_{i}(v) \neq 0\right]
$$

Thus $\phi(v, \bar{a}) \in p$ if and only if for some i all $f_{i, j} \in I_{p}$ but $g_{i} \notin I_{p}$. Since $\phi(v, \bar{a}) \in p-q$, we must have $I_{p} \neq I_{q}$. Thus $p \mapsto I_{p}$ is one to one.

For any differential ideal I, let K be a differentially closed field containing the fraction field of $k\{X\} / I$. Let p be the type over k realized by the image of the indeterminate X. Then $I_{p}=I$, so $p \mapsto I_{p}$ is onto.

For $p \in S_{1}(k)$ we let $R D(p)=R D\left(I_{p}\right)$.
Let $K \supset k$. If $\alpha \in K, f \in k\{X\}$, and $f(\alpha)=0$, we say that α is a generic solution of f, if and only if for all $g \in k\{X\}$ if $g \ll f$ then $g(\alpha) \neq 0$. For f irreducible, α is a generic solution of f if and only if $I(\alpha / k)=I(f)$.

Definition. Let k be a differential field. We say that $K \supseteq k$ is a differential closure of k if $K \vDash \mathrm{DCF}$ and for any $L \vDash \mathrm{DCF}$, if $L \supseteq k$, then there is an embedding $\sigma: K \rightarrow L$.

Of course DCF is a model complete theory. Thus any embedding $\sigma: K \rightarrow L$ is necessarily an elementary embedding. Therefore a differential closure of k is a model of DCF which is prime over k. Model theoretic considerations will allow us to prove that every k has a differential closure.

Recall that a theory T is ω-stable if for any $M \vDash T$ and $A \subset M,\left|S_{n}(A)\right|=$ $|A|+\aleph_{0}$.

Lemma 2.8. DCF is ω-stable.

Proof.

Let k be a differential field. We must show that $\left|S_{1}(k)\right|=|k|$. But there is a bijection between $S_{1}(k)$ and the space of differential prime ideals on $k\{X\}$. By lemma 1.8, each prime differential ideal is of the form $I(f)$ for some $f \in k\{X\}$. Thus $\left|S_{1}(k)\right|=|k\{X\}|=|k|$.

We may now appeal to the following important basic results from the model theory of ω-stable theories. If $M \supseteq A$ we say that M is prime over T if and only if for any $N \vDash T$ with $N \supseteq A$, there is an elementary map $j: M \rightarrow N$ fixing A.

We say that M is atomic over A if and only if every $\bar{m} \in M$ realizes an isolated type in $S_{n}(A)$.

Theorem 2.9 Let T be an ω-stable theory.
a) (Morley) For any A a substructure of a model of T, there is $M \vDash T$, such that $M \supset A$ and M is prime and atomic over A.
b) (Shelah) If M and N are prime over A, then there is an isomorphism $\sigma: M \rightarrow N$, which is the identity on A.

Corollary 2.10. If k is a differential field then k has a differential closure K. If K and L are two differential closures of k, then there is an isomorphism $\sigma: K \cong L$ such that σ is the identity on k. Moreover K is atomic over k.

Excercise. a) Show that a type $p \in S_{1}(k)$ is isolated if and only if there is g of order less than $R D\left(I_{p}\right)$ such that I_{p} is the only prime differential ideal containing the minimal polynomial of I_{p} and not containing g.
b) Show directly that the isolated types are dense. [hint: For $\phi(v, \bar{a})$, let $p \in S_{1}(k)$ be such that $R D(p)$ is minimal. Let f be the minimal polynomial of I_{p}. Show that $\phi(v, \bar{a}) \wedge f(v)=0$ isolates p.]
[Note: The above arguments can be used to show that DCF_{p} has prime models even though DCF_{p} is not ω-stable.]

The following lemma will be useful when we begin differential Galois theory.
Lemma 2.11. Let k be a differential field and let K be the differential closure of k. Then C_{K} is algebraic over C_{k}. In particular, if C_{k} is algebraically closed, then $C_{K}=C_{k}$.

Proof.
Let $a \in C_{K}$. Since K is atomic over $k, p=t(a / k)$ is atomic. Clearly $" D(v)=0 " \in p$. Thus $R D(p) \leq 1$.

If $R D(p)=1$, then, by the excercise above, there must be $f(X)$ of order 0 (ie. $f \in k[X]$) such that " $D(v)=0 \wedge f(v) \neq 0$ " isolates p. But there are $c \in C_{k}$ such that $f(c) \neq 0$ so this is impossible. Thus $R D(p)=0$.

Thus there is $f(X) \in k[X]$ such that $f(a)=0$. We claim that a is strongly algebraic over C_{k}. We may assume that f is the minimal polynomial of a over k. Thus $f(X)=\sum_{i=0}^{n} b_{i} X^{i}$, where $b_{n}=1$. Since $f(a)=0, D(f(a))=0$. But

$$
D(f(a))=D(a) \sum_{i=0}^{n-1}(i+1) b_{i+1} a^{i}+\sum_{i=0}^{n} D\left(b_{i}\right) a^{i}
$$

Since $D(a)=0, D(f(a))=\sum_{i=0}^{n} D\left(b_{i}\right) a^{i}$. Since $b_{n}=1, \sum_{i=0}^{n-1} D\left(b_{i}\right) a^{i}=0$. Since f is the minimal polynomial of a over k, we must have all $D\left(b_{i}\right)=0$. Thus all of the $b_{\imath} \in C_{k}$. So a is strongly algebraic over C_{k}.

The next lemma is another useful consequence of the fact that the differential closure of K is atomic over K.

Lemma 2.12. Let K be a differential field. Every element of the differential closure of K is differentially algebraic over K.

Proof.

Suppose a is in the differential closure F of K and a is differentially transcendental over K. Let $\psi(v)$ isolate $t p(a / K)$. Since a satisfies no differential polynomial equations over $K, \psi(v)$ we can assume that $\psi(v)$ is " $f(v) \neq 0$ " for some $f \in K\{X\}$. Suppose f has order n. There is $b \in F$ such that $b^{(n+1)}=0 \wedge f(b) \neq 0$. Clearly a and b have different types over k, contradicting the fact that ψ isolates the type of a over K.

Definition. A type $p(\bar{v}) \in S(A)$ is definable if for each formula $\phi(\bar{v}, \bar{w})$ there is a formula $d \phi(\bar{w})$ with parameters from A such that for all $\bar{a} \in A \phi(\bar{v}, \bar{a}) \in p$ if and only if $d \phi(\bar{a})$.

In a stable theory all types are definable. This has a very simple proof for differentially closed fields.

Exercise. Let k be a differential field and let $p \in S_{n}(K)$. Show that p is definable. [Hint: Use the Ritt basis theorem to find $f_{1}, \ldots, f_{m} \in k\{\bar{X}\}$ such that $\{g: " g(\bar{v})=0 " \in p\}$ is the smallest radical differential ideal containing f_{1}, \ldots, f_{m}. For $h \in k\{\bar{X}\}$, if $\phi(\bar{v})$ is " $g(\bar{v})=0$ ", then $d \phi$ is $\forall \bar{x}\left(\bigwedge f_{i}(\bar{v})=0 \rightarrow\right.$ $g(\bar{v})=0$). Use quantifier elimination to get definitions of all formulas.]

We conclude this section by proving that differentially closed fields satisfy uniform bounding.

Theorem 2.13. Let $K \vDash$ DCF. Suppose $\phi\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{l}\right)$ is an \mathcal{L} formula then there is an N such that for any $\bar{a} \in K^{l}$ if $\{\bar{x}: \phi(x, \bar{a})\}$ is finite then it has cardinality at most N.

Proof.

We first note that it suffices to prove this for $m=1$. If we can find uniform bounds for $\phi_{1}, \ldots, \phi_{n}$, then we can find uniform bounds for $\bigvee \phi_{i}$. Thus by quantifier elimination it suffices to consider

$$
\phi(x, \bar{y})=\bigwedge f_{i}(x, \bar{y})=0 \wedge g(\bar{x}, \bar{y}) \neq 0
$$

Let $\psi(x, \bar{y}, v)$ be the formula

$$
\bigwedge f_{i}(x, \bar{y})=0 \wedge(x-v) g(x, \bar{y})=1
$$

Suppose $\bar{a} \in K^{l}$ and

$$
\left\{x: \bigwedge \phi_{i}(x, \bar{a})\right\}=\left\{b_{1}, \ldots, b_{n}\right\}
$$

Then the collection of formulas $\left\{\psi\left(x, \bar{a}, b_{1}\right), \ldots, \psi\left(x, \bar{a}, b_{n}\right)\right\}$ is inconsistent, while every proper subset is consistent. This shows that theorem 2.13 is a consequence of the following lemma.

Lemma 2.14. Let K be a differentially closed field. Let $f_{1}, \ldots, f_{n} \in K\{\bar{X}, \bar{Y}\}$ and let $\phi(\bar{x}, \bar{y})$ be the formula $\bigwedge f_{i}(\bar{x}, \bar{y})=0$. There is a number s such that if $\left\{\phi\left(\bar{x}, \bar{c}_{1}\right), \ldots, \phi\left(\bar{x}, \bar{c}_{m}\right)\right\}$ is inconsistent, then some subset of size at most s is inconsistent.

Proof.

Let m_{1}, \ldots, m_{M} be a listing of monomials in $X_{i}^{(j)}$ containing all monomials occuring in any f_{l} (in particular assume $m_{1}=1$). Thus we can find $a_{i, j}$ differential polynomials in \bar{Y} such that $f_{i}=\sum_{j=1}^{M} a_{i, j} m_{j}$.

Suppose $N \geq M+2$. We will show that for any $\bar{c}_{1}, \ldots, \bar{c}_{N}$, if $\left\{\phi\left(\bar{v}, \bar{c}_{i}\right)\right.$: $1 \leq i \leq N\}$ is inconsistent, then there is a subset of size $M+1$ which is inconsistent.

Consider $F_{i}\left(Z_{1}, \ldots, Z_{M}, \bar{y}\right)=\sum a_{i, j} Z_{j}$. For each \bar{c}_{j}, let σ_{j} be the system of linear equations

$$
\bigwedge_{i=1}^{n} F_{i}\left(\bar{Z}, \bar{c}_{j}\right)=0
$$

and let

$$
\Sigma=\bigwedge_{j=1}^{N} \sigma_{j}
$$

Using elementary linear algebra we see that if Σ is inconsistent, there are i_{1}, \ldots, i_{M+1} such that $\bigwedge_{j=1}^{M+1} \sigma_{i}$, is inconsistent. In this case surely $\bigwedge_{j=1}^{M+1} \phi\left(\bar{v}, \bar{c}_{i}\right)$ is also inconsistent.

On the other hand if Σ is consistent there are i_{1}, \ldots, i_{M} such that the solutions to Σ are exactly the solutions to $\bigwedge_{j=1}^{M} \sigma_{i,}$. Suppose $\left\{\phi\left(\bar{x}, \bar{c}_{i j}\right): j=\right.$ $1, \ldots, M\}$ is consistent. Let $\bar{\alpha}$ be a solution. Building up monomials from $\bar{\alpha}$ we get $\left(1, \beta_{2}, \ldots, \beta_{M}\right)$ a solution to $\bigwedge_{j=1}^{M} \sigma_{i_{j}}$. But then $\left(1, \beta_{2}, \ldots, \beta_{M}\right)$ is a solution to Σ and $\bar{\alpha}$ is a solution to $\bigwedge_{j=1}^{N} \phi\left(\bar{x}, \bar{c}_{j}\right)$.

Thus if every $M+1$ element subset of $\left\{\phi\left(\bar{x}, \bar{c}_{j}\right): j=1, \ldots, N\right\}$ is consistent then the entire set is consistent.

Lemma 2.14 is a special case of a more general fact.
Definition. Let T be a first order theory. We say that $\phi(\bar{x}, \bar{a})$ has the finite cover property if for arbitrarily large N there are a_{1}, \ldots, a_{N} such that $\left\{\phi\left(\bar{x}, \bar{a}_{i}\right)\right.$: $i \leq N\}$ is inconsistent with T while every subset of size $N-1$ is consistent. We say that T has the finite cover property (FCP) if there is a formula with the finite cover property. Otherwise T is said to be NFCP.

In T is unstable then T has the finite cover property. Both uniform bounding and lemma 2.14 are weak forms of NFCP. Poizat showed using the method of
pairs that the theory of differentially closed fields has NFCP. In fact, by a result of Shelah, if T has uniform bounding and elimination of imaginaries (which we will prove for DCF in the next chapter), then T has NFCP.

References

The first work on the model theory of differentially closed fields was done by Robinson, though this work was influenced by earlier work of Seidenberg. Blum (see [Blum]) considerably simplified Robinson's axioms and was the first to use stability theoretic methods. The proof of uniform bounding given here is due to van den Dries and works equally well for separably closed fields.

The model theoretic results of Morley and Shelah can be found in Sacks' Saturated Model Theory or Lascar's Stability in Model Theory.

Differentially closed fields of prime characteristic are also interesting. They have a stable non-superstable theory and we can show existence and uniqueness of differential closures. See [Wood] for more information on DCF_{p}.

§3. Elimination of Imaginaries

Shelah introduced the structure $M^{\text {eq }}$ obtained by adding imaginary elements which are names for equivalence classes of \emptyset-definable equivalence relations. Imaginaries smooth out many arguments from stability theory. In some cases we can show that the introduction of imaginary elements is unnecessary. Elimination of imaginaries turns out to be one of the central ideas in the model theory of fields. In particular if we can eliminate imaginaries then we may represent definable quotients as definable objects.

We will show that differentially closed fields have elimination of imaginaries. We first work in a general setting.

Definition. Let T be any theory and let M be a suitably saturated model of T. Let p be a (possibly incomplete) type over M. We say that B is a canonical base for p if B is definably closed and whenever σ is an automorphism of M, σ fixes the realizations of p (setwise) if and only if it fixes B pointwise.

Since we do not require p to be complete it makes sense to talk about canonical bases for formulas.

Lemma 3.1. Suppose B is a canonical base for $\phi(\bar{v}, \bar{a})$. Then there is a formula $\psi(\bar{v}, \bar{w})$ and $\bar{b} \in B$ such that $\phi(\bar{v}, \bar{a}) \leftrightarrow \psi(\bar{v}, \bar{b})$ and $\psi(\bar{v}, \bar{b}) \nrightarrow \psi(\bar{v}, \bar{b})$ for all $\bar{b}^{\prime} \neq \bar{b}$.

Proof.

Let $\Gamma(\bar{v})=\{\psi(\bar{v}): \psi$ has parameters from B and $\phi(\bar{v}, \bar{a}) \rightarrow \psi(\bar{v})\}$. We will show that $\Gamma(\bar{v}) \rightarrow \phi(\bar{v}, \bar{a})$. Suppose not. Then by saturation there is $\bar{c} \in M$ such that $\Gamma(\bar{c})$ and $\neg \phi(\bar{c}, \bar{a})$. If $t\left(\bar{c}^{\prime} / B\right)=t(\bar{c} / B)$, then there is an automorphism of M fixing B and sending \bar{c} to \bar{c}^{\prime}. Since any automorphism which fixes B normalizes $\phi(\bar{v}, \bar{a})$, we have $\neg \phi\left(\bar{c}^{\prime}, \bar{a}\right)$. Thus $t(\bar{c} / B) \rightarrow \neg \phi(\bar{v}, \bar{a})$. Hence there is a formula $\theta(\bar{v})$ with parameters from B such that $\theta(\bar{v}) \in t(\bar{c} / B)$ and $\theta(\bar{v}) \rightarrow \neg \phi(\bar{v}, \bar{a})$. But then $\neg \theta(\bar{v}) \in \Gamma$, contradicting $\Gamma(\bar{c})$. Thus $\Gamma(\bar{v}) \rightarrow \phi(\bar{v}, \bar{a})$ and by compactness there is a formula $\psi_{0}(\bar{v}, \bar{b})$ with $\bar{b} \in B$ such that $\phi(\bar{v}, \bar{a}) \leftrightarrow \psi_{0}(\bar{v}, \bar{b})$. (Here we have just reproven the well known fact that a set X is definable from A if and only if in any saturated enough model every automorphism that fixes A, normalizes $X)$.

If \bar{b} and \bar{b}^{\prime} realize the same type over the empty set then there is an automorphism σ taking \bar{b} to \bar{b}^{\prime}. Since this automorphism does not fix B, it does not normalize $\phi(\bar{v}, \bar{a})$. Thus $\psi_{0}(\bar{v}, \bar{b}) \not \nleftarrow \psi_{0}\left(\bar{v}, \bar{b}^{\prime}\right)$. Thus there is $\theta(\bar{w}) \in t(\bar{b})$, such that

$$
\theta(\bar{c}) \wedge \bar{c} \neq \bar{b} \rightarrow\left(\psi_{0}(\bar{v}, \bar{b}) \nleftarrow\left(\psi_{0}(\bar{v}, \bar{c})\right) .\right.
$$

Let $\psi(\bar{v}, \bar{w})=\psi_{0}(\bar{v}, \bar{w}) \wedge \theta(\bar{w})$.
In particular the canonical base for a formula will be the definable closure of a finite set.

Definition. A theory T admits elimination of imaginaries if every formula $\phi(\bar{v}, \bar{a})$ has a canonical base.

The next lemma gives the connection between elimination of imaginaries and equivalence relations.

Lemma 3.2. Suppose T admits elimination of imaginaries and has two constant symbols. Let $M \vDash T$ and let E be a \emptyset-definable equivalence relation on M^{n}. There is a \emptyset-definable $f: M^{n} \rightarrow M^{m}$ such that $x E y \Leftrightarrow f(x)=f(y)$.

Proof.

By elimination of imaginaries and 3.1, for each formula $\phi(\bar{v}, \bar{a})$, there is a formula $\psi_{\bar{a}}(\bar{v}, \bar{w})$ and a unique \bar{b} such that $\phi(\bar{v}, \bar{a}) \leftrightarrow \psi_{\bar{a}}(\bar{v}, \bar{b})$. By compactness we can find $\psi_{1}, \ldots, \psi_{n}$ such that for all \bar{a} there is an i and a unique \bar{b} such that $\phi(\bar{v}, \bar{a}) \leftrightarrow \psi_{i}(\bar{v}, \bar{b})$. By the usual coding tricks we can reduce to a single formula ψ (a sequence made up of the distinguished constants is added to the witnesses \bar{b} to code up the least i such that ψ_{i} works).

To prove the lemma let $\phi(\bar{v}, \bar{w})$ be $\bar{v} E \bar{w}$ and let f be the functions $\bar{a} \mapsto \bar{b}$, where \bar{b} is unique such that $\bar{v} E \bar{a} \Leftrightarrow \psi(\bar{v}, \bar{b})$.

The next lemma gives a test for elimination of imaginaries. We say that B is a canonical base for a finite set of types if and only if an automorphism permutes the types if and only if it fixes B.

Lemma 3.3. Let T be an ω-stable theory and let $M \vDash T$ be suitably saturated. If every finite set of conjugate complete types over M has a canonical base, then T admits elimination of imaginaries.

Proof.

For any formula $\phi(\bar{x}, \bar{y})$, let $E_{\phi}(\bar{y}, \bar{z}) \Leftrightarrow \forall \bar{x}(\phi(\bar{x}, \bar{y}) \leftrightarrow \phi(\bar{x}, \bar{z}))$. An automorphism of M fixes $\phi(\bar{x}, \bar{a})$ if and only if it preserves the E_{ϕ}-class of \bar{a}. Let p_{1}, \ldots, p_{n} be the global types of maximal rank that contain $E_{\phi}(\bar{y}, \bar{a})$.

We can partition $\left\{p_{1}, \ldots, p_{n}\right\}$ into finitely many conjugacy classes. For each class we can find a canonical base B.

Let A be the union of the canonical bases. Clearly an automorphism permutes the p_{i} if and only if it fixes A. An automorphism of M permutes p_{1}, \ldots, p_{n} if and only if it fixes the E_{ϕ} class of \bar{a}. Thus A is a canonical base for $\phi(\bar{x}, \bar{a})$.

Elimination of imaginaries for algebraically closed fields, differentially closed fields and separably closed fields can be proved using the following classical theorem from algebraic geometry.

Definition. Let K be a field and let I be an ideal in $K[\bar{X}]$. We say that k is a field of definition for I if I is generated by polynomials in $k[\bar{X}]$.

Theorem 3.4. Every ideal I in $K[\bar{X}]$ has a unique smallest field of definition k. Any automorphism of K which fixes I fixes k pointwise.
Proof. Let M be a basis of monomials for $K[\bar{X}] / I$ as a vector space over K. Each monomial $u \in K[\bar{X}]$ can be written as $\sum a_{u, i} m_{i}+g_{u}$ where $a_{u, i} \in K$, $m_{i} \in M$ and $g_{u} \in I$.

Let k be the subfield of K generated by all the $a_{u, i}$.
For any $f \in K[\bar{X}], f$ can be written as $\sum b_{u} u$, where each u is a monomial. Thus

$$
\begin{aligned}
f & =\sum b_{u} u=\sum b_{u}\left(u-\sum a_{u, i} m_{i}\right)+\sum b_{u}\left(\sum a_{u, i} m_{i}\right) \\
& =\sum b_{u}\left(u-\sum a_{u, i} m_{i}\right)+\sum c_{i} m_{i}
\end{aligned}
$$

If f is in I, then, since each $u-\sum a_{u, i} m_{i}$ is in I and the m_{i} are a basis for $K[\bar{X}] / I$, each of the $c_{i}=0$. Thus the $u-\sum a_{u, i} m_{i}$ generate the ideal I, but $u-\sum a_{u, i} m_{i} \in k[\bar{X}]$. So k is a field of definition for I.

Suppose l is a second field of definition for I. Let $f_{1}, \ldots, f_{s} \in l[\bar{X}]$ generate I. For each monomial u, there are $g_{u, 1}, \ldots, g_{u, s}$ in $K[\bar{X}]$ such that $u-\sum a_{u, i} m_{i}=$ $\sum g_{u, i} f_{i}$. Viewing the $a_{u, i}$ and $g_{u, i}$ as variables, we get a system of linear equations over $l[\bar{X}]$. This system has a solution in K and hence in l. But then the m_{i} form a basis for $K[\bar{X}] / I$, so if $u-\sum c_{u, i} m_{i} \in I$ we must have $c_{u, i}=a_{u, i}$. Thus $k \subset l$.

Let α be an automorphism of K fixing I. For each monomial $u, \alpha(u-$ $\left.\sum a_{u, i} m_{i}\right)=u-\sum \alpha\left(a_{u, i}\right) m_{i} \in I$. Again since the m_{i} form a basis for $K[\bar{X}] / I$, we must have $\alpha\left(a_{u, i}\right)=a_{u, i}$. Thus α fixes k.

Corollary 3.5. Let $\left\{I_{1}, \ldots, I_{n}\right\}$ be a set of conjugate prime ideals in $K[\bar{X}]$. There is a subfield k such that if α is an automorphism of K, α permutes I_{1}, \ldots, I_{n} if and only if α fixes k pointwise.

Proof.
Let $I=\bigcap I_{j}$. Since the I_{j} are conjugate, this is an irredundant primary decomposition of I. Let k be the field of definition of I. Any automorphism of K which permutes the I_{j} fixes I and hence fixes k pointwise. On the other hand, if α fixes k pointwise, α fixes I. Hence by the uniqueness of primary decomposition (there is a unique way to write a radical ideal as an intersection of prime ideals), α must permute the I_{j}.

We next give a version for differential fields.
Corollary 3.6. Let $\left\{I_{1}, \ldots, I_{n}\right\}$ be a set of conjugate differential prime ideals of $K\left\{X_{1}, \ldots, X_{m}\right\}$. There is a subfield $k \subseteq K$ such that an automorphism of K permutes the ideal I_{j} if and only if it fixes k pointwise.

Proof.

Let $J=\bigcap I_{j} . J$ is a radical differential ideal. Thus by the Ritt basis theorem it is the radical of a finitely generated differential ideal. Let f_{1}, \ldots, f_{s} be such that $J=\left\{f_{1}, \ldots, f_{s}\right\}$. There is an N such that all $f_{i} \in K\left[X_{i}^{(j)}: i \leq\right.$ $m, j \leq N]$. Let $J_{0}=J \cap K\left[X_{i}^{(j)}: i \leq m, j \leq N\right]$. Let k be the field of definition of J_{0}. Clearly any automorphism of K fixes J if and only if it fixes J_{0} if and only if it fixes k pointwise. By theorem 1.19 and the uniqueness of the decomposition for radical ideals, an automorphism fixes J if and only if it permutes the I_{j}.

Theorem 3.7. The theory of algebraically closed fields and the theory of differentially closed fields admit elimination of imaginaries.

Proof.

a) algebraically closed fields:

Let K be algebraically closed. For $p \in S_{n}(K)$, let

$$
I_{p}=\left\{f(\bar{X}) \in K\left[X_{1}, \ldots, X_{n}\right]: " f(\bar{v})=0 " \in p\right\}
$$

This map is a bijection between n-types and prime ideals in $K[\bar{X}]$. If p_{1}, \ldots, p_{n} is are conjugate complete types, we get a canonical base for the set by taking the field of definition for $I_{p_{1}}, \ldots, I_{p_{n}}$ given by 3.5 . By lemma 3.3, the theory has elimination of imaginaries.
b) differentially closed field:

Similar using 3.6.

References

All of the material on elimination of imaginaries is due to Poizat. It was first proved in [Poizat 3], though our treatment here more closely follows that in Cours de Théorie des Modèles. A different proof of elimination of imaginaries for algebraically closed fields is given in §4 of [Marker].

The proof given here on the existence of fields of definition for ideals is from Lang's Introduction to Algebraic Geometry.

§4. Linear Differential Equations

In this short section we will review some of the basic theory of linear differential equations. This will be used in our analysis of ranks in $\$ 5$.

Let k be a differential field.
Definition: We define the Wronskian of X_{0}, \ldots, X_{n} to be the determinant

$$
W\left(X_{0}, \ldots, X_{n}\right)=\left|\begin{array}{cccc}
X_{0} & X_{1} & \ldots & X_{n} \\
X_{0}^{\prime} & X_{1}^{\prime} & \ldots & X_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
X_{0}^{(n)} & X_{1}^{(n)} & \ldots & X_{n}^{(n)}
\end{array}\right|
$$

Lemma 4.1: Let $x_{0}, \ldots, x_{n} \in k$, then $W\left(x_{0}, \ldots, x_{n}\right)=0$ if and only if x_{0}, \ldots, x_{n} are linearly dependent over C_{k}.
proof:
(\Leftarrow) Suppose $c_{0}, \ldots, c_{n} \in C_{k}$ are not all zero and $\sum c_{i} x_{i}=0$. Taking the derivative: $0=D\left(\sum c_{i} x_{i}\right)=\sum c_{i} x_{i}^{\prime}$. Continuing we see that

$$
\sum c_{i}\left(\begin{array}{c}
x_{i} \\
\vdots \\
x_{i}^{(n)}
\end{array}\right)=0
$$

Since the columns of the matrix are linearly dependent, $W\left(x_{0}, \ldots, x_{n}\right)=0$.
(\Rightarrow) We proceed by induction on n. Suppose $W\left(x_{0}, \ldots, x_{n}\right)=0$, then there are $a_{i} \in k$, not all zero such that

$$
\sum a_{i}\left(\begin{array}{c}
x_{i} \\
\vdots \\
x_{i}^{(n)}
\end{array}\right)=0
$$

Without loss of generality we assume that $a_{0}=1$. By induction we may assume that $W\left(x_{1}, \ldots, x_{n}\right) \neq 0$. Thus $x_{0}^{(j)}+\sum_{i=1}^{n} a_{i} x_{i}^{(j)}=0$ for each $j<n$. Taking the derivative we see that

$$
x_{0}^{(j+1)}+\sum_{i=1}^{n} a_{i} x_{i}^{(j+1)}+\sum_{i=1}^{n} D\left(a_{i}\right) x_{i}^{(j)}=0
$$

Thus

$$
\sum_{i=1}^{n} D\left(a_{i}\right)\left(\begin{array}{c}
x_{i} \\
\vdots \\
x_{i}^{(n-1)}
\end{array}\right)=0
$$

But then the columns of the Wronskian determinant for x_{1}, \ldots, x_{n} are linearly dependent unless all $D\left(a_{i}\right)=0$.

Let $L(X)=X^{(n)}+\sum_{i=0}^{n-1} a_{i} X^{(i)}$, where $a_{0}, \ldots, a_{n-1} \in k$. We consider first the homogeneous linear equation $L(X)=0$

Lemma 4.2: If $x_{0}, \ldots, x_{n} \in k$ are solutions of $L(X)=0$, then x_{0}, \ldots, x_{n} are linearly dependent over C_{k}.
proof:

$$
W\left(x_{0} \ldots x_{n}\right)=\left|\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{n} \\
x_{0}^{\prime} & x_{1}^{\prime} & \ldots & x_{n}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
-\sum a_{i} x_{0}^{(i)} & -\sum a_{i} x_{1}^{(i)} & \ldots & -\sum a_{i} x_{n}^{(i)}
\end{array}\right|=0
$$

as the rows are linearly dependent over k.
Let $K \supset k$ be differentially closed.
Lemma 4.3: In K there are x_{1}, \ldots, x_{n} linearly independent solutions to $L(X)=$ 0.

proof:

Given x_{1}, \ldots, x_{m} with $m<n$. We can find $x_{m+1} \in K$ such that $L\left(x_{m+1}\right)=$ 0 but $W\left(x_{1}, \ldots, x_{m+1}\right) \neq 0$. $\left(W\left(x_{1}, \ldots, x_{m+1}\right)\right.$ has order m so this system can be solved in any differentially closed field.)

It is also easy to see that if x_{1}, \ldots, x_{n} are solutions to $L(X)=0$. Then $L\left(\sum c_{i} x_{i}\right)=0$ for any constants c_{1}, \ldots, c_{n}. Summarizing:

Theorem 4.4: If $K \supset k$ is differentially closed then there are $x_{1}, \ldots, x_{n} \in K$ which are linearly independent over C_{K} such that the solution set for $L(X)=0$ is exactly the span of x_{1}, \ldots, x_{n} over C_{K}.

We call $\left\{x_{1} \ldots x_{n}\right\}$ a fundamental system of solutions to $L(X)=0$.

If $b \in K$ and y_{0}, y_{1} are solutions to $L(X)=b$, then $L\left(y_{0}-y_{1}\right)=L\left(y_{0}\right)-$ $L\left(y_{1}\right)=0$. Thus if y is a fixed solution to $L(X)=b$, then every other solution is of the form $x+y$ where x is a solution to $L(X)=0$. In particular if $x_{1}, \ldots, x_{n} \in$ K is a fundamental system of solutions to $L(X)=0$ then $\left\{y+\sum c_{i} x_{i}: c_{i} \in C_{K}\right\}$ is the set of solutions to $L(X)=b$ in K.

Definition: Let K / k be differential fields. We say that K is a Picard-Vessiot extension of k if there is a linear differential equation $L(X)=0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subset$ K a fundamental system of solutions such that $K=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $C_{k}=C_{K}$. We say that K / k is a Picard-Vessiot extension for L.

The following theorem of Kolchin follows easily from the construction of differential closures.

Theorem 4.5: Let k be a differential field with C_{k} algebraically closed and let $L(X)=0$ be a homogeneous linear differential equation over k. There is K / k a Picard-Vessiot extension for L. Moreover K is unique.

proof:

Let F be the differential closure of k. By lemma $2.13 C_{F}=C_{k}$. By theorem 4.4 we can find $x_{1}, \ldots, x_{n} \in F$ a fundamental system of solutions for $L(X)=0$. Thus $K=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a Picard-Vessiot extension of k.

Suppose K_{1} is a second Picard-Vessiot extension of k. Let F_{1} be the differential closure of K_{1}. By lemma $2.12 C_{F_{1}}=C_{K_{1}}=C_{k}$.

Since F is the differential closure of k, we can embedded F in F_{1}. Let $y_{1} \ldots y_{n}$ be a fundamental system of solutions of $L(X)=0$ such that $K_{1}=$ $k\left\langle y_{1} \ldots y_{n}\right\rangle$. But then each x_{i} is in the span of $\left(y_{1}, \ldots, y_{n}\right)$ over C_{k} and each y_{i} is in the span of $\left(x_{1} \ldots x_{n}\right)$ over C_{k}. Thus $K=K_{1}$. Thus $L(X)=0$ determines a unique Picard-Vessiot extension of k.

References

Most of the material in this section can be found in any basic differential equations text (for example [Hirsh-Smale]). Kolchin's theorem on Picard-Vessiot extensions is in [Kolchin 1].

§5. Types and Ranks in Differentially Closed Fields

Throughout this section we work inside \mathbf{K} a very saturated differentially closed field.

Recall that a is algebraic over a set B if and only if there is a formula $\phi(v, \bar{w})$ and $\bar{b} \in B$ such that $\phi(a, \bar{b})$ and $\{x: \phi(x, \bar{b})\}$ is finite. We say that a is strongly algebraic over B if a is a zero of an ordinary polynomial with coefficients in the subfield generated by B. For any $b, D(b)$ is algebraic over b but not necessarily strongly algebraic over b. The next lemma sorts out the relationship between these notions.

Lemma 5.1: Let k be the differential field generated by B. Then a is algebraic over B if and only if it is strongly algebraic over k.

Proof:

Suppose a is algebraic over B. Consider $I=I(a / k)$. If $R D(I)=0$, then a is strongly algebraic over k. Suppose $R D(I) \geq 1$. Let $f(X)$ be the minimal polynomial of I. Let K be the differential closure of k. Let $f_{1} \in K\{X\}$ be an irreducible factor of f. Then f_{1} and f have the same order. By saturation there is $b \in \mathbf{K}$ such that $I(b / K)=I\left(f_{1}\right)$. By lemma $1.10, I(b / K) \cap k\{X\}=I$. Thus b and a realize the same type over k. But $b \notin K$, while, since a is algebraic over k, anything with the same type over k must be in the differential closure K, a contradiction.

The other direction is obvious.
Exercise. As a corollary show that the definable closure of $B \subset K \vDash D C F$ is just the differential field generated by B.

We next give a concrete algebraic characterization of forking for one types. Suppose $K \subset L, q \in S_{1}(K), p \in S_{1}(L)$ and $q \subseteq p$. We will show that p forks over K if and only if $R D(p)<R D(q)$. We begin by recalling some basic facts and definitions from stability theory. [Alternatively, the reader could just take this as the definition of forking.]

Definition: Let $p \in S_{1}(k)$. We say that $\phi(v, \bar{w})$ is represented in p if and only if for some $\bar{a} \in k, \phi(v, \bar{a}) \in p$.

We say that $q \supseteq p$ is an heir of p if every formula represented in q is represented in p.

If $K \vDash \mathrm{DCF}$ and $L \supseteq K$, then any $p \in S_{1}(K)$ has a unique heir in $S_{1}(L)$.
We use the following as our definition of forking.
Definition: Let $k \subseteq l, p \in S_{1}(k), q \in S_{1}(l)$ and $p \subseteq q$. We say that q does not fork over k if for all $M, N \vDash D C F$ such that $k \subseteq M, M \cup l \subseteq N$, there is $p_{1} \in S_{1}(M), q_{1} \in S_{1}(N)$ such that $p \subseteq p_{1}, q \subseteq q_{1}$ and q_{1} is the heir of p_{1}.

We will also use the following lemma.

Lemma 5.2: Let k, l, p, q be as above. Suppose for every $K \vDash$ DCF with $l \subseteq K$ there is $p_{1} \in S_{1}(K)$ such that $p_{1} \supseteq p$ and for all $q_{1} \in S_{1}(K)$, if $q_{1} \supseteq q$, then q_{1} represents a formula not represented in p_{1}. Then q forks over k.

We can now give our characterization of forking.
Theorem 5.3 Let $k \subseteq l$ be differential fields, let $p \in S_{1}(k), q \in S_{1}(l)$ and $p \subseteq q$. Then q forks over k if and only if $R D(q)<R D(p)$.

Proof:

Suppose $R D(q)<R D(p)$. Let $K \vDash D C F$, with $K \supseteq l$. Let f be the minimal polynomial of I_{p}. Let $f_{1} \in K\{X\}$ be an irreducible factor of the same order. Let $p_{1} \in S_{1}(K)$ be the type of a generic solution of f_{1}. Then $I_{p_{1}}=I\left(f_{1}\right)$ and $I\left(f_{1}\right) \cap k\{X\}=I(f)$, so $p \subseteq p_{1}$. Then $R D\left(p_{1}\right)=R D(p)$. Let $q_{1} \in S_{1}(K)$ be any extension of q. Since q contains some equation of order less than $R D(p)$, q_{1} represents a formula not represented in p_{1} (namely a formula asserting that a non-trivial differential polynomial of order less than $R D(p)$ vanishes). Thus by lemma $5.2, q$ is a forking extension of p.

Suppose $R D(p)=R D(q)$. Let $K, L \models \mathrm{DCF}$ with $K \supseteq k$ and $L \supseteq l \cup K$. Let f be the minimal polynomial of I_{p}, and g be the minimal polynomial of I_{q}. Then $g \mid f$ (by lemma 1.4). Let g_{1} be an irreducible factor of g in $L\{X\}$ of the same order and let q_{1} be the type of a generic solution to g_{1}. Then $p \subseteq q_{1}$ and $R D\left(q_{1}\right)=R D(p)$. Let p_{1} be the restriction of q_{1} to K. It suffices to show that q_{1} is the heir of p_{1}.

Let f_{1} be the minimal polynomial of p_{1}. Then f_{1} is irreducible in $K\{X\}$ and remains irreducible in $L\{X\}$. But since $f_{1} \in I\left(g_{1}\right), g_{1} \mid f_{1}$. Thus $g_{1}=a f_{1}$ for some $a \in L$. Without loss of generality, we may assume that $g_{1}=f_{1}$.

Let $\phi(v, \bar{a})$ be a formula in q_{1}. By quantifier elimination, there is a differential polynomial $h(v, \bar{a})$ of order $<R D\left(q_{1}\right)$ such that

$$
\text { DCF } \vdash\left(f_{1}(v)=0 \wedge h(v, \bar{w}) \neq 0\right) \rightarrow \phi(v, \dot{\bar{w}})
$$

But $f_{1}(v)=0 \in p_{1}$ and $h(v, \bar{b}) \neq 0 \in p_{1}$ for any \bar{b}. Thus $\phi(v, \bar{b})$ is represented in p_{1}. Thus q_{1} is the heir of p_{1} and q is a nonforking extension of p.

Exercise: For n-types we can give the following characterization of forking. For $p \in S_{n}(K)$. Let K be a differentially closed field, $p(\bar{x}) \in S_{n}(K)$, and $k \subseteq K$. Then p does not fork over k if and only if $V\left(I_{p \mid k}\right)$ is an irreducible component of $V\left(I_{p}\right)$, where $V(I)=\{\bar{x}: f(\bar{x})=0$ for all $f \in I\}$.

We now define several notions of rank.
a) U-rank:

Let $p \in S_{1}(k)$. We say $R U(p) \geq \alpha+1$ if and only if there is q a forking extension of p with $R U(q) \geq \alpha$. For β a limit ordinal $R U(p) \geq \beta$ if and only if for all $\alpha<\beta, R U(p) \geq \alpha$. In particular $R U(p)=0$ if and only if p is algebraic.
b) Morley rank:

Let $p \in S_{1}(k)$. For β a limit ordinal $R M(p) \geq \beta$ if and only if for all $\alpha<\beta$, $R M(p) \geq \alpha$. We say $R M(p) \geq \alpha+1$ if and only if for any $K \supseteq k$, if $K \models D C F$, then p is a limit point of the types $q \in S_{1}(K)$ with $R M(q) \geq \alpha$.

If q is a forking extension of p then $R M(q)<R M(p)$. Thus $R M(p) \geq$ $R U(p)$.
c) depth:

For P a differential prime ideal in $k\{X\}$, let the depth of P be the largest N such that there are differential prime ideals $P \subset P_{1} \subset P_{2} \ldots \subset P_{N}$.

We can define $R H(p)$ to be the supremum of the depths of differential prime ideals $P \subset K\{X\}$ where $K \supseteq k$ and $P \cap k\{X\}=I_{p}$. [Note in [Poizat 2] there are three possibly inequivalent definitions of depth. Poizat refers to this notion as "height" though we find "depth" more descriptive.]

Lemma 5.4 Let $p \in S_{1}(k)$. Then $R U(p) \leq R M(p) \leq R H(p) \leq R D(p)$.
Proof:

1) We always have $R U(p) \leq R M(p)$.
2) We claim that for any differentially closed field K the depth of a differential prime ideal is at most $R D(p)$. Suppose $P_{0} \subseteq P_{1}$ are differential prime ideals. Let f_{i} be the minimal polynomial of P_{i}. If the order of f_{1} is equal to the order of f_{0} then f_{1} divides f_{0}. Since P_{0} is prime this contradicts the fact that f_{0} is the minimal polynomial of P_{0}.
3) We claim that $R M(p) \leq R H(p)$. It suffices to prove this for types over a suitably saturated $K \models \mathrm{DCF}$. In this case $R M(p) \geq \alpha+1$ if and only if p is a limit point of the types of Morley rank at least α.

Let $D^{n}(K)$ be the types of rank at least n. By induction, if $p \in D^{n}(K)$, then $R H(p) \geq n$. Suppose $p \in D^{n}(K)$ and I_{p} has depth n. Let f be the minimal polynomial of I_{p} and let s be the separant of f. Suppose $q \in D^{n}(K)$ and " $f(v)=0 \wedge s(v) \neq 0$ " $\in q$. Then $I_{q} \supseteq I_{p}$. Since, I_{p} has depth n and I_{q} has depth at least n, we must have $p=q$. Thus " $f(v)=0 \wedge s(v) \neq 0$ " isolates p in $D^{n}(K)$ so $R M(p)=n$.

Note in particular that p is an algebraic type if and only if $R U(p)=$ $R M(p)=R H(p)=R D(p)=0$. This yields a simple but useful corollary.

Corollary 5.5: If $R D(p)=1$, then $R U(p)=R M(p)=R H(p)=1$.
In algebraically closed fields there are analogous notions of rank: U-rank, Morley rank, depth and Krull dimension (transcendence degree) and these notions are all equal.

We next argue that the constant field of a differentially closed field is a pure algebraically closed field.

Lemma 5.6 Let K be a differentially closed field. Suppose $A \subseteq C_{K}^{n}$ is K definable. Then A is definable in the pure field $\left(C_{K},+, \cdot\right)$.

Proof:

By quantifier elimination, it suffices to prove this for sets of the form $f(\bar{x})=$ 0 , where $f \in K\{\bar{X}\}$. Say $f(\bar{X})=g(\bar{X})+h(\bar{X})$, where $g(\bar{X}) \in K[\bar{X}], h(\bar{X}) \in$ $K\{\bar{X}\}$ and every monomial in h involves some $X_{i}^{(j)}$ where $j \geq 1$. Thus for $\bar{x} \in C_{K}^{n}, h(\bar{x})=0$. Thus without loss of generality the definable set A is just the points in C_{K} which are solutions to a polynomial equation over K.

By definability of types (in the theory of algebraically closed fields), if $B \subseteq$ K^{n} is definable in the pure field K, then $C_{K}^{n} \cap B$ is definable in the pure field C_{K}. Thus our set A is definable in the pure field C_{K}.

Corollary 5.7: If $p \in S_{n}(K)$ is a type of an n-tuple of constants, then $R U(p)$ is equal to the transcendence degree of $K\langle\bar{\alpha}\rangle / K$ where $\bar{\alpha}$ realizes p.

Corollary 5.8: If p is the type of a generic solution of an $n^{\text {th }}$ order linear differential equation $L(X)=0$, then $R D(p)=R U(p)=n$.

Proof:

Let $R D(p)=n$. Let $K \vDash \mathrm{DCF}$ with $L(X) \in K\{X\}$. Let $x_{1}, \ldots, x_{n} \in K$ be a fundamental system of solutions for $L(X)=0$. There is a definable bijection between solutions to $L(X)=0$ and C_{K}^{n}. Thus the rank of the set of solutions is equal to the rank of C^{n}. But $R U\left(C^{n}\right)$ is the same as the rank computed in the pure algebraically closed field. For a generic solution, \bar{c} are algebraically independent, thus $R U(p)=n$.

Corollary 5.9. If p is the type of a differential transcendental, then $R U(p)=$ $R D(p)=\omega$.

Proof.

For each n, p has a forking extension where for some new element a we look at the generic solution of $X^{(n)}=a$. This is a type of U-rank n.

Corollary 5.10 DCF has Morley rank $\omega+1$.
We next give two bad examples. The first shows that it is possible to have $R M(p)=1$ with $R H(p)=2$. In the second we show that it is possible to have $R H(p)=1$ and $R D(p)=2$.
Open Problem. Do we always have $R M(p)=R U(p)$?
We first give a non-linear example where U-rank is equal to the differential rank. Let $f(X) \in C[X]$ be a polynomial with constant coefficients and consider the differential equation $X^{\prime \prime}=X^{\prime} f(X)$. Let $g(X) \in C[X]$ be a primitive of f, that is $\frac{d g}{d X}=f$. Let K be a differentially closed field and let p be the type of a generic solution of $X^{\prime \prime}=X^{\prime} f$. Suppose $F \supset K$ and let $c \in C_{F}-C_{K}$. Let q
be the type of a generic solution to $X^{\prime}=g(X)+c$. It is easy to see that q is a forking extension of p and $R D(q)=1$. Thus $R U(p)=R D(p)=2$.

Consider next the differential equation $X^{\prime \prime}=\frac{X^{\prime}}{X}$. If we apply the same ideas we are tempted to say that for c a new constant any solution to $X^{\prime}=\ln (X)+c$ is a solution to the original equation. This does not work since the second equation is not an algebraic differential equation and hence does not make sense over an arbitrary differential field. We will see that in fact the type of a generic solution to $X^{\prime \prime}=\frac{X^{\prime}}{X}$ has Morley rank one.

We first argue that this type has depth two. Let P_{0} be the ideal $I\left(X X^{\prime \prime}-X^{\prime}\right)$ and let $P_{1}=I\left(X^{\prime}\right)$. Clearly if $X^{\prime}=0, X^{\prime \prime}=0$. So $X X^{\prime \prime}-X^{\prime}=0$. Thus $P_{0} \subset P_{1}$. Further for any constant $c, I(X-c) \supset P_{1}$, thus P_{0} has depth at least two. But the depth of P_{0} is bounded above by $R D\left(P_{0}\right)=2$. Thus P_{0} has depth two. Lemma 5.12 shows that $I\left(X^{\prime}\right)$ is the only depth one prime ideal containing $X X^{\prime \prime}-X^{\prime}$. Before that we give a simple lemma about differentiating polynomials.
Definition. Suppose $f(X) \in K[\bar{X}]$. Let $f^{*}(\bar{X}) \in K[\bar{X}]$ be the polynomial obtained by differentiating the coefficients of f. That is if $f(X)=\sum a_{i} m_{i}$, where m_{i} is a monomial in the various $X_{i}^{(j)}$, then $f^{*}(X)=\sum D\left(a_{i}\right) m_{i}$.

Lemma 5.11. For $f(X) \in K[X], D(f(X))=f^{*}(X)+\frac{\partial f}{\partial X} X^{\prime}$.
More generally: If $f(X) \in K\left[X, X^{\prime} \ldots X^{(n)}\right]$, then

$$
D(f)=\sum_{i=0}^{n} \frac{\partial f}{\partial X^{(i)}} X^{(i+1)}+f^{*} .
$$

Proof.

Let $f(X)=\sum a_{i} X^{i}$. Then:

$$
\begin{aligned}
D(f(X)) & =\sum\left(D\left(a_{i}\right) X^{i}+i a_{i} X^{i-1} X^{\prime}\right) \\
& =\sum D\left(a_{i}\right) X^{i}+X^{\prime} \sum i a_{i} X^{i-1} \\
& =f^{*}(X)+X^{\prime} \frac{\partial f}{\partial X}
\end{aligned}
$$

The general case can be proved inductively in a similar manner.
Lemma 5.12. Let $f(X)=X X^{\prime \prime}-X^{\prime}$. Suppose $g(X)$ is irreducible of order one and $f \in I(g)$, then $X^{\prime} \in I(g)$.

Proof.
Let $g(X)=\sum_{n=0}^{N} a_{n}(X)\left(X^{\prime}\right)^{n}$, where $a_{n} \in K[X], N>0$ and $a_{N} \neq 0$. Then, by lemma 5.11,

$$
D(g(X))=\sum_{n=0}^{N} a_{n}^{*}\left(X^{\prime}\right)^{n}+\sum_{n=0}^{N} \frac{\partial a_{n}}{\partial X}\left(X^{\prime}\right)^{n+1}+X^{\prime \prime} \sum_{n=0}^{N} n a_{n}\left(X^{\prime}\right)^{n-1}
$$

Let

$$
f_{1}(X)=\sum_{n=0}^{N} n a_{n}\left(X^{\prime}\right)^{n}+X\left(\sum_{n=0}^{N} a_{n}^{*}\left(X^{\prime}\right)^{n}+\sum_{n=0}^{N} \frac{\partial a_{n}}{\partial X}\left(X^{\prime}\right)^{n+1}\right)
$$

Consider $X D(g(X))$. Substituting $\frac{X^{\prime}}{X}$ for $X^{\prime \prime}$, we see that $X D(g(X))=$ $f_{1}(\bmod \langle f\rangle)$. Since $D(g(X))$ and $f(X)$ are in $I(g)$, we must have $f_{1} \in I(g)$. Since f_{1} has order one, g must divide f_{1}.

The leading term of f_{1} is $X \frac{\partial a_{N}}{\partial X}{X^{\prime}}^{N+1}$, while the leading term of g is $a_{N} X^{\prime N}$. Thus for some $\lambda \in K$ we must have $X \frac{\partial a_{N}}{\partial X}=\lambda a_{N}$. Suppose $a_{N}=\sum_{i=0}^{m} b_{i} X^{i}$. Then $X \frac{\partial a_{N}}{\partial X}=\sum i b_{i} X^{i}$. Then $\lambda b_{m}=m b_{m}$, so $\lambda=m$. It is then easy to see that for all $i<m, b_{i}=0$. Thus $a_{N}=b_{m} X^{m}$. Replacing g by $\frac{g}{b_{m}}$ if necessary, we may assume that $a_{N}=X^{m}$.
case 1. $m=0$.
In this case $a_{N}=1$ and f_{1} has degree N.
The coefficient of $X^{\prime N}$ in f_{1} is

$$
N a_{N}+a_{N}^{*} X+\frac{\partial a_{N-1}}{\partial X} X=N+\frac{\partial a_{N-1}}{\partial X} X
$$

Thus $f_{1}=\left(N+\frac{\partial a_{N-1}}{\partial X} X\right) g$.
Consider the coefficients of $\left(X^{\prime}\right)^{0}$ on both sides of the equation. We get that

$$
a_{0}^{*} X=\left(N+\frac{\partial a_{N-1}}{\partial X} X\right) a_{0}
$$

Suppose $a_{0} \neq 0$. There is a largest M such that X^{M} divides a_{0}. Then $X^{M+1} \mid a_{0}^{*} X$, but then we must have $X \left\lvert\,\left(N+\frac{\partial a_{N-1}}{\partial X} X\right)\right.$, which is impossible. Thus $a_{0}=0$. But if $a_{0}=0$, then $X^{\prime} \mid g$. Since g is irreducible and $a_{N}=1, X^{\prime}=g$, as desired.
case 2. $m>0$
Then $f_{1}=m\left(X^{\prime}+u(X)\right) g$, for some $u(X) \in K[X]$. Considering the coefficients of $\left(X^{\prime}\right)^{0}$ we see that $X a_{0}^{*}=m u(X) a_{0}$. As in case one, this tells us that either $a_{0}=0$ or $X \mid u(X)$. If $a_{0}=0$, then as above $g(X)=X^{\prime}$, contradicting the fact that $a_{N}=X^{m}$. Thus we may assume there is $v(X) \in K[X]$ such that $u(X)=X v(X)$.

Looking at the coefficients of $X^{\prime N}$ we see that:

$$
N a_{N}+X a_{N}^{*}+X \frac{\partial a_{N-1}}{\partial X}=m a_{N-1}+m v X a_{N}
$$

Since $a_{N}=X^{m}, a_{N}^{*}=0$, thus

$$
X \frac{\partial a_{N-1}}{\partial X}-m a_{N-1}=m v X^{m+1}-N X^{m}
$$

Thus X^{m} divides $X \frac{\partial a_{N-1}}{\partial X}-m a_{N-1}$. An easy calculation shows that $X^{m} \mid a_{N-1}$. Say $a_{N-1}=w(X) X^{m}$, where $w \in K[X]$. Then

$$
\frac{\partial a_{N-1}}{\partial X}=m w X^{m-1}+\frac{\partial w}{\partial X} X^{m}
$$

Thus $\frac{\partial w}{\partial X}=m v-\frac{N}{X}$. But this is impossible since v and w are polynomials. Thus we have a contradiction.

Corollary 5.13. Let p be the type of a generic solution to $X X^{\prime \prime}=X^{\prime}$. Then p has Morley rank one.

Proof.

The formula $X X^{\prime \prime}=X^{\prime} \wedge X^{\prime} \neq 0$ isolates p from all other non-algebraic types.

We next consider an example of an order two equation where the depth is one. Let F be a differential field and let $x \in F$ be such that $D(x)=1$. Consider the Painlevé equation $X^{\prime \prime}=6 X^{2}+x$.

Theorem 5.14 (Kolchin) If η is a solution to the Painleve equation then the transcendence degree of $F\langle\eta\rangle / F$ is either two or zero.

Corollary 5.15 If p is the type of a generic solution to the Painlevé equation, then p has depth one.

Proof. If $R H(p)=2$, then there is a differential prime ideal I such that $I_{p} \subseteq I$ and $R H(I)=1$. But if μ is a generic solution for I, then μ satisfies the Painlevé equation and the transcendence degree of $F\langle\mu\rangle / F$ is one.

proof of 5.14 .

Suppose not. Then $R D(I(\eta / F))$ is one. Let f be the minimal polynomial of $I(\eta / F)$. f has order one. By lemma 5.11,

$$
D(f(X))=\frac{\partial f}{\partial X^{\prime}} X^{\prime \prime}+\frac{\partial f}{\partial X} X^{\prime}+f^{*}
$$

But $\eta^{\prime \prime}=6 \eta^{2}+x$. Thus

$$
\begin{aligned}
0 & =D(f(\eta)) \\
& =\frac{\partial f}{\partial X} \eta^{\prime}+\left(6 \eta^{2}+x\right) \frac{\partial f}{\partial X^{\prime}}+f^{*}(\eta)
\end{aligned}
$$

Thus $\frac{\partial f}{\partial X} X^{\prime}+\left(6 X^{2}+x\right) \frac{\partial f}{\partial X^{\prime}}+f^{*}(X)$ is in $I(\eta / F)$. Thus f must divide $\frac{\partial f}{\partial X} X^{\prime}+\left(6 X^{2}+x\right) \frac{\partial f}{\partial X^{\prime}}+f^{*}(X)$. The next lemma shows that this is impossible.

The next lemma is about polynomial rings.
Lemma 5.16. Let $p(X, Y) \in F[X, Y]-F$. Let $q(X, Y)=Y \frac{\partial p}{\partial X}+\left(6 X^{2}+\right.$ $x) \frac{\partial p}{\partial Y}+p^{*}$. Then q is not divisible by p.

Proof.

Suppose p divides q. The degree (in the usual sense) of q is at most the degree of $p+1$, thus $q=(a+b X+c Y) p$.

Let j be largest such that Y^{j} occurs in some term of p.
Let i be largest such that $d X^{i} Y^{j}$ is a term of p. The coefficient of $X^{i} Y^{j+1}$ in q is zero, while the coefficient ot $X^{i} Y^{j+1}$ in $(a+b X+c Y) p$ is $c d$. Thus $c=0$. Similarly the coefficient of $X^{i+1} Y^{j}$ in q is zero, while in $(a+b X) p$ it is $b d$. Thus $b=0$. Thus for some $a \in F, q=a p$.

Let $p=\sum_{j=0}^{n} p_{j} X^{j}$, where $p_{j} \in F[Y]$ and $p_{n} \neq 0$. For notational simplicity we let $p_{i}=0$ for $i<0$ or $i>n$.

Since $q=a p$,

$$
Y \sum j p_{j} X^{j-1}+\sum \frac{d p_{j}}{d Y}\left(6 X^{j+2}+x X^{j}\right)+\sum\left(p_{j}^{*}-a p_{j}\right) X^{j}=0
$$

This yields the system of differential equations:

$$
6 \frac{d p_{j-2}}{d Y}=-p_{j}^{*}+a p_{j}-x \frac{d p_{j}}{d Y}-(j+1) p_{j+1} Y
$$

We solve for $j=n+2, n+1$ and n.
$\mathrm{j}=\mathrm{n}+2$
$6 \frac{d p_{n}}{d Y}=0$. Thus $p_{n}=u_{0}$, for some $u_{0} \in F$ with $u_{0} \neq 0$.
$\frac{\mathrm{j}=\mathrm{n}+1}{6 \frac{d}{d} p_{n-1}} d Y$. Thus $p_{n-1}=v_{0}$, for some $v_{0} \in F$.
$j=n$
$6 \frac{d p_{n-2}}{d Y}=-u_{0}^{\prime}+a u_{0}$. Thus $p_{n-2}=w_{0} Y+t_{0}$, where $w_{0}=-\frac{1}{6}\left(u_{0}^{\prime}-a u_{0}\right)$ and $t_{0} \in F$.

We claim that for any k we can write:

$$
\begin{aligned}
p_{n-3 k} & =u_{k} Y^{2 k}+r_{k} Y^{2 k-1}+\ldots \\
p_{n-3 k-1} & =v_{k} Y^{2 k}+s_{k} Y^{2 k-1}+\ldots \\
p_{n-3 k-2} & =w_{k} Y^{2 k+1}+t_{k} Y^{2 k}+\ldots
\end{aligned}
$$

The above arguments show that it is true for $k=0$. Assume it is true k.
$\mathrm{j}=\mathrm{n}-3 \mathrm{k}-1$
Using the inductive assumptions we see that

$$
6 \frac{d p_{n-3 k-3}}{d Y}=(n-3 k) u_{k} Y^{2 k+1}+\left(-v_{k}^{\prime}+a v_{k}+(n-3 k) r_{k}\right) Y^{2 k}+\ldots
$$

Thus $p_{n-3 k-3}=u_{k+1} Y^{2 k+2}+r_{k+1} Y^{2 k+1}+\ldots$, where

$$
\begin{equation*}
u_{k+1}=-\frac{1}{6}\left(\frac{n-3 k}{2 k+2}\right) u_{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{k+1}=-\frac{1}{6}\left(\frac{v_{k}^{\prime}-a v_{k}-(n-3 k) r_{k}}{2 k+1}\right) \tag{2}
\end{equation*}
$$

Similar arguments for the cases $j=n-3 k-2$ and $j=n-3 k-3$ yield

$$
p_{n-3(k+1)-1}=v_{k+1} Y^{2 k+2}+s_{k+1} Y^{2 k+1}+\ldots
$$

and

$$
p_{n-3(k+1)-2}=w_{k+1} Y^{2 k+3}+t_{k+1} Y^{2 k+2}+\ldots
$$

where:

$$
\begin{gather*}
v_{k+1}=-\frac{1}{6}\left(\frac{w_{k}^{\prime}-a w_{k}+(n-3 k-1) v_{k}}{2 k+2}\right) \tag{3}\\
s_{k+1}=-\frac{1}{6}\left(\frac{t_{k}^{\prime}-a t_{k}+(2 k+1) x w_{k}+(n-3 k-1) s_{k}}{2 k+1}\right) \tag{4}\\
w_{k+1}=-\frac{1}{6}\left(\frac{u_{k+1}^{\prime}-a u_{k+1}+(n-3 k-2) w_{k}}{2 k+3}\right) \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
t_{k+1}=-\frac{1}{6}\left(\frac{r_{k+1}^{\prime}-a r_{k+1}+(2 k+2) x u_{k+1}+(n-3 k-2) t_{k}}{2 k+2}\right) . \tag{6}
\end{equation*}
$$

(1) gives a recursive definition of u_{k}. This yields:

$$
\begin{equation*}
u_{k}=\left(\frac{-1}{6}\right)^{k} \prod_{i=1}^{k} \frac{n-3 i+3}{2 i} u_{0} . \tag{7}
\end{equation*}
$$

We know that u_{0} is nonzero. If n is not divisible by three, then (7) would imply that for all $k, u_{k} \neq 0$. Since $p_{n-3 k}=0$ for $k>\frac{n}{3}$, we must have $n=3 m$ for some m. Then by equation (7) for $u_{k}=0$ if and only if $k \geq m+1$.

Using (7) and (5) we have

$$
w_{k+1}=\left(\frac{-1}{6}\right)^{k+2}\left(\frac{1}{2 k+3}\right) \prod_{i=1}^{k+1} \frac{n-3 i+3}{2 i}\left(u_{0}^{\prime}-a u_{0}\right)-\frac{1}{6}\left(\frac{n-3 k-2}{2 k+3}\right) w_{k} .
$$

This giver a recurrence relation for the w_{k}. Solving this we get:

$$
\begin{equation*}
w_{k}=\left(\frac{-1}{6}\right)^{k}\left(u_{0}^{\prime}-a u_{0}\right) \sum_{h=1}^{k}\left(\frac{1}{2 h+3} \prod_{i=1}^{h} \frac{n-3 i+3}{2 i} \prod_{i=h+1}^{k} \frac{n-3 i+1}{2 i+1}\right) . \tag{8}
\end{equation*}
$$

For $1 \leq l \leq 3, p_{n-3 m-l}=p_{-l}=0$, thus $u_{m}=r_{m}=v_{m}=s_{m}=w_{m}=t_{m}=$ 0 . Since $w_{m}=0$, equation (8) implies that $u_{0}^{\prime}-a u_{0}=0$ (note that all of the terms in the product are 1 nonzero). But then (8) implies that for all k,

$$
\begin{equation*}
w_{k}=0 . \tag{9}
\end{equation*}
$$

and (7) implies that for all k,

$$
\begin{equation*}
u_{k}^{\prime}-a u_{k}=0 \tag{10}
\end{equation*}
$$

Since all of the $w_{k}=0,(3)$ implies that for all $k v_{k}=0$ and then (2) implies that all of the $r_{k}=0$.

Using (7) and the fact that all of the $r_{k}=0$ we can simplify (6) to

$$
t_{k+1}=\left(\frac{-1}{6}\right)^{k+2} x \prod_{i=1}^{k} \frac{n-3 i+3}{2 i} u_{0}-\frac{1}{6}\left(\frac{n-3 k-2}{2 k+2}\right) t_{k}
$$

Solving this reccurence relation for t_{k} we get:

$$
\begin{align*}
t_{k}=\left(\frac{-1}{6}\right)^{k+1} x u_{0} & \sum_{h=0}^{k}\left(\prod_{i=1}^{h} \frac{n-3 i+3}{2 i} \prod_{i=h+1}^{k} \frac{n-3 i+1}{2 i}\right) \tag{11}\\
& +\left(\frac{-1}{6}\right)^{k} t_{0} \prod_{i=1}^{k} \frac{n-3 i+1}{2 i}
\end{align*}
$$

Since $t_{m}=0$, the above equation yields:

$$
t_{0}=\frac{1}{6} x u_{0} \sum_{h=1}^{m} \prod_{i=1}^{h} \frac{n-3 i+3}{n-3 i+1}
$$

Substituting the above into (11) and simplifying we have that if $1 \leq k<m$ then:

$$
t_{k}=\left(\frac{-1}{6}\right)^{k+1} x u_{0}\left(\prod_{i=1}^{k} \frac{n-3 i+1}{2 i}\right) \sum_{h=k+1}^{m}\left(\prod_{i=1}^{h} \frac{n-3 i+3}{n-3 i+1}\right)
$$

In particular for each k such that $a \leq k<m$, there is a positive rational number β_{k} such that $(-1)^{k+1} t_{k}=\beta_{k} x u_{0}$. Thus $(-1)^{k} t_{k}^{\prime}=\beta_{k}\left(x u_{0}^{\prime}+u_{0}\right)$ [note: this is the one point in the proof where we use the fact that $D(x)=1$ (though any positive rational would do)].

Thus

$$
(-1)^{k+1}\left(t_{k}^{\prime}-a t_{k}^{\prime}\right)=\beta_{k}\left(x\left(u_{0}^{\prime}-a u_{0}\right)+u_{0}\right)
$$

But $u_{0}^{\prime}-a u_{0}=0$, so $(-1)^{k+1}\left(t_{k}^{\prime}-a t_{k}^{\prime}\right)$ is a positive rational multiple of u_{0}. Since all of the $w_{k}=0$, (4) simplifies to:

$$
s_{k+1}=\left(\frac{-1}{6} \frac{1}{2 k+1}\right)\left(\left(t_{k}^{\prime}-a t_{k}\right)+(n-3 k-1) s_{k}\right)
$$

So

$$
(-1)^{k+1} s_{k+1}=(-1)^{k}\left(\frac{1}{6(2 k+1)}\right)\left(t_{k}^{\prime}-a t_{k}\right)+(-1)^{k}\left(\frac{n-3 k-1}{6(2 k+1)}\right) s_{k}
$$

But for $1 \leq k<m,(-1)^{k} t_{k}^{\prime}-a t_{k}$ is a negative rational multiple of u_{0}. Using this and the fact that $s_{0}=0$, it is easy to show by induction that if $1 \leq k \leq m$, then $(-1)^{k} s_{k}$ is a positive rational multiple of u_{0}. In particular $s_{m} \neq 0$, a contradiction. This concludes the proof.

Note: The 6 in the Painleve equation plays no role in the above proof. (ie. it would work just as well for $X^{\prime \prime}=X^{2}+x$).

Lemma 5.16 can also be used to show that $C_{F(\eta)}=C_{F}$.

References

All of the details on forking and ranks can be found in Lascar's book Stability in Model Theory. Most of the material in this section is taken from [Poizat 2]. The analysis of the Painlevé equation is due to Kolchin, extending work of Kovacic. As far as I know it is unpublished. The version I have seen is in a letter from Kolchin to Carol Wood.

§6. Non-minimality of differential closures

In this section we will show that differential closures need not be minimal. We will find a differential field k with differential closure K such that there is a differentially closed $L \supset k$ with L properly contained in K. In this case L is also a differential closure of k, so K and L are isomorphic over k. Thus we can properly embed K into itself fixing k. This theorem was proved independently by Kolchin, Shelah and Rosenlicht. We will follow Rosenlicht's proof.

The first lemma gives a criteria for telling if a prime model is minimal.
Lemma 6.1. Let T be an ω-stable theory. Suppose $M \vDash T$ is prime over A. If M is minimal over A, then whenever $I \subset M$ is a set of indiscernibles over A, I is finite.
proof.
Suppose M is minimal over A and $I \subset M$ is an infinite set of indiscernibles over A. Let $b \in I$ and let $J=I \backslash\{b\}$. Let $N \vDash T$ be prime over $A \cup J$. There is an elementary embedding of N into M fixing $A \cup J$. Thus, since M is minimal over $A, N=M$ and M is prime and atomic over $A \cup J$. There is $\bar{a} \in A, c_{1}, \ldots, c_{n} \in J$ and a formula $\phi(v, \bar{a}, \bar{c})$ isolating the type of b over $A \cup J$. Let $d \in J \backslash\left\{c_{1}, \ldots, c_{n}\right\}$. Since $\phi(v, \bar{a}, \bar{c})$ isolates $t(b / A \cup J)$,

$$
M \vDash \phi(v, \bar{a}, \bar{c}) \rightarrow v \neq d
$$

and

$$
M \models \phi(b, \bar{a}, \bar{c}) .
$$

Since b and d are indiscernible over $A \cup\left\{c_{1}, \ldots, c_{n}\right\}$, we must have $M \models \phi(d, \bar{a}, \bar{c})$, a contradiction.

The next theorem is the algebraic core of the proof. This result will also be useful in the next section when we build many models.

Theorem 6.2 (Rosenlicht). Let $k \subset K$ be differential fields such that the C_{K} is algebraic over C_{k}. Let C denote C_{k}. Suppose $f \in C(X), c_{1}, \ldots, c_{n} \in$ $C, u_{1}, \ldots, u_{n}, v \in C(X)$ and

$$
\frac{1}{f(X)}=\sum_{i=1}^{n} c_{i} \frac{\frac{\partial u_{1}}{\partial X}}{u_{i}}+\frac{\partial v}{\partial X}
$$

Suppose $x_{1}, x_{2} \in K$ are solutions to $X_{i}^{\prime}=a_{i} f\left(X_{i}\right)$, where $a_{1}, a_{2} \in k$. If x_{1} and x_{2} are algebraically dependent over k, then each x_{i} is algebraic over k or $a_{2} v\left(x_{1}\right)^{\prime}=a_{1} v\left(x_{2}\right)^{\prime}$.

We give two partial fraction decompositions which will prove useful.
Ex 1): $f(X)=\frac{X}{1+X}$.

$$
\begin{aligned}
\frac{1}{f(X)} & =\frac{1}{X}+1 \\
& =\frac{\frac{\partial}{\partial X}(X)}{X}+\frac{\partial}{\partial X}(X) .
\end{aligned}
$$

Ex 2): $f(X)=X^{3}-X^{2}$.
Let $u(X)=\frac{X-1}{X}$ and $v(X)=\frac{1}{X}$.
Then

$$
\frac{\partial u}{\partial X}=\frac{-1}{X^{2}}
$$

So

$$
\frac{\frac{\partial u}{\partial X}}{u}=\frac{1}{X-1}-\frac{1}{X}
$$

and

$$
\begin{aligned}
\frac{1}{f(X)} & =\frac{1}{X^{3}-X^{2}} \\
& =\frac{1}{X-1}-\frac{1}{X}-\frac{1}{X^{2}} \\
& =\frac{\frac{\partial u}{\partial X}}{u}+\frac{\partial v}{\partial X}
\end{aligned}
$$

Corollary 6.3. Let C be a field of constants and $f(X)=\frac{X}{1+X}$ or $f(X)=$ $X^{3}-X^{2}$. Let K be the differential closure of C and let $x_{1}, \ldots, x_{n} \in K$ be nonconstant solutions to $X_{i}^{\prime}=a_{i} f\left(X_{i}\right)$, where $a_{i} \in C \backslash\{0\}$. Then x_{1}, \ldots, x_{n} are algebraically independent over C.
proof.
By $2.13 C_{K}$ is algebraic over C.
We first examine the case where $f(X)=\frac{X}{X+1}$. In this case $v(X)=X$.
If $a_{j} v^{\prime}\left(x_{i}\right)=a_{i} v^{\prime}\left(x_{j}\right)$, then

$$
a_{i} a_{j} \frac{x_{i}}{1+x_{i}}=a_{j} a_{i} \frac{x_{j}}{1+x_{j}} .
$$

In this case $x_{i}=x_{j}$.
Suppose c is a constant solution to $X^{\prime}=a_{i} f(X)$. Then $f(c)=0$, so $c=0$.
Let $x_{1}, \ldots, x_{n} \in K$ be nonconstant such that $x_{i}^{\prime}=a_{i} f\left(x_{i}\right)$ and n is minimal such that x_{1}, \ldots, x_{n} are algebraically dependent over C.
$\underline{n=1}$. Then x_{1} is algebraic over C. But then x_{1} is constant (by 2.1), a contradiction.
$\underline{n}>1$. Then x_{n} and x_{n-1} are algebraically dependent over $C\left(x_{1}, \ldots, x_{n-2}\right)$. Neither x_{n-1} nor x_{n} is algebraic over $C\left(x_{1}, \ldots, x_{n-2}\right)$, so by Theorem 6.2, $a_{n} v\left(x_{n-1}\right)^{\prime}=a_{n-1} v\left(x_{n}\right)^{\prime}$. But then, $x_{n-1}=x_{n}$, a contradiction.

In the second case $v(x)=\frac{1}{x}$. Thus if $a_{i} v^{\prime}\left(x_{j}\right) a_{j} v^{\prime}\left(x_{i}\right), x_{i}=x_{j}$. The only constant solutions of $X^{\prime}=a_{i} f(X)$ are zero and one. The remainder of the proof is similar.

Corollary 6.4. Let C be a field of constants. Let K be the differential closure of C. Then K is not minimal over C.

proof.

Since K is differentially closed it contains infinitely many solutions to $y^{\prime}=$ $f(y)$, where f is one of the above functions. Let x_{1}, x_{2}, \ldots be \aleph_{0} nonconstant solutions. By 6.3 the x_{i} are algebraically independent over C. For any $x_{j_{1}}, \ldots, x_{j_{m}}$, since $x_{i}^{\prime}=f\left(x_{i}\right)$ and $f(X) \in C[X], C\left\langle x_{j_{1}}, \ldots, x_{j_{m}}\right\rangle=C\left(x_{j_{1}}, \ldots, x_{j_{m}}\right)$. Thus the type of $x_{j_{1}}, \ldots, x_{j_{m}}$ is determined by

$$
\bigwedge\left(v_{i}^{\prime}=f\left(v_{i}\right) \wedge v_{i}^{\prime} \neq 0\right) \wedge p\left(v_{1}, \ldots, v_{m}\right) \neq 0
$$

for p a nonzero polynomial over C. Thus the x_{i} are a set of indiscernibles. So, by $6.1, K$ is not minimal over C.

The proof of Rosenlicht's theorem uses the abstract theory of differential forms.

Suppose $k \subset K$ are fields. We define $\Omega_{K / k}$ the space of differential forms on K over k (when no ambiguity arises we will drop the subscripts).

Let Ω be the K-vector space generated by the set $\{d x: x \in K\}$, where we mod out by the relations:

$$
\begin{aligned}
& d(x+y)=d x+d y \\
& d(x y)=x d y+y d x, \text { and } \\
& d(a)=0 \text { for } a \in k
\end{aligned}
$$

It is easy to see that for $p(X) \in k[X], d(p(x))=\frac{\partial p}{\partial X}(x) d x$.
The space of differential forms Ω satisfies a universal mapping property given by the following lemma.

Lemma 6.5. If $D: K \rightarrow K$ is a k-derivation (ie. $k \subseteq C_{K}$), then there is a K-linear $\xi: \Omega \rightarrow K$ such that $D=\xi \circ d$.

Proof.

Let $\xi(d x)=D(x)$. This is well defined since:
$\xi(d(x+y))=D(x+y)=D(x)+D(y)=\xi(d x)+\xi(d y)$,
$\xi(d(x y))=D(x y)=x D(y)+y D(x)=x \xi(d x)+y \xi(d x)$, and
$\xi(d a)=D(a)=0=\xi(0)$, for $a \in k$.
We next show that the dimension of Ω as a K-vector space is equal to the transcendence degree of K / k. The proof uses two facts about extensions of derivations which we summarize in the next lemma (for proofs see Lang's Algebra).

Lemma 6.6. Let K be a field and let $D: K \rightarrow K$ be a derivation.
a) Let a be any element of $K(X)$, then D extends to a derivation D^{*} : $K(X) \rightarrow K(X)$, with $D^{*}(X)=a$.
b) If L / K is separable algebraic, then D extends to a derivation on L.

Lemma 6.7. $\operatorname{dim}_{K} \Omega=t d(K / k)$.

Proof.

Suppose $t_{1}, \ldots, t_{n} \in K$ and $p\left(X_{1}, \ldots, X_{n}\right) \in k[\bar{X}]$ is of minimal degree such that $p(\bar{t})=0$. Then

$$
d p(\bar{t})=\sum_{i=1}^{n} \frac{\partial p}{\partial X_{i}}(\bar{t}) d t_{i}=0
$$

Since the degree of p is minimal, for some $i, \frac{\partial p}{\partial X}(\bar{t}) \neq 0$. Thus $d t_{1}, \ldots, d t_{n}$, are linearly dependent over K. Thus $\operatorname{dim}_{K}(\Omega) \leq t d(K / k)$.

Suppose t_{1}, \ldots, t_{n} are algebraically independent over k. By 6.6 , we can find derivations $D_{i}: K \rightarrow K$ such that

$$
D\left(t_{i}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Let $\xi_{i}: \Omega \rightarrow K$ such that $D_{i}=\xi_{i} \circ d$.
Suppose $a_{1}, \ldots, a_{n} \in K$ and

$$
\sum_{j=1}^{n} a_{j} d t_{j}=0
$$

Then

$$
\begin{aligned}
0 & =\xi_{i}\left(\sum_{j=1}^{n} a_{j} d t_{j}\right) \\
& =\sum_{j=1}^{n} a_{j} D_{i}\left(t_{j}\right) \\
& =a_{i}
\end{aligned}
$$

Thus $d t_{1}, \ldots, d t_{n}$ are linearly independent, so $\operatorname{dim}_{K} \Omega \geq t d(K / k)$.
Corollary 6.8. If $t \in K$, then t is algebraic over k if and only if $d t=0$.
Suppose $D: K \rightarrow K$ is a derivation. Let $D^{\prime}: \Omega \rightarrow \Omega$, be defined by

$$
D^{\prime}\left(\sum x_{i} d y_{i}\right)=\sum\left(D\left(x_{i}\right) d y_{i}+x_{i} d\left(D\left(y_{i}\right)\right)\right.
$$

The following properties are easy to verify for $x \in K, \omega, \eta \in \Omega$:

$$
\begin{aligned}
D^{\prime}(\omega+\eta) & =D^{\prime}(\omega)+D^{\prime}(\eta) \\
D^{\prime}(x \omega) & =D(x) \omega+x D^{\prime}(\omega) \\
D^{\prime}(d x) & =d(D(x)) .
\end{aligned}
$$

Lemma 6.9. Let $D: K \rightarrow K$, be a derivation such that $D \mid k$ is a derivation on k. If x, y in K are algebraically dependent over C_{k}, then $D(y) d x=D(x) d y$ and $D^{\prime}(x d y)=d(x D y)$.
Proof. Let $p(X, Y) \in C_{k}[X, Y]$, be such that $p(x, y)=0$.
Since $p(x, y)=0, d(p(x, y))=0$. But

$$
d(p(x, y))=\frac{\partial p}{\partial X}(x, y) d x+\frac{\partial p}{\partial Y}(x, y) d y .
$$

So

$$
\frac{d y}{d x}=-\frac{\frac{\partial p}{\partial X}}{\frac{\partial p}{\partial Y}}(x, y)
$$

Also, since the coefficients of p are constant, $D(p(x, y))=\frac{\partial p}{\partial X} D(x)+\frac{\partial p}{\partial Y} D(y)$ (see lemma 5.11). Thus

$$
\frac{D(y)}{D(x)}=-\frac{\frac{\partial p}{\partial X}}{\frac{\partial p}{\partial Y}}(x, y)
$$

So $D(x) d y=D(y) d x$.
Finally

$$
\begin{aligned}
D^{\prime}(x d y) & =D(x) d y+x d(D(y)) \\
& =D(y) d x+x d(D(y)) \\
& =d(x D(y))
\end{aligned}
$$

Lemma 6.10. Suppose $u_{1}, \ldots, u_{n}, v \in K$ and all the u_{i} are nonzero. Suppose $c_{1}, \ldots, c_{n} \in k$ are linearly independent over \mathbf{Q}. Let

$$
\omega=d v+\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}
$$

Then $\omega=0$ if and only $d u_{1}=\ldots=d u_{n}=d v=0$ (ie. all of the u_{i} and v are algebraic over k).

Proof.
case 1. u_{1}, \ldots, u_{n} are algebraic over k.
Then all of the $d u_{i}=0$. Thus $\omega=0$ if and only if $d v=0$ if and only if v is algebraic over k.

Thus we may assume that some u_{i} is transcendental over k. Without loss of generality assume u_{1} is transcendental over k. We will show this leads to a contradiction.
case 2. u_{1} is transcendental over k and $u_{2}, \ldots, u_{n}, v \in k\left(u_{1}\right)$.
We can give formal Laurent series expansions for u_{j} and v in terms of u_{1}. Say

$$
\begin{gathered}
u_{j}=\sum_{i=m,}^{\infty} \alpha_{j, i} u_{1}^{i}, \text { and } \\
v=\sum_{i=l}^{\infty} \beta_{i} u_{1}^{i}
\end{gathered}
$$

Then

$$
\begin{gathered}
d u_{j}=\left[\sum_{i=m_{,}-1}^{\infty}(i+1) \alpha_{j, i+1} u_{1}^{i}\right] d u_{1}, \text { and } \\
d v=\left[\sum_{i=l-1}^{\infty}(i+1) \beta_{i+1} u_{1}^{i}\right] d u_{1}
\end{gathered}
$$

In particular in this expansion $d v=f\left(u_{1}\right) d u_{1}$, where $f\left(u_{1}\right)$ is a Laurent series where the coefficient of u_{1}^{-1} is zero.

Thus

$$
\frac{d u_{j}}{u_{j}}=d u_{1}\left(m_{j} u_{1}^{-1}+\text { higher degree terms }\right)
$$

If $\omega=0$, then comparing the u_{1}^{-1} coefficients we see that

$$
c_{1}+\sum_{j=2}^{n} m_{j} c_{j}=0
$$

This is a contradiction, since c_{1}, \ldots, c_{n} are linearly independent over \mathbf{Q}.

Finally we show that we can reduce to case 2 . Suppose u_{1} is transcendental over k. Let $u_{1}, t_{1} \ldots t_{m}$ be a transcendence base for u_{1}, \ldots, u_{n}, v over k. Consider the natural homomorphism $\phi: \Omega_{K / k} \rightarrow \Omega_{K / k\left(t_{1} \ldots t_{n}\right)}$. If $\omega=0$, then $\phi(\omega)=0$. We replace k by $k\left(t_{1} \ldots t_{n}\right)$. Thus we assume that u_{1} is transcendental over k and $u_{2} \ldots u_{n}, v$ are algebraic over $k\left(u_{1}\right)$.

We also replace K by a finite algebraic extension of $k\left(u_{1}, \ldots, u_{n}, v\right)$ so that $K / k\left(u_{1}\right)$ is Galois.

Let $G=\operatorname{Gal}\left(K / k\left(u_{1}\right)\right)$. For $\sigma \in G$, let

$$
\omega^{\sigma}=\sum c_{i} \frac{d \sigma u_{i}}{\sigma u_{i}}+d \sigma v
$$

Each $\omega^{\sigma}=0$. Let $\eta=\sum_{\sigma \in G} \omega^{\sigma}$.
For $j=2, \ldots, n$, let

$$
u_{j}^{\#}=\prod_{\sigma \in G} \sigma u_{j}
$$

Then $u_{j}^{\#} \in k\left(u_{1}\right)$ and

$$
d u_{j}^{\#}=\sum_{\sigma \in G}\left(\prod_{\tau \neq \sigma} \tau u_{j}\right) d \sigma u_{j} .
$$

Let

$$
\begin{aligned}
v^{\#} & =\sum_{\sigma \in G} \sigma v \\
d v^{\#} & =\sum_{\sigma \in G} d \sigma v
\end{aligned}
$$

Thus

$$
\eta=\left[K: k\left(u_{1}\right)\right] c_{1} \frac{d u_{1}}{u_{1}}+\sum_{i=2}^{n} c_{i} \frac{d u_{i}^{\#}}{u_{i}^{\#}}+d v^{\#}
$$

Replacing u_{j} by $u_{j}^{\#}$ for $j>2, v$ by $v^{\#}$, and c_{1} by $\left[K: k\left(u_{1}\right)\right] c_{1}$, we have reduced to case 2.

Remark. The fact that the constants c_{1}, \ldots, c_{n} are linearly independent over \mathbf{Q} is a red-herring. Note that:
i) $\frac{d(x y)}{x y}=\frac{d x}{x}+\frac{d y}{y}$
ii) $\frac{d a^{n}}{a^{n}}=n \frac{d a}{a}$ for $n \in \mathbf{N}$.

Using these two facts it is easy to see that for any $\sum c_{i} \frac{d u_{1}}{u_{2}}$ can be rewritten as $\sum b_{i} \frac{d w_{i}}{w_{i}}$ where the b_{i} are linearly independent over \mathbf{Q}.

We are now ready to prove theorem 6.2 which we repeat for convenience.

Theorem 6.2 (Rosenlicht). Let $k \subset K$ be differential fields such that the C_{K} is algebraic over C_{k}. Let C denote C_{k}. Suppose $f \in C(X), c_{1}, \ldots, c_{n} \in$ $C, u_{1}, \ldots, u_{n}, v \in C(X)$ and

$$
\frac{1}{f(X)}=\sum_{i=1}^{n} c_{i} \frac{\frac{\partial u_{i}}{\partial X}}{u_{i}}+\frac{\partial v}{\partial X}
$$

Suppose $x_{1}, x_{2} \in K$ are solutions to $X_{i}^{\prime}=a_{\imath} f\left(X_{i}\right)$, where $a_{1}, a_{2} \in k$. If x_{1} and x_{2} are algebraically dependent over k, then each x_{i} is algebraic over k or $a_{2} v\left(X_{1}\right)^{\prime}=a_{1} v\left(X_{2}\right)^{\prime}$.
proof of 6.2.
We may assume that $K=k\left(x_{1}, x_{2}\right)$. Suppose x_{1} and x_{2} are algebraically dependent over k, but neither is algebraic over k. Thus $t d(K / k)=1$. By lemma 6.7, $\operatorname{dim}_{K} \Omega=1$. In particular, $\frac{d x_{1}}{f\left(x_{2}\right)}$ generates Ω as a K-vector space. Thus there is a nonzero $c \in K$ such that

$$
\begin{equation*}
\frac{d x_{2}}{f\left(x_{2}\right)}=c \frac{d x_{1}}{f\left(x_{1}\right)} \tag{1}
\end{equation*}
$$

We claim that c is a constant.
By lemma 6.9 (with $\left.x=\frac{1}{f\left(x_{i}\right)}, y=x_{i}\right)$.

$$
D^{\prime}\left(\frac{d x_{i}}{f\left(x_{i}\right)}\right)=d\left(\frac{x_{i}^{\prime}}{f\left(x_{i}\right)}\right)=d\left(a_{i}\right)=0
$$

since $a_{i} \in k$.
Thus

$$
\begin{aligned}
0 & =D^{\prime}\left(\frac{d x_{2}}{f\left(x_{2}\right)}\right) \\
& =D^{\prime}\left(c \frac{d x_{1}}{f\left(x_{1}\right)}\right) \\
& =D(c) \frac{d x_{1}}{f\left(x_{1}\right)}+c D^{\prime}\left(\frac{d x_{1}}{f\left(x_{1}\right)}\right) \\
& =D(c) \frac{d x_{1}}{f\left(x_{1}\right)}
\end{aligned}
$$

But then $D(c)=0$ so c is constant and hence algebraic over k.
We now use our expression for f and the fact that $d(w(x))=\frac{\partial w}{\partial X} d x$ for $w(X) \in C_{k}(X)$.

$$
\begin{aligned}
\frac{d x_{i}}{f\left(x_{i}\right)} & =\sum_{j=1}^{n} c_{j} \frac{\frac{\partial u_{j}}{\partial X}}{u_{j}}\left(x_{i}\right) d x_{i}+\frac{\partial v}{\partial X}\left(x_{i}\right) d x_{i} \\
& =\sum_{j=1}^{n} c_{j} \frac{d\left(u_{j}\left(x_{i}\right)\right)}{u_{j}\left(x_{i}\right)}+d\left(v\left(x_{i}\right)\right) .
\end{aligned}
$$

So by. (1)

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} \frac{d\left(u_{j}\left(x_{2}\right)\right)}{u_{j}\left(x_{2}\right)}+d\left(v\left(x_{2}\right)\right)=c\left(\sum_{j=1}^{n} c_{j} \frac{d\left(u_{j}\left(x_{1}\right)\right)}{u_{j}\left(x_{1}\right)}+d\left(v\left(x_{1}\right)\right)\right) \tag{2}
\end{equation*}
$$

Since $c \in C_{K}, c$ is algebraic over C_{k}. Thus by corollary $6.8 d c=0$. Thus we can rewrite (2) as

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j}\left(\frac{d\left(u_{j}\left(x_{2}\right)\right)}{u_{j}\left(x_{2}\right)}-\frac{d\left(c u_{j}\left(x_{1}\right)\right)}{u_{j}\left(x_{1}\right)}\right)+d\left(v\left(x_{2}\right)-c v\left(x_{1}\right)\right)=0 \tag{3}
\end{equation*}
$$

We now apply lemma 6.10 (and the remark following it) to (3). Thus

$$
\begin{equation*}
d\left(v\left(x_{2}\right)-c v\left(x_{1}\right)\right)=0 \tag{4}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
a_{1} v\left(x_{2}\right)^{\prime} & =a_{1} \frac{\partial v}{\partial X}\left(x_{2}\right) x_{2}^{\prime} \\
& =a_{1} a_{2} \frac{\partial v}{\partial X}\left(x_{2}\right) f\left(x_{2}\right) \\
& =a_{1} a_{2} \frac{d\left(v\left(x_{2}\right)\right)}{\frac{d x_{2}}{f\left(x_{2}\right)}}
\end{aligned}
$$

Similarly

$$
a_{2} v\left(x_{1}\right)^{\prime}=a_{1} a_{2} \frac{d\left(v\left(x_{1}\right)\right)}{\frac{d x_{1}}{f\left(x_{1}\right)}} .
$$

By (1) and (4)

$$
\frac{d\left(v\left(x_{2}\right)\right)}{\frac{d x_{2}}{f\left(x_{2}\right)}}=\frac{c d\left(v\left(x_{1}\right)\right)}{c \frac{d x_{1}}{f\left(x_{1}\right)}}
$$

Thus

$$
a_{1} v\left(x_{2}\right)^{\prime}=a_{2} v\left(x_{1}\right)^{\prime}
$$

as desired.
We conclude this section with a proof that in Rosenlicht's extensions we do not add new constants. This will be useful in the next section.

Definition. We say that E / F is a function field if there is $t \in E$ transcendental over F and E is a finite algebraic extension of $F(t)$.

If F is algebraically closed, then function fields correspond to isomorphism classes of smooth projective curves over F. If E / F is a function field, then the genus of E is the genus of the corresponding curve.

Lemma 6.11. Let K / k be differential fields such that K / k is a function field and C_{k} is algebraically closed. If $C_{K} \neq C_{k}$, then C_{K} / C_{k} is a function field and the genus of C_{K} / C_{k} is at most the genus of K / k.

Proof.

Suppose $C_{K} \neq C_{k}$ and $t \in C_{K}-C_{k}$. Then t is transcendental over C_{k}. The arguments from the proof of 2.13 show t is transcendental over k.
claim. $C_{k(t)}=C_{k}(t)$.
Suppose $D(p(t))=0$, where $p(X)=\sum a_{i} X^{i} \in k[X]$. Then

$$
D(p(t))=D(t) \sum i a_{i} t^{i-1}+\sum D\left(a_{i}\right) t^{i}=\sum D\left(a_{i}\right) t^{i}
$$

Since t is transcendental over k, we must have all $D\left(a_{i}\right)=0$, so $a_{i} \in C_{k}$. Thus $p(t) \in C_{k}(t)$.

Suppose $p(X)$ and $q(X)$ are in $k[X]$ and $D\left(\frac{p(t)}{q(t)}\right)=0$. We may assume that q is monic and that for any q_{0} of lower degree there is no p_{0} such that $\frac{p_{0}(t)}{q_{0}(t)}=\frac{p(t)}{q(t)}$. Since $D\left(\frac{p(t)}{q(t)}\right)=0, q(t) D(p(t))-p(t) D(q(t))=0$. But then $\frac{D(p(t))}{D(q(t))}=\frac{p(t)}{q(t)}$. But if $q(X)=X^{n}+\sum_{i=0}^{n-1} b_{i} X^{i}$, then $D(q(t))=\sum_{i=0}^{n-1} D\left(b_{i}\right) t^{i}$, contradicting the minimality of q.
claim. C_{K} / C_{k} is a function field.
We know that t is a transcendence base for K over k. Assume that $K / k(t)$ is an algebraic extension of degree N. Let $x \in C_{K}-C_{k(t)}$. Let $f(X) \in k(t)[X]$, be the minimal polynomial of x over K. The degree of f is at most N. Let $f(X)=X^{m}+\sum b_{i} X^{i} .0=D(f(x))=\sum_{i=0}^{n-1} D\left(b_{i}\right) x^{i}$. Since this polynomial has lower degree, we must have all of the $D\left(b_{i}\right)=0$. So $f(X) \in C_{k(t)}[X]$. Thus $\left[C_{K}: C_{k(t)}\right] \leq N$. So C_{K} / C_{k} is a function field.

Let α be a generator for $C_{K} / C_{k(t)}$. Let $f(X, Y) \in C_{k}[X, Y]$ such that $f(t, Y)$ is the minimal polynomial of α over $C_{k(t)}$. By the above arguments $f(t, Y)$ is also the minimal polynomial of α over $k(t)$. Thus $k(t, \alpha)$ is a function field of the same genus as C_{K} / C_{k}. Since $k(t, \alpha) \subseteq K$, the genus of K / k is at least the genus of $k(t, \alpha) / k$ (there can be no maps from a curve of genus g to a curve of genus $g_{1}>g$ [by Hurwitz formula]).

Theorem 6.12. Let k be a differential field such that $C=C_{k}$ is algebraically closed. Let $f(X) \in C_{k}(X)$ and let x be a solution of the differential equation $D(X)=f(X)$, where x is transcendental over k. Suppose that $\frac{1}{f(X)}$ is not of the form $c \frac{\partial u}{\partial X} / u$ or $c \frac{\partial v}{\partial X}$ for any u or $v \in C(X), c \in C$. Then $C_{k(x)}=C$.
Proof.
Suppose $C_{k(x)} \neq C$. By 6.11, $C_{k(x)}$ is a genus 0 function field over C. Thus there is $t \in C_{k(x)}$ such that $C_{k(x)}=C(t)$.

Consider the non-zero differentials $d t$ and $\frac{d x}{f(x)}$ in $\Omega_{k(x) / k}$. By 6.7 there is $g \in k(x)$ such that $\frac{d x}{f(x)}=g d t$.
$D^{\prime}(g d t)=D(g) d t+g D^{\prime}(d t)=D(g) d t+g d(D(t))=D(g) d t$. While by 6.9
$D^{\prime}\left(\frac{d x}{f(x)}\right)=d\left(\frac{D(x)}{f(x)}\right)=d(1)=0$.
Thus $D(g)=0$, so $g \in C(t)$.

Using the partial fraction decomposition of $\frac{1}{f(x)} \in C(x)$, we can write

$$
\frac{d x}{f(x)}=\sum_{i=1}^{n} c_{i} \frac{d u_{i}}{u_{i}}+d v
$$

where $c_{i} \in C, u_{i}, v \in C(x)$. Using the remarks after the proof of 6.10 we can choose this decomposition so that c_{1}, \ldots, c_{n} are linearly independent over \mathbf{Q}.

Since $g \in C(t)$, we can use the partial fraction decomposition of g to write

$$
g d t=\sum_{i=1}^{m} b_{i} \frac{d w_{i}}{w_{i}}+d y
$$

where $b_{i} \in C$ and $w_{i}, y \in C(t)$.
Let $c_{1}, \ldots, c_{n}, c_{n+1}, \ldots, c_{N}$ be a basis for the span of $c_{1}, \ldots, c_{n}, b_{1}, \ldots, b_{m}$ over \mathbf{Q}. Using the remarks after 6.10 , letting $u_{j}=1$ for $j=n+1, \ldots, N$ and suitably defining the w_{i}, we can may assume:

$$
\begin{aligned}
& \frac{d x}{f(x)}=\sum_{i=1}^{N} c_{i} \frac{d u_{i}}{u_{i}}+d v \\
& g d t=\sum_{i=1}^{N} b_{i} \frac{d w_{i}}{w_{i}}+d y
\end{aligned}
$$

where $b_{i}=\frac{c_{i}}{M}$ for some $M \in \mathbf{Z}$.
Note that

$$
M c_{i} \frac{d u_{i}}{u_{i}}-c_{i} \frac{d w_{i}}{w_{i}}=c_{i}\left(\frac{d\left(u_{i}^{M} / w_{i}\right)}{u_{i}^{M} / w_{i}}\right)
$$

Thus we may use the fact that $g d t=\frac{d x}{f(x)}$ to conclude that

$$
\sum_{i=1}^{N} c_{i} \frac{d\left(u_{i}^{M} / w_{i}\right)}{u_{i}^{M} / w_{i}}+d(M v-y)=0
$$

By $6.10, d\left(u_{i}^{M} / w_{i}\right)=0$ for each i and $d(M v-y)=0$. Since $k(x)$ is a purely transcendental extension of k, by 6.8 each $u_{i}^{M} / w_{i} \in k$ and $M v-y \in k$.

For each $i, D\left(\frac{u_{i}^{M}}{w_{i}}\right)=\frac{M}{w_{i}} u_{i}^{M-1} D\left(u_{i}\right)$, since $w_{i} \in C(t)=C_{k(x)}$. Thus $\frac{D\left(u_{i}\right)}{u_{i}} \in$ k. We also have $D(v) \in k$. But $u_{1}, \ldots, u_{n}, v \in C(x)$. Thus $\frac{D\left(u_{1}\right)}{u_{i}}$ and $D(v) \in$ $k \cap C(x)=C$.

For any $h \in C(x), D(h)=\frac{\partial h}{\partial X} D(x)=\frac{\partial h}{\partial X} f(x)$. At least one of u_{1}, \ldots, u_{N}, v is not in k, for otherwise $d x=0$. Thus at least one of $\frac{\frac{\partial u_{1}}{\partial x}}{u_{i}} f$ or $\frac{\partial v}{\partial x} f$ is a nonzero element of C. Thus $\frac{1}{f(x)}$ is of one of the forms stated in the theorem.

References

The nonminimality of differential closures was proved in [Kolchin 3], [Rosenlicht 1] and [Shelah]. Shelah's and Rosenlicht's arguments are discussed in [Gramain 1] and [Gramain 2].
[Rosenlicht 2] contains some of the theory of differential forms that we use. This work is an extension of earlier work of Ax.
[Brestovski] contains several extensions of Rosenlicht's ideas.

§7. The number of non-isomorphic models

In this section we will prove that if κ is uncountable, then there are 2^{κ} non-isomorphic differentially closed fields of cardinality κ, while also analyzing orthogonality and strongly regular types. The number of countable models was only recently shown to be $2^{\aleph_{0}}$ by Hrushovski and Sokolović. Pillay's paper in this volume contains a proof of this result. [Through out this section we assume a reasonable knowledge of stability theory. References [L] are to Lascar's Stability in Model Theory, while [B] is Baldwin's Fundamentals of Stability Theory.]

We say that \bar{a} and \bar{b} are independent over k if the $t(\bar{a} / k\langle\bar{b}\rangle)$ does not fork over k. We write $\bar{a} \bigcup_{k} \bar{b}$. Recall that the $a \downarrow_{k} \bar{b}$ if and only if $R D(a / k)=R D(a / k\langle\bar{b}\rangle)$. We say that a type is stationary if over any extension of the domain there is there is a unique non-forking extension. For $p \in S_{1}(k), p$ is stationary if and only if the minimal polynomial of p is absolutely irreducible.

Lemma 7.1. Suppose $K \models D C F$ and F is the differential closure of $K\langle\bar{b}\rangle$. If $a \in F-K$ then $a \not \chi_{K} \bar{b}$.
Proof.
Let $\psi(v, \bar{b})$ isolate $t(a / K\langle\bar{b}\rangle)$. For all $m \in K, \psi(v, \bar{b}) \rightarrow v \neq m$.
Suppose $a \bigsqcup_{K} \bar{b}$. By symmetry $\bar{b} \downarrow_{K} a$ (see [L] 3.5). Thus $t(\bar{b} / K\langle a\rangle)$ is the heir of $t(\bar{b} / K)$. Since $t(\bar{b} / K\langle a\rangle)$ represents $\psi(v, \bar{w})$, there is $a_{0} \in K$ such that $\psi\left(a_{0}, \bar{b}\right)$. But then $\psi\left(a_{0}, \bar{b}\right) \rightarrow a_{0} \neq a_{0}$, a contradiction.

Note that the above argument works for any stable theory with prime models.

Definition. Let $K \vDash D C F$ and $p, q \in S_{1}(K)$. We say that p and q are orthogonal if and only if for any a realizing p and b realizing $q, a \downarrow_{K} b$. We write $p \perp q$.

The above notion is usually called almost orthogonality. For types over models of an ω-stable theory these notions are equivalent (see [L] 8.23). If $p \in S(k)$ and $q \in S(l)$, we say that $p \perp q$ if and only if for any differentially
closed $K \supset k \cup l$, if p^{\prime} and q^{\prime} are non-forking extensions of p and q to K, then $p^{\prime} \perp q^{\prime}$. In general if $p \perp q$ and p^{\prime} and q^{\prime} are nonforking extensions of p and q respectively, then $p^{\prime} \perp q^{\prime}$.

Lemma 7.2. If $K \models D C F, p, q \in S_{1}(K), p \perp q, a$ realizes p and F is the differential closure of $K\langle a\rangle$, then q is not realized in F.

Proof. Clear from 7.1.
Lemma 7.3. Suppose $F \supset K$ are differentially closed, $\phi(v)$ is a formula with parameters from K and every element of F that satisfies $\phi(x)$ is already in K. Let $a \in F-K$, let $p=t(a / K)$ and let $q \in S_{1}(K)$ be a type containing $\phi(v)$. Then $p \perp q$.
Proof. Let b realize q. Let $r(X) \in K\{X\}$ be the minimal polynomial of q. If $b X_{K} a$, there are $g(X), h(X) \in K\langle a\rangle\{X\}$, such that $g(b)=0$, the order of g is less than the order of r, the order of $h(X)$ is less than the order of $g(X)$ and

$$
g(x)=0 \wedge h(x) \neq 0 \rightarrow \phi(x)
$$

Since $\phi(v)$ has no new solutions in F,

$$
\{x \in F: F \vDash g(x)=0 \wedge h(x) \neq 0\}=\{x \in K: F \models g(x)=0 \wedge h(x) \neq 0\} .
$$

By definability of types and model completeness, there is a formula $\psi(v)$ with parameters from K such that $\{x \in K: F \vDash g(x)=0 \wedge h(x) \neq 0\}=\{x \in K$: $K \vDash \psi(x)\}=\{x \in F: F \models \psi(x)\}$. Note that $\psi(b)$ holds. But $F \vDash$ "there are polynomials g and h such that g has order less than r and h has order less than g such that $(g(x)=0 \wedge h(x) \neq 0)$ if and only if $\psi(x)$. Thus by model completeness there are $g_{0}, h_{0} \in K\{X\}$ such that $g_{0}(x)=0 \wedge h_{0}(x) \neq 0$ is equivalent to $\psi(x)$. In particular $g_{0}(b)=0$ contradicting the fact that r is the minimal polynomial of $t(b / K)$.

As an application of 7.3 suppose $p \in S_{1}(K)$ is the type of a differential transcendental. Let K_{p} be the prime model over a realization of p. We first note that every element of $K_{p} \backslash K$ is differentially transcendental over K. Suppose not. Let $b \in K_{p} \backslash K$, and suppose $f(b)=0$ for some $f(X) \in K\{X\}$. Then $R D(b / K) \leq \operatorname{ord}(f)$, but by $7.1 a \not \chi_{K} b$. Thus $R D(a / K\langle b\rangle)<\omega$. But $R D$ is transcendence degree. Thus if $\operatorname{td}(K\langle a, b\rangle / K\langle b\rangle)<\omega$ and $\operatorname{td}(K\langle b\rangle / K)<\omega$, then $t d(K\langle a\rangle / K)<\omega$ contradicting the fact that a is a differential transcendental.

In particular if $f \in K\{X\}, f(X)=0$ has no solutions in $K_{p}-K$. Thus by 7.3 if $q \in S_{1}(K)$ and $q \neq p, q \perp p$.

Definition. Let $K, F \vDash D C F$. Let $p \in S(F)$. We say $p \perp K$ if and only if for all $q \in S(K)$, if q^{\prime} is a non-forking extension of q to F then $p \perp q^{\prime}$.

We use the following fact (see [B] VI 2.23).

Lemma 7.4. If $M \subset N \models T$ and f is an elementary map with domain N such that $N \downarrow_{M} f(N)$, then $p \perp M$ if and only if $p \perp f(p)$.

Definition. T has the dimension order property (DOP) if and only if there are $M_{0}, M_{1}, M_{2}, M_{3}$ models of T such that:

1) $M_{0} \subseteq M_{1} \cap M_{2}$
2) $M_{1} \downarrow_{M_{0}} M_{2}$
3) M_{3} is prime over $M_{1} \cup M_{2}$.
4) There is p such that $p \perp M_{1}, p \perp M_{2}$, and $p \not \perp M_{3}$.

The interest of the dimension order property is the following theorem of Shelah (see [B] XVI).

Theorem 7.5 If T is ω-stable with DOP, then for any uncountable κ there are 2^{κ} non-isomorphic models of T of power κ.

Theorem 7.6 Differentially closed fields have DOP.

Proof.

Let $K \vDash D C F$. Let b_{1}, b_{2} be independent differential transcendental over K. Let $K_{i}, i=1,2$ be the differential closure of $K\left\langle b_{i}\right\rangle$. Let K_{3} be the differential closure of $K\left\langle b_{1}, b_{2}\right\rangle$.

Let $p \in S_{1}\left(K_{3}\right)$ be the type of a generic solution of $X^{\prime}=b_{1} b_{2} f(X)$, where $f(X)=X^{3}-X^{2}\left(\right.$ or $f(X)=\frac{X}{X+1}$). Clearly $p \not \perp K_{3}$.

We claim that $p \perp K_{1}$. By 7.4 it suffices to show that if b_{3} is differentially transcendental over $K, b_{3} \downarrow_{K_{1}} b_{2}$, and q is the type of a generic solution of $X^{\prime}=b_{1} b_{3} f(X)$, then $p \perp q$.

Let F be the differential closure of $K\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ and identify p and q with their non-forking extensions to F. Let x_{1} and x_{2} be realizations of p and q over F. We claim that $x_{1} \downarrow_{F} x_{2}$. Let $L=F\left\langle x_{1}, x_{2}\right\rangle$. Since $x_{i}^{\prime} \in F\left(x_{i}\right)$, it is easy to see that $F\left(x_{i}\right)=F\left\langle x_{i}\right\rangle$ and $L=F\left(x_{1}, x_{2}\right)$. Since $R D(p)=R D(q)=1$, these are types of U-rank. If $t\left(x_{2} / F\left\langle x_{1}\right\rangle\right)$ forks over F, then x_{2} is algebraic over $F\left(x_{1}\right)$.

We will apply Rosenlicht's theorem with $k=F$ and $K=L$. We need to show that C_{L} is algebraic over C_{F}. By theorem 6.12, $C_{F}=C_{F\left(x_{1}\right)}$. In general if K / k is algebraic then C_{K} / C_{k} is algebraic. [Let $c \in C_{K}$, let $\sum a_{i} X^{i}$ be the minimal polynomial of c over k, where the leading $a_{i}=1$. Then $0=$ $D\left(\sum a_{i} c^{i}\right)=\sum D\left(a_{i}\right) c^{i}+D(c) \sum i a_{i} c^{i-1}$. So $\sum D\left(a_{i}\right) X^{i}$ vanishes at c but this has lower degree unless all of the a_{i} are constants.] Thus C_{L} is algebraic over C_{F}.

By Rosenlicht's theorem, $b_{1} b_{2} v\left(x_{2}\right)^{\prime}=b_{1} b_{3} v\left(x_{1}\right)^{\prime}$. As we saw in 6.3, this implies $x_{1}=x_{2}$, but this is impossible since $b_{1} b_{2} \neq b_{1} b_{3}$.

Similarly $p \perp K_{2}$, so p witnesses DOP.
Corollary 7.7 For $\kappa \geq \aleph_{1}$, there are 2^{κ} non-isomorphic differentially closed field of power κ.

The idea of the proof is the following. Fix M a differentially closed field of power κ containing ($a_{\alpha}, b_{\alpha}: \alpha<\kappa$) independent differential transcendentals.

Let R be a binary relation on κ. We can find M_{R} differentially closed of power κ. Such that $R(\alpha, \beta)$ if and only if $X^{\prime}=a_{\alpha} b_{\beta} f(X)$ has \aleph_{1} solutions and $\neg R(\alpha, \beta)$ if and only if $X^{\prime}=a_{\alpha} b_{\beta} f(X)$ has \aleph_{0} solutions. This idea can be used to build 2^{κ} non-isomorphic models. (For example this shows that if Q is the quantifier "there exists uncountably many" $D C F$ is unstable in $L(Q)$.)

We conclude this section with some remarks on strongly regular types and orthogonality.

Notation: If $K \vDash D C F$ and $p \in S_{1}(K)$ we let K_{p} denote the prime model over a realization of p and we let f_{p} denote the minimal polynomial of p.

Definition. Let $K \models D C F$. A nonalgebraic type $p \in S_{1}(K)$ is strongly regular if and only if for any $a \in K_{p} \backslash K$, if $f_{p}(a)=0$, then $p=t(a / K)$.

If $p \in S_{1}(k)$ is stationary, p is strongly regular if and only if for any differentially closed $K \supset k$, the non-forking extension of p to K is strongly regular.

If $K, F \vDash D C F, K \subset F, p \in S_{1}(K), q \in S_{1}(F), q$ is a non-forking extension of p and p is strongly regular, then q is strongly regular. (See [L] 8.9).

Two important types are easily seen to be strongly regular. Let $t_{c} \in S_{1}(K)$ be the type of a new constant and let $t_{g} \in S_{1}(K)$ be the type of a differential transcendental. Clearly every constant in $K_{t_{c}}-K$ realizes t_{c} and every new element of $K_{t_{g}}-K$ realizes t_{g} (see the argument following 7.3). Note that in the case of t_{g} the minimal polynomial is 0 .

The next lemma shows that strongly regular types are abundant.
Lemma 7.8. If $F, K \vDash D C F$ and $K \subset F$ then there is $a \in F-K$ such that $t(a / K)$ is strongly regular.

Proof. Choose $a \in F-K$ such that $R D(a / K)$ is minimal. If $R D(a / K)=\omega$, then a is differentially transcendental over K, and $t(a / K)$ is strongly regular. Otherwise, let f be the minimal polynomial of $t(a / K)$. If $b \in F-K$ and $f(b)=0$, then $R D(b / K)$ is at most the order of f. By the minimality of $R D(a / K)$, $R D(b / K)$ is equal to the order of f. Thus f is the minimal polynomial of $t(b / K)$, and $t(b / K)=t(a / K)$. Hence $t(a / K)$ is strongly regular.

Lemma 7.9. If $K \vDash D C F$ and $p \in S_{1}(K)$ has $R U(p)=1$, then p is strongly regular.

Proof.

Let a realize p and let K_{p} be prime over $K\langle a\rangle$. Suppose $b \in K_{p} \backslash K$ and $f_{p}(b)=0$. By $7.1 a \chi_{K} b$. Thus $R U(a / K\langle b\rangle)=0$ and a is algebraic over $K\langle b\rangle$. Let $g(X)$ be the minimal polynomial of $t(b / K)$. Since $f(b)=0$, the order of g is at most the order of f. The order of f is equal to the transcendence degree of $K\langle a\rangle / K$, while the order of g is equal to the transcendence degree of $K\langle b\rangle / K$. Since a is algebraic over $K\langle b\rangle, f$ and g must have the same order. But then
since $f \in I(g), f$ and g are multiples of each other by an element of K. So $t(b / K)=p$.

Lemma 7.10. Suppose $p \in S_{1}(K)$ is strongly regular and $f(X)$ is the minimal polynomial of p. Let $q \in S_{1}(K)$ be such that " $f(v)=0$ " $\in q$ and $R D(q)<$ $R D(p)$. Then $q \perp p$.
Proof.
Let g be the minimal polynomial of q. Then $K_{p} \backslash K$ contains no elements satisfying $f(x)=g(x)=0$. Thus, by lemma $7.3, p \perp q$.

Lemma 7.11. Suppose $p \in S_{1}(K)$ is strongly regular, and $K \subseteq K^{\prime} \subseteq K_{p}$, and $K \neq K^{\prime}$, then $K_{p} \cong K^{\prime}$.

Proof.

Let a realize p and let K_{p} be prime over $K\langle a\rangle$. Suppose $b \in K^{\prime} \backslash K$. First, suppose $K^{\prime} \backslash K$ contains no solutions to $f_{p}(X)=0$, then $t(b / K) \perp p$. But since $b \in K_{p}, a \not \chi_{K} b$, a contradiction. Thus $K^{\prime}-K$ contains a solution d to $f_{p}(X)=0$. Since p is strongly regular $t(d / K)=p$. Thus K^{\prime} contains a realization of p, and hence is prime over a realization of p. By uniqueness of prime models $K^{\prime} \cong K_{p}$.

Definition. We define the Rudin-Keisler order on $S_{1}(K)$ as follows. Let $p, q \in$ $S_{1}(K)$. We say $p \geq_{R K} q$ if and only if q is realized in K_{p}. We say $p \sim_{R K} q$ if $p \geq_{R K} q$ and $q \geq_{R K} p$.

Corollary 7.12. If $p \in S_{1}(K)$ be strongly regular, $q \in S_{1}(K)$ is non-algebraic and $p \geq_{R K} q$, then $p \sim_{R K} q$.

Proof.

We can embed $K_{q} \subset K_{p}$ such that $K_{q} \neq K$. By $7.10, K_{q}$ contains a realization of p.

Lemma 7.13. Let $p, q, r \in S_{1}(K)$. Suppose $r \geq_{R K} p$ and $r \perp q$, then $p \perp q$.
Proof. Let a, b realize p, q. Since $r \geq_{R K} p$, we can find d realizing r such that a is in the differential closure of $K\langle d\rangle$. Since $q \perp r, b \downarrow_{K} d$. In particular we can find a differentially closed field $F \supset K\langle d\rangle$ such that $t(b / F)$ is the heir of the q. Since $K\langle a\rangle \subset F, b \bigsqcup_{K} a$. Thus $p \perp q$.

Corollary 7.14. Let $p, q \in S_{1}(K)$ be strongly regular. The following are equivalent:
i) $K_{p} \cong K_{q}$
ii) $p \geq_{R K} q$
iii) $p \sim_{R K} q$
iv) $p \not \perp q$.

Proof.

i) \Rightarrow ii) \Rightarrow iii) \Rightarrow i) is clear from 7.11,7.12.
ii) \Rightarrow iv). Is clear from 7.2 .
iv) \Rightarrow ii). Suppose $p \not \unlhd_{R K} q$. If $K_{p} \backslash K$ contains no elements satisfying $f_{q}(x)=0$, then by $7.3 p \perp q$. Suppose $a \in K_{p} \backslash K$ and $f_{q}(a)=0$. By 7.10 $q \perp t(a / K)$. By $7.12 t(a / K) \geq_{R K} p$, thus by $7.13 p \perp q$, as desired.

Strongly regular types are important because they can be assigned dimensions. (The reader is referred to [B] chapter XII for details.)

Let $k \subset K$. We say that $A \subset K$ is k-free if and only if for all $a \in A$ $a \downarrow_{k} A-\{a\}$.

If $p \in S_{1}(k)$, we say that $B \subset K$ is a p-base for K if it is a maximal k-free set of realizations of p. If p is strongly regular, then \notin is transitive on the realizations of p. Thus any two p-bases have the same cardinality. We call this cardinality the p-dimension of K / k. We denote this as $\operatorname{dim}(p ; K)$. If k_{0}, k_{1} are finitely generated, $p_{i} \in S_{1}\left(k_{i}\right)$ is strongly regular, and $K \supset k_{0} \cup k_{1}$, then $\operatorname{dim}\left(p_{0} ; K\right)$ differs from $\operatorname{dim}\left(p_{1} ; K\right)$ by at most a finite amount.

Two dimensions are clearly important invariants of a differentially closed field. Let $t_{c} \in S_{1}(\mathbf{Q})$ be the type of a new constant and let $t_{q} \in S_{1}(\mathbf{Q})$ be the type of a new transcendental. For any differentially closed field K, let $I_{c}(K)=$ $\operatorname{dim}\left(t_{c} ; K\right)$ and $I_{g}(K)=\operatorname{dim}\left(t_{g} ; K\right)$. It is easy to see that for pair of cardinals κ, λ, there is a differentially closed field K with $I_{c}(K)=\kappa$ and $I_{g}(K)=\lambda$. Until the work of Hrushovski and Sokolovic the only types known that were nonorthogonal to t_{c} and t_{g} were trivial types like those arising from Rosenlicht's examples. This lead Lascar to conjecture that perhaps any strongly regular type which is orthogonal to t_{c} and t_{g} is \aleph_{0}-categorical. Lascar's conjecture would have implied that the number of countable models is \aleph_{0}. Indeed a countable model would be determined up to isomorphism by $I_{g}(K)$ and $I_{c}(K)$. The work of Hrushovski and Sokolović shows that this is far from true. There are many locally modular strongly regular types which are not \aleph_{0}-categorical. These matters are discussed extensively in Pillay's article in this volume.

References

Shelah ([Shelah 1]) proved that in uncountable cardinals $D C F$ has the maximal possible number of models.

The analysis of orthogonality and strongly regular types is from [Lascar 1].

§8. Differential Galois Theory

Let K / k be differential fields. We define $G(K / k)$ the Differential Galois Group of K over k, to be the group of differential automorphisms of K which fix k pointwise.

We begin by looking at some important examples.

Examples:

1) Adjoining an integral:

Let $a \in k$. Consider the equation $X^{\prime}=a$. Let u be a generic solution of $X^{\prime}=a$ over k and let $K=k\langle u\rangle$. Since $u^{\prime}=a \in k, K=k(u)$. If $\sigma \in G(K / k)$, then $\sigma(u)^{\prime}=a$, thus for some $c \in C_{K}, \sigma(u)=u+c$. If $c \in C_{k}$, then $u \mapsto u+c$ determined a differential automorphsim of K fixing k.

We will assume that C_{k} is algebraically closed. Then by theorem $4.5 \mathrm{~K} / k$ is Picard-Vessiot (the equation $X^{\prime \prime}-\frac{a^{\prime}}{a} X^{\prime}=0$ has linear independent solutions 1 and u). Indeed if $X^{\prime}=a$ has no solution in k, then K / k is Picard-Vessiot (see [Kaplansky]). Since $C_{K}=C_{k}$, the above argument shows that $G(K / k)$ is isomorphic to the additive group of C_{k}.
2) Exponentials

Let $a \in k$. Let u be a generic solution of $X^{\prime}=a X$ over k. Let $K=k\langle u\rangle=$ $k(u)$. Suppose $C_{K}=C_{k}$ (for example, suppose C_{k} is algebraically closed), then K / k is Picard-Vessiot. If $\sigma \in G(K / k)$, then $\sigma(u)=c u$, for some $c \in C_{k}$. Moreover if $c \in C_{k}$, then $u \mapsto c u$ determines an automorphism of K. Thus $G(K / k)$ is isomorphic to the multiplicative group of C_{k}.
3) We next exhibit a Picard-Vessiot extension where the differential Galois group is $G L_{n}(C)$.

Let k_{0} be any differential field and let $K=k_{0}\left\langle X_{1}, \ldots, X_{n}\right\rangle$. Let $C=$ $C_{k_{0}}=C_{K}$. Suppose $A=\left(a_{i, j}\right)$ is a non-singular $n \times n$ matrix over C. Then A determines an automorphism of K by $\sigma_{A}\left(X_{i}^{(m)}\right)=\sum a_{i, j} X_{j}^{(m)}$. Thus $G L_{n}(C)$ is a subgroup of $G\left(K / k_{0}\right)$. Let k be the fixed field of $G L_{n}(C)$. One sees that $G(K / k)=G L_{n}(C)$.

Let

$$
L(Y)=\frac{W\left(Y, X_{1}, \ldots, X_{n}\right)}{W\left(X_{1}, \ldots, X_{n}\right)}
$$

We claim that $L(Y)$ is a linear differential equation over k. To see this note that if $A \in G L_{n}(C)$ and X is the matrix such that $W\left(X_{1}, \ldots, X_{n}\right)=|X|$, then

$$
W\left(\sigma_{A}\left(X_{1}\right), \ldots, \sigma_{A}\left(X_{n}\right)\right)=\left|X A^{T}\right|=W\left(X_{1}, \ldots, X_{n}\right)\left|A^{T}\right|
$$

while

$$
\begin{aligned}
W\left(Y, \sigma_{A}\left(X_{1}\right), \ldots, \sigma_{A}\left(X_{n}\right)\right) & =W\left(Y, X_{1}, \ldots, X_{n}\right) \cdot\left|\begin{array}{cc}
1 & 0 \\
0 & A^{T}
\end{array}\right| \\
& =W\left(Y, X_{1}, \ldots, X_{n}\right)\left|A^{T}\right|
\end{aligned}
$$

Thus $L(Y)$ is invariant under σ_{A}, so $L(Y) \in k\{Y\}$. The elements X_{1}, \ldots, X_{n} are linearly independent solutions to $L(Y)=0$, thus K / k is PicardVessiot.

In all of these examples the differential Galois group of the Picard-Vessiot extension is a linear algebraic group over the constant field. We next show that this is always the case.

For the following arguments we fix \mathbf{K} a very saturated differentially closed field. \mathbf{K} will serve as a universal domain (ie. monster model) for all of our work.

Let k be a differential field and let K / k be a Picard-Vessiot extension. Say $K=k\left\langle u_{1}, \ldots, u_{n}\right\rangle$ and $L(Y)=0$ is the homogeneous linear equation determining the extension. Recall that since K / k is Picard-Vessiot, $C_{K}=C_{k}$. We denote the common constant field C.

Suppose $k \subseteq F$ and $\sigma: K \rightarrow F$ is an embedding fixing k. Then $\sigma\left(u_{i}\right)$ is a solution of $L(Y)=0$ for each i. Thus there are constants $c_{i, j} \in C_{F}$ such that $\sigma\left(u_{i}\right)=\sum c_{i, j} u_{j}$. We call $\left(c_{i, j}\right)$ the matrix associated with σ.

Theorem 8.1. There is Σ a system of equations in $C\left[X_{i, j} .1 \leq i, j \leq n\right]$ such that:
i) If $\sigma: K \rightarrow F$ is an embedding fixing k, then the coefficients of the matrix associated with σ satisfy Σ.
ii) If $F \supseteq K$ and $\bar{c} \in C_{F}$ satisfies Σ, then $u_{i} \mapsto \sum c_{i, j} u_{j}$ determines an embedding of K into F fixing k.

This immediately yields:
Corollary 8.2. If K / k is a Picard-Vessiot extension of order n, then $G(K / k)$ is isomorphic to an algebraic subgroup of $G L_{n}(C)$ (ie. $G(K / k)$ is a linear algebraic group over the constant field).

proof of 8.1.

Let p be the type of \bar{u} over k. Consider the map

$$
\phi: k\left\{Y_{1}, \ldots, Y_{n}\right\} \rightarrow K\left[Z_{i, j}: 1 \leq i, j \leq n\right]
$$

determined by $Y_{i} \mapsto \sum_{j=1}^{n} Z_{i, j} u_{j}$ and let Δ be the image of I_{p} under ϕ.
In other words, Δ is the ideal of polynomials in $K[\bar{Z}]$ such that if \bar{d} is in the variety given by Δ and σ is the map $u_{i} \mapsto \sum d_{i, j} u_{j}$. Then $\sigma\left(u_{1}\right), \ldots, \sigma\left(u_{n}\right)$ is in the variety given by I_{p}.

Let W be a vector space basis for K over C. For each $f \in \Delta$, write

$$
f=\sum_{w \in W} f_{w}(\bar{Z}) w
$$

where $f_{w} \in C[\bar{Z}]$.
Let Σ be the ideal generated by the $\left\{f_{w}: f \in \Delta, w \in W\right.$ \}.
Let L be the differential closure of K. Then C_{L} is the algebraic closure of C. Since the elements of W are independent over C, and K and C_{L} are linearly disjoint over C (as C is algebraically closed in K), $L \vDash$ " for all constants \bar{c}, if $p(\bar{c})=0$, then for all $w \in W, p_{w}(\bar{c})=0 "$. By model completeness this is also true in \mathbf{K}.

Suppose $\sigma: K \rightarrow \mathbf{K}$ is an embedding fixing k and determined by $u_{i} \mapsto$ $\sum c_{i, j} u_{j}$, for some constants $\bar{c} \in \mathbf{K}$. Then for every polynomial $p(\bar{Z}) \in \Delta$, $p(\bar{c})=0$. By the above remarks, for all $w \in W, p_{w}(\bar{c})=0$. Thus all of the polynomials in Σ vanish at \bar{c}.

Let $F \supset K$ and let $A=\left(c_{i, j}\right)$ be a nonsingular matrix in C_{F} such that \bar{c} satisfies Σ. Let $\sigma: K \rightarrow F$ fix k and send $u_{i} \mapsto \sum c_{i, j} u_{j}$. We claim that σ is an embedding. We chose Σ to insure that σ is a homomorphism. It suffices to show that σ is one to one.

Suppose not. Then $t d(K / k)>t d(k\langle\sigma(\bar{u})\rangle / k)$ (if σ has a nontrivial kernel, then the Krull dimension of $k\langle\bar{u}\rangle$ is greater than the Krull dimension of $k\langle\sigma(\bar{u})\rangle)$. Thus $\operatorname{td}(k\langle\bar{u}, \sigma(\bar{u})\rangle / k\langle\bar{u}\rangle)<t d(k\langle\bar{u}, \sigma(\bar{u})\rangle / k\langle\sigma(\bar{u})\rangle)$.

Also $\operatorname{td}(k\langle\bar{u}, \sigma(\bar{u})\rangle) / k\langle\bar{u}\rangle=\operatorname{td}(k\langle\bar{u}, \bar{c}\rangle / k\langle\bar{u}\rangle)$.
But if constants \bar{c} are algebraically dependent over a differential field L they are dependent over the constants of L. Thus $\operatorname{td}(k\langle\bar{u}, \bar{c}\rangle / k(\bar{u}\rangle)=\operatorname{td}(C(\bar{c}) / C)$.

But C is also the field of constants of $k\langle\sigma(\bar{u})\rangle$. Thus

$$
t d(k\langle\sigma(\bar{u}), \bar{c}\rangle / k\langle\sigma(\bar{u})\rangle)=\operatorname{td}(C(\bar{c}) / C),
$$

a contradiction.
There is a beautiful Galois theory for Picard-Vessiot extensions. We state the main theorem here and refer the reader to the books by Kaplansky and Magid.

Definition. Let K / k be differential fields and let $G(K / k)$ be the differential Galois group. If $H \subseteq G(K / k)$, let $F i x(H)=\{x \in K: \forall \sigma \in H \sigma(x)=x\}$.

We say that K / k is normal if for any $x \in K \backslash k$ there is $\sigma \in G(K / k)$ such that $\sigma(x) \neq x$.

Theorem 8.3. Let k be a differential field with C_{k} algebraically closed. If K / k is Picard-Vessiot, then K / k is normal, $G(K / k)$ is a linear algebraic group over C_{k} and $L \mapsto G(K / L)$ gives a one to one correspondence between the intermediate differential subfields of K / k and the algebraic subgroups of $G(K / k)$. An algebraic subgroup H is normal if and only if $F i x(H) / k$ is a normal. In this case
$G(F i x(H) / k)$ is $G(K / k) / H$. Moreover if k is algebraically closed, then $G(K / k)$ is connected

Much as ordinary Galois theory can be used to prove that the general quintic can not be solved by adjunction radicals, differential Galois theory can be used to prove the unsolvability of differential equations by simple means.

Let $f(X) \in k\{X\}$. We say that K is a Liouville extension of k if there are extensions $k=K_{0} \subseteq K_{1} \subset \cdots \subseteq K_{n}=K$, where each K_{i+1} is obtained from K_{i} by adjoining an integral, adjoining the exponential of an integral or making an algebraic extension. We say that $f(X)=0$ is solvable by quadratures if it is solvable in a Liouvile extension.

Theorem 8.4. Let k be a differential field of characteristic zero with C_{k} algebraically closed. Suppose that K / k is Liouville. If $K \supseteq L \supseteq k$ is Liouville, then the connected component of $G(L / k)$ is solvable.

For example this method can be used to show that $y^{\prime}=y^{2}-x$ is not solvable by quadratures over $\mathbf{C}(\mathbf{x})$

References

The algebraic Galois theory of Picard-Vessiot extensions is due to Kolchin ([Kolchin 4]). Kaplansky's Differential Algebra and Magid's Lectures on Differential Galois Theory provide extensive treatments of this subject. We refer the reader to these books for the proofs of theorems 8.3 and 8.4.

§9. Strongly Normal Extensions.

In this section we will examine Kolchin's strongly normal extensions. This class of extensions contains the Picard-Vessiot extensions and also has an interesting Galois theory. Again we work inside a very saturated universal domain K.

Definition. L / K is strongly normal if and only if
i) $C_{L}=C_{K}$ is algebraically closed
ii) L / K is finitely generated
iii) if $\sigma: \mathbf{K} \rightarrow \mathbf{K}$ is an automorphism fixing K, then $\left\langle L, C_{\mathbf{K}}\right\rangle=\left\langle\sigma(L), C_{\mathbf{K}}\right\rangle$.

For example, if C_{K} is algebraically closed and L / K is Picard-Vessiot, we show that L / K is strongly normal. Suppose $L=K\langle\bar{a}\rangle$, where \bar{a} is a fundamental system of solutions to a linear equation over K. For any K-automorphism
$\sigma, \sigma(\bar{a}) \in\left\langle L, C_{\mathbf{K}}\right\rangle$, thus $\left\langle L, C_{\mathbf{K}}\right\rangle \supseteq\left\langle\sigma(L), C_{\mathbf{K}}\right\rangle$. Similarly, L is contained in $\left\langle\sigma(L), C_{\mathbf{K}}\right\rangle$. So equality holds.

We will show that for strongly normal extensions $G(L / K)$ is an algebraic group over C_{K}.

Lemma 9.1. Suppose L / K is strongly normal and $L=K\langle\bar{a}\rangle$. Then L is contained in the differential closure of K.

Proof. Suppose not. Let F be the differential closure of L. Note that $C_{F}=$ $C_{L}=C_{K}$. Let p be the type of \bar{a} over the differential closure of K and let q be a non-forking extension of p to F. Since F contains no new constants, p is orthogonal to the the type of a new constant. Thus q is orthogonal to the type of a new constant. Let \bar{b} realize q and let F_{1} be the differential closure of $F\langle\bar{b}\rangle$. Since q is orthogonal to the constants, $C_{F_{1}}=C_{K}$.

Since \bar{a} and \bar{b} realize the same type over K, there is an automorphism of \mathbf{K} fixing K and sending \bar{a} to \bar{b}. Thus since L is strongly normal, $\bar{b} \in\left\langle L, C_{\mathbf{K}}\right\rangle$. In particular, there is a K-definable function f such that

$$
\mathbf{K} \vDash \exists \bar{c}\left(\bigwedge c_{i}^{\prime}=0 \wedge f(\bar{a}, \bar{c})=\bar{b}\right) .
$$

By model completeness

$$
F_{1} \models \exists \bar{c}\left(\bigwedge c_{i}^{\prime}=0 \wedge f(\bar{a}, \bar{c})=\bar{b}\right)
$$

Thus $\bar{b} \in\left\langle L, C_{F_{1}}\right\rangle=L$. Thus \bar{a} must be in the differential closure of K.
Suppose $L=K\langle\bar{a}\rangle$ and L / K is strongly normal. Since \bar{a} is in the differential closure of K, there is a formula $\psi(\bar{v})$ over K , which isolates the $t p(\bar{a} / K)$.

Lemma 9.2. $\psi(\bar{v})$ isolates $t p\left(\bar{a} /\left\langle K, C_{\mathbf{K}}\right\rangle\right)$.
Suppose $\bar{b} \in K, \bar{c} \in C_{\mathbf{K}}$ and $\phi(\bar{v}, \bar{b}, \bar{c})$ and $\neg \phi(\bar{v}, \bar{b}, \bar{c})$ split $\psi(\bar{v})$. Then

$$
\mathbf{K} \models \exists \bar{c}\left(\bigwedge c_{i}^{\prime}=0 \wedge \exists \bar{v} \exists \bar{w}(\psi(\bar{v}) \wedge \psi(\bar{w}) \wedge \phi(\bar{v}, \bar{b}, \bar{c}) \wedge \neg \phi(\bar{w}, \bar{b}, \bar{c}))\right) .
$$

By model completeness this is also true in the differential closure of K. But the differential closure of K has the same constants as K. Thus ψ is not an atom over K, a contradiction.

Before proving the general result we examine an important special case.

Example. Weierstrass Equations:

Fix $g_{2}, g_{3} \in C_{K}$ with $27 g_{3}^{2}-g_{2}^{3} \neq 0$. For $a \in K$ let $G_{a}(Y)$ be the differential polynomial $\left(Y^{\prime}\right)^{2}-a^{2}\left(4 Y^{3}-g_{2} Y-g_{3}\right)$.

We say that $\alpha \in \mathbf{K}$ is Weierstrassian over K if it is non-constant and satisfies the equation $G_{a}(\alpha)=0$ for some $a \in K$.

If K is the field of complex meromorphic functions, then the Weierstrass p-function \wp is Weierstrassian over K.

We assume that C_{K} is algebraically closed. Consider the projective curve W given by the equation $Z Y^{2}=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}$. Since $27 g_{3}^{2}-g_{2}^{3} \neq 0$, W is non-singular and hence an elliptic curve defined over C_{K}. Hence there is an abelian group law on W. We write the group multiplicatively. W has a unique point at infinity $(0,1,0)$ and this point is the zero of the group. In general $(a, b, 1)^{-1}=(a,-b, 1)$. [Note: Henceforth when we consider affine points of W we will use the standard affine coordinates.]

If $G_{a}(\alpha)=0$, then $\left(\alpha, \frac{\alpha^{\prime}}{a}\right) \in W$.
We use the following lemma from [Kolchin 2].
Lemma 9.3. Suppose $G_{a}(\alpha)=0$ and $G_{b}(\beta)=0$, where α and β are nonconstant. Suppose that $\left(\alpha, \frac{\alpha^{\prime}}{a}\right)\left(\beta, \frac{\beta^{\prime}}{b}\right)=(\gamma, \delta)$. Then $\gamma^{\prime}=(a+b) \delta$. In particular either γ is constant or γ is Weierstrassian over K with $\left(\gamma^{\prime}\right)^{2}=(a+b)^{2}\left(4 \delta^{3}-\right.$ $g_{2} \delta-g_{3}$).

Suppose α is Weierstrassian with $G_{a}(\alpha)=0$. Let $L=K\langle\alpha\rangle$ and suppose that $C_{L}=C_{K}$. Let $\sigma: L \rightarrow \mathbf{K}$ be a K-embedding.

Consider $P_{\sigma}=\left(\sigma(\alpha), \frac{\sigma(\alpha)^{\prime}}{a}\right)\left(\alpha, \frac{\alpha^{\prime}}{a}\right)^{-1}=\left(\sigma(\alpha), \frac{\sigma(\alpha)^{\prime}}{a}\right)\left(\alpha,-\frac{\alpha^{\prime}}{a}\right) . P_{\sigma} \in W$ and $P_{\sigma}=(0,1,0)$ if and only if σ is the identity.

Suppose σ is nontrivial. Let $P_{\sigma}=\left(c_{1}, c_{2}\right)$. By the previous lemma $c_{1}^{\prime}=$ ($a-a) c_{2}$. Thus c_{1} is constant. It follows that c_{2} is also constant. Thus for every embedding σ there is $P_{\sigma} \in W\left(\mathbf{C}_{\mathbf{K}}\right)$ such that $\left(\sigma(\alpha), \frac{\sigma(\alpha)^{\prime}}{a}\right)=P_{\sigma}\left(\alpha, \frac{\alpha^{\prime}}{a}\right)$.

Thus $\sigma(\alpha) \in\left\langle L, C_{\mathbf{K}}\right\rangle$ so L / K is strongly normal. Suppose σ and $\tau \in$ $G(L / K)$. Then P_{σ} and P_{τ} are in L. But the differential closure of L has the same constants as K, so these points are in $W\left(C_{K}\right)$. Then

$$
\left(\sigma \tau(\alpha), \frac{\sigma \tau(\alpha)^{\prime}}{a}\right)=P_{\sigma}\left(\tau(\alpha), \frac{\tau(\alpha)^{\prime}}{a}\right)=P_{\sigma} P_{\tau}\left(\alpha, \frac{\alpha^{\prime}}{a}\right)
$$

Thus $P_{\sigma \tau}=P_{\sigma} P_{\tau}$. Thus $\sigma \mapsto P_{\sigma}$ is an embedding from $G(L / K)$ into $W\left(C_{K}\right)$.

Let ψ isolate the type of α over K. The set $\left\{\left(c_{1}, c_{2}\right) \in W\left(C_{K}\right): \psi\right.$ holds of the first coordinate of $\left.\left.\left(c_{1}, c_{2}\right)\left(\alpha, \frac{\alpha^{\prime}}{a}\right)\right)\right\}$ is definable. Thus $G(L / K)$ is isomorphic to a definable subgroup of $W\left(C_{K}\right)$. As $W\left(C_{K}\right)$ is an irreducible variety (and hence a connected group), the only proper definable subgroups of $W\left(C_{K}\right)$ are finite.

Suppose $G(L / K)$ is finite. Suppose β is in F the differential closure of L and $\psi(\beta)$ holds. Thus there is an automorphism σ of \mathbf{K} such sending α to β. This automorphism corresponds to an action of the group $W\left(C_{K}\right)$. But then β is already in L. Thus in F there are only finitely many solutions of ψ, so α is algebraic over K.

Thus we have shown that if $C_{K}=C_{K}(\alpha)$ and α is Weierstrassian over K it is either algebraic over K or $G(K\langle\alpha\rangle, K)$ is the group law of an elliptic curve over C_{K}.

We will next show that the Galois group of a strongly normal extension is always an algebraic group over the constants.

Let L / K be strongly normal and suppose $L=K\langle\bar{a}\rangle$. Let $\psi(\bar{v})$ isolate $t(\bar{a} / K)$.

If $\psi(\bar{b})$, then there is $\sigma \in G(\mathbf{K} / K)$ such that $\sigma(\bar{a})=\bar{b}$. Since L / K is strongly normal, $\bar{b} \in\left\langle L, C_{\mathbf{K}}\right\rangle$. In particular there is a K-definable function $g_{\bar{b}}$ and $\bar{c} \in C_{\mathbf{K}}$ such that $g_{\bar{b}}(\bar{a}, \bar{c})=\bar{b}$. By compactness and the usual coding tricks we can find a single K-definable function g such that for all $\bar{b} \in \psi^{\mathbf{K}}$ there is $\bar{c} \in C_{\mathbf{K}}$ such that $\bar{b}=g(\bar{a}, \bar{c})$.

Let F be the differential closure of L (and K). If $\bar{b} \in F$, then any automorphism of L sending \bar{a} to \bar{b} lifts to an automorphism of \mathbf{K}. Thus there is $\bar{c} \in C_{\mathrm{K}}$ such that $\bar{b}=g(\bar{a}, \bar{c})$. By model completeness, there is $\bar{c} \in C_{F}$ such that $\bar{b}=g(\bar{a}, \bar{c})$. But $C_{F}=C_{K}$ so there are constants in L such that $\bar{b}=g(\bar{a}, \bar{c})$.

It is easy to see that $\sigma \in G(L / K)$ is determined by its action on \bar{a}. Clearly $\psi(\sigma(\bar{a}))$ and if $\psi(\bar{b})$, then there is $\sigma \in G(L / K)$ with $\sigma(\bar{a})=\bar{b}$.

Consider the relation $R(\bar{b}, \bar{d}, \bar{e})$, which asserts that if $\sigma(\bar{a})=\bar{b}$ and $\tau(\bar{a})=\bar{d}$, then $\sigma \circ \tau(\bar{a})=\bar{e}$. Then $R(\bar{b}, \bar{d}, \bar{e})$ holds if and only if $\sigma(\bar{d})=\bar{e}$. But there are constants $\bar{c} \in C_{K}$ such that $\bar{d}=g(\bar{a}, \bar{c})$. But then $\sigma(\bar{d})=g(\bar{b}, \bar{c})$. So

$$
R(\bar{b}, \bar{d}, \bar{e}) \Leftrightarrow \psi(b) \wedge \psi(d) \wedge \psi(e) \wedge \exists \bar{c} \bigwedge c_{i}^{\prime}=0 \wedge \bar{d}=g(\bar{a}, \bar{c}) \wedge \bar{e}=g(\bar{b}, \bar{c})
$$

Let X be the set ψ^{L} and define - on X by $\bar{b} \cdot \bar{d}=\bar{e}$ if and only if $R(\bar{b}, \bar{d}, \bar{e})$. We have shown that (X, \cdot) is isomorphic to $G(L / K)$.

We can do even better. Let $Y=\left\{\bar{c} \in C_{F}: \psi(g(\bar{a}, \bar{c}))\right\}$. We define an equivalence relation E on Y by $\bar{c}_{0} E \bar{c}_{1}$ if and only if $g\left(\bar{a}, \bar{c}_{0}\right)=g\left(\bar{a}, \bar{c}_{1}\right)$. We also define a ternary relation R^{*} on Y by $R^{*}\left(\bar{c}_{0}, \bar{c}_{1}, \bar{c}_{2}\right)$ if and only if $R\left(g\left(\bar{a}, \bar{c}_{0}\right), g\left(\bar{a}, \bar{c}_{1}\right), g\left(\bar{a}, \bar{c}_{2}\right)\right)$. Clearly R^{*} is E invariant.

Since C_{F} is a pure algebraically closed field, Y, E and R^{*} are definable in the pure language of fields. By elimination of imaginaries we can find a field definable function $f: Y \rightarrow C_{F}^{n}$ such that $\bar{c} E \bar{c}_{0}$ if and only if $f(\bar{c})=f\left(\bar{c}_{0}\right)$. Let G be the image of Y under f. Define \cdot on G by $x_{0} \cdot x_{1}=x_{2}$ if and only if there are \bar{c}_{0}, \bar{c}_{1} and $\bar{c}_{2} \in Y$ such that $f\left(\bar{c}_{i}\right)=x_{i}$ and $R^{*}\left(\bar{c}_{0}, \bar{c}_{1}, \bar{c}_{2}\right)$. Then (G, \cdot) is isomorphic to $G(L / K)$ and (G, \cdot) is definable in the pure field structure of C_{F}. (Also $C_{F}=C_{L}=C_{K}$.)

In other words $G(L / K)$ is isomorphic to a group definable in the pure algebraically closed field C_{K}. The following theorem of van den Dries says that any such group is definably isomorphic to an algebraic group.

Theorem 9.4. Let K be an algebraically closed field and let (G, \cdot) be a group definable in K. Then G is definably isomorphic to an algebraic group over K.

Thus we have proved the following theorem of Kolchin.
Theorem 9.5. Suppose L / K is strongly normal and K is algebraically closed. Then $G(L / K)$ is isomorphic to an algebraic group defined over C_{K}.

Once we know that $G(L / K)$ is an algebraic group over C_{K}. We can develop a Galois correspondence between algebraic subgroups and intermediate fields. Much of the Galois theory of theorem 8.3 generalizes

For strongly normal extensions L / K, we will also study the group $G\left(\left\langle L, C_{\mathbf{K}}\right\rangle /\left\langle K, C_{\mathbf{K}}\right\rangle\right)$. We will call this group the full differential Galois group and denote it $G a l(L / K)$. The above arguments show that if L / K is strongly normal then $\operatorname{Gal}(L / K)$ is an algebraic group over $C_{\mathbf{K}}$. In particular, there is an algebraic group G defined over C_{K} such that $G(L / K) \cong G\left(C_{K}\right)$ and $G a l(L / K) \cong G\left(C_{\mathbf{K}}\right)$, (where for $F \supseteq C_{K}, G(F)$ denotes the F-rational points of G).

We will identify $\operatorname{Gal}(L / K)$ with $G\left(C_{\mathbf{K}}\right)$. The above arguments show that there is a map $\gamma: G a l(L / K) \rightarrow G\left(C_{\mathbf{K}}\right)$ such that $\sigma(\bar{a}) \in K\langle\bar{a}, \gamma(\sigma)\rangle$ and $\gamma(\sigma) \in$ $K\langle\bar{a}, \sigma(\bar{a})\rangle$ for all $\sigma \in G a l(L / K)$,

We next make a careful choice of the generator of L / K which will prove useful later.

Definition. Let L / K be strongly normal and let F be the differential closure of K. We say that $\alpha \in L$ is G-primitive if and only if $\alpha \in G(L), L=K\langle\alpha\rangle$ and for all $\sigma \in G(F / K) \alpha-1 \sigma(\alpha) \in G\left(C_{K}\right)$.

Lemma 9.6. Let K be algebraically closed. Every strongly normal extension L / K is of the form $L=K\langle\alpha\rangle$, where α is G-primitive.

Proof.

Since L is contained in the differential closure of K and L / K is finitely generated, L / K has finite transcendence degree. Thus we can find $\bar{a} \in L$ such that $L=K(\bar{a})$. For any $\sigma \in \operatorname{Gal}(L / K), \sigma(\bar{a}) \in K\langle\bar{a}, \gamma(\sigma)\rangle=K(\bar{a}, \gamma(\sigma))$ and $\gamma(\sigma) \in K\langle\bar{a}, \sigma(\bar{a})\rangle=K(\bar{a}, \sigma(\bar{a}))$.

Let \bar{b}, \bar{c} realize $t(\bar{a} / K)$ such that \bar{b}, \bar{c} are independent over L. Let $\tau(\bar{a})=\bar{b}$. By the above remarks there is a rational function F over K such that $F(\bar{a}, \bar{b})=$ $\gamma(\tau)$. This F will work for independent realizations of the $t(\bar{a} / K)$. In particular $F(\bar{c}, \bar{b}) \cdot F(\bar{a}, \bar{c})=F(\bar{a}, \bar{b})$. Let V be the K-variety such that \bar{a} is the generic point of V. Then \bar{b} is also a generic point of V over the field $L(\bar{c})$. Thus the equation $F(\bar{c}, \bar{x}) \cdot F(\bar{a}, \bar{c})=F(\bar{a}, \bar{x})$, must hold on a Zariski open subset of V. In particular we can find $\bar{d} \in K$ such that $F(\bar{c}, \bar{d}) \cdot F(\bar{a}, \bar{c})=F(\bar{a}, \bar{d})$ and $F(\bar{a}, \bar{d}) \in G(L)$ (Here we use the fact that if K is algebraically closed, $L \supset K$ and V is a variety defined over K, then the K-rational point of V are Zariski dense in the L-rational points). We let $\alpha=F(\bar{a}, \bar{d})$.

Let $\sigma \in \operatorname{Gal}(L / K)$. We may as well assume that the \bar{c} chosen above was independent of $\bar{\sigma}(\bar{a})$ over K. Thus $t(\bar{a}, \bar{c} / K)=t(\bar{c}, \sigma(\bar{a}) / K)$. Hence $F(\sigma(\bar{a}), \bar{d})$. $F(\bar{c}, \sigma(\bar{a}))=F(\bar{c}, \bar{d})$. So $F(\sigma(\bar{a}), \bar{d}) \cdot F(\bar{c}, \sigma(\bar{a})) \cdot F(\bar{a}, \bar{c})=\alpha$. But $F(\bar{c}, \sigma(\bar{a}))$. $F(\bar{a}, \bar{c})=\gamma(\sigma)$ and $F(\sigma(\bar{a}), \bar{d})=\sigma(\alpha)$. Thus $\sigma(\alpha)=\alpha \cdot \gamma(\sigma)^{-1}$, as desired.

Finally we note that $L=K\langle\alpha\rangle$. If $\bar{a} \notin K\langle\alpha\rangle$, there is $\tau \in A u t(\mathbf{K} / K)$ such that $\tau(\alpha)=\alpha$ but $\tau(\bar{a}) \neq \bar{a}$. Thus $\sigma=\tau \mid L \in \operatorname{Gal}(L / K)$ and $\sigma \neq 1$. But since $\sigma(\alpha)=\alpha, \alpha=\alpha \cdot \gamma(\sigma)^{-1}$, so $\gamma(\sigma)=1$ and σ is the identity.

The converse to 9.5 is also true.
Lemma 9.7. Suppose K is a differential field with C_{K} algebraically closed. Let G be an algebraic group defined over C_{K}. Let F be the differential closure of K. Suppose there is $\alpha \in G(F)$ such that for all $\sigma \in G(F / K)$ there is $g_{\sigma} \in G\left(C_{K}\right)$ such that $\sigma(\alpha)=\alpha \cdot g_{\sigma}$. Let $L=K\left\langle\alpha^{-1}\right\rangle$. Then L / K is strongly normal.

Proof.

Let $\sigma \in G(F / K)$, then $\sigma\left(\alpha^{-1}\right)=g_{\sigma^{-1}} \cdot \alpha^{-1}$. Let ψ isolate $t\left(\alpha^{-1} / K\right)$. Then

$$
F \vDash \forall \gamma\left(\psi(\gamma) \rightarrow \exists g \in G(C) \gamma=g \cdot \alpha^{-1}\right)
$$

This sentence is still true in \mathbf{K}. Thus for any automorphism $\sigma,\left\langle L, C_{\mathbf{K}}\right\rangle=$ $\left\langle\sigma(L), C_{\mathbf{K}}\right\rangle$. So L / K is strongly normal.

Let $\Gamma(\mathbf{K})$ be the coset space $G(\mathbf{K}) / G\left(C_{\mathbf{K}}\right)$. By elimination of imaginaries in \mathbf{K}, we may assume that $\Gamma(\mathbf{K})$ is a quantifier free C_{K}-definable subset of \mathbf{K}^{m}. For any field $L \supseteq C_{K}$ let $\Gamma(L)$ denote the L-rational points of $\Gamma(\mathbf{K})$. Let $\rho: G(\mathbf{K}) \rightarrow \Gamma(\mathbf{K})$ be the quotient map. If F is the differential closure of K, then $\Gamma(F)=G(F) / G\left(C_{K}\right)$.

Lemma 9.8. Let $\alpha \in G(F)$. Then α is G-primitive if and only if $\rho(\alpha) \in \Gamma(K)$.

Proof.

Clearly $\rho(\alpha) \in \Gamma(K)$ if and only if $\rho(\alpha)$ is fixed by all elements of $G(\mathbf{K} / K)$ if and only if $\alpha^{-1} \cdot \sigma(\alpha) \in G\left(C_{K}\right)$ for all $\sigma \in G(\mathbf{K} / K)$. By the last lemma this is if and only if α is G-primitive.

Our next goal is to show that if G is a connected n-dimensional group, then $\Gamma(K)$ is essentially K^{n}. This will require some background work.

Let F / K be fields and let $D(F / K)$ be the space of derivations of F which annihilate K. Let x_{1}, \ldots, x_{n} be a transcendence base for F / K. Then $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ is a basis for $D(F / K)$ as an F-vector space.

First note that if $a_{1}, \ldots, a_{n} \in F$ and $D=\sum a_{i} \frac{\partial}{\partial x_{i}}$, and $D=0$, then for each $i, D\left(x_{i}\right)=a_{i}=0$. Thus $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{i}}$ are linearly independent.

Next we consider the case $F=K\left(x_{1}, \ldots, x_{n}\right)$. If $D \in D(F / K)$ then for $p\left(x_{1}, \ldots, x_{n}\right), D(p(\bar{x}))=\sum D\left(x_{i}\right) \frac{\partial p}{\partial x_{i}}$. Thus $D=\sum D\left(x_{i}\right) \frac{\partial}{\partial x_{i}}$.

In general if y is algebraic over $K(\bar{x})$ with minimal polynomial $p(\bar{x}, y)$, then

$$
0=D(p(\bar{x}, y))=\sum D\left(x_{\imath}\right) \frac{\partial p}{\partial x_{i}}+D(y) \frac{\partial p}{\partial y}
$$

So

$$
D(y)=\frac{-\sum D\left(x_{i}\right) \frac{\partial p}{\partial x_{i}}}{\frac{\partial p}{\partial y}}
$$

Thus there is a unique way to extend a derivation on $K(\bar{x})$ to F. Thus $D(F / K)$ is an n-dimensional F vector space.

Let $V \subseteq K^{m}$ be an n-dimensional variety over K. Let $K(V)$ denote the field of rational functions on $V, K(V)=K[\bar{X}] / I(V)$. For $p \in V$, let O_{p} denote the local ring at p, ie. O_{p} is the ring of rational functions defined at p. We choose affine coordinates at p so that $x_{1}, \ldots, x_{m} \in O_{p}$.

We say that $\delta: O_{p} \rightarrow K$, is a local derivation at p, if δ is an additive homomorphism and $\delta\left(f_{1} f_{2}\right)=f_{1}(p) \delta\left(f_{2}\right)+f_{2}(p) \delta\left(f_{1}\right)$. For example if $D \in$ $D(K(V) / K)$ and $D: O_{p} \rightarrow O_{p}$ we define a local derivation D_{p} by $D_{p}(f)=$ $D(f)(p)$. We let $\mathcal{T}_{p}(V)$ equal the set of all local derivations at p.

Let f_{1}, \ldots, f_{n} be generators for $\mathrm{I}(\mathrm{V})$. If δ is a local derivation at p, then $0=D\left(f_{i}\right)=\sum \frac{\partial f_{i}}{\partial x_{i}}(p) \delta\left(x_{i}\right)$.

Thus $\delta\left(x_{1}\right), \ldots, \delta\left(x_{m}\right)$ are a solution to the system of equations

$$
\left(y_{1}, \ldots, y_{m}\right)\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(p) & \ldots & \frac{\partial f_{1}}{\partial x_{m}}(p) \\
\vdots & & \vdots \\
\frac{\partial f_{N}}{\partial x_{1}}(p) & \ldots & \frac{\partial f_{N}}{\partial x_{m}}(p)
\end{array}\right)=0
$$

Thus $\mathcal{T}_{p}(V)$ can be viewed as the tangent space at p. In particular if p is a simple point on V, then $\mathcal{T}_{p}(V)$ is an n-dimensional vector space over K.

Clearly each $\frac{\partial}{\partial x_{i}}: O_{p} \rightarrow O_{p}$. Let x_{1}, \ldots, x_{n} is a transcendence base for $K(V) / K$, then, by the above argument, the $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ are linearly independent over K, and hence a basis for $\mathcal{T}_{p}(V)$.

We next examine the case where G is a connected n-dimensional algebraic group.

For $a \in G$ we let $T_{a}: G \rightarrow G$ be the map $x \mapsto a x$. For $a, p \in G, T_{a}$ induces $T_{a}^{*}: O_{a p} \rightarrow O_{p}$, by $T_{a}^{*} f=f \circ T_{a p}^{*}$. If D is a derivation of $K(G) / K$, then let $T_{a} D_{p}$ be the local derivation at $a p$ given by $T_{a} D_{p}(f)=D_{p}\left(T_{a}^{*} f\right)$. We say that D is invariant (actually left-invariant) if for all $a, p \in G, T_{a} D_{p}=D_{a p}$. We let $\mathcal{L}(G)$ be the K-vector space of
invariant derivations. We call $\mathcal{L}(G)$ the Lie-algebra of G.
Let 1 be the identity of G. We claim that $\mathcal{L}(G)$ is isomorphic to $\mathcal{T}_{1}(G)$ via the map $D \mapsto D_{1}$. We need only show that this map is surjective.

Suppose $\delta \in \mathcal{T}_{1}(G)$. We define D as follows. For $f \in K(G)$ we define f^{\prime} by $f^{\prime}(x)=\delta\left(T_{x}^{*} f\right)$. Let $D(f)=f^{\prime}$. We claim that D is a left invariant derivation.

If $f, g \in K(G)$,

$$
\begin{aligned}
D(f+g)(x) & =\delta\left(T_{x}^{*}(f+g)\right) \\
& =\delta\left(T_{x}^{*} f+T_{x}^{*} g\right) \\
& =f^{\prime}(x)+g^{\prime}(x) \\
& \begin{aligned}
D(f g)(x) & =\delta\left(T_{x}^{*}(f g)\right) \\
& =\delta\left(T_{x}^{*} f T_{x}^{*} g\right) \\
& =\delta\left(T_{x}^{*} f\right) T_{x}^{*} g+\delta\left(T_{x}^{*} g\right) T_{x}^{*} f \\
& =f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
\end{aligned}
\end{aligned}
$$

So D is a derivation.

Finally,

$$
\begin{aligned}
\left(T_{a} D_{x}\right) f & =D_{x}\left(T_{a}^{*} f\right) \\
& =\left(D\left(T_{a}^{*} f\right)\right)(x) \\
& =\delta\left(T_{x}^{*} T_{a}^{*} f\right) \\
& =\delta\left(T_{a x}^{*} f\right) \\
& =D_{a x}(f)
\end{aligned}
$$

since $T_{x}^{*} T_{a}^{*}=T_{a x}^{*}$. So D is left invariant.
Thus $\mathcal{L}(G)$ is isomorphic to $\mathcal{T}_{1}(G)$, the tangent space of G at 1 .
Let F / K be of transcendence degree n. Say x_{1}, \ldots, x_{n} is a transcendence base. We let $\Omega_{F / K}$ be the F-vector space of differentials on F over K as introduced in $\S 6$. Then $\Omega_{F / K}$ is an n-dimensional K vector space and $d x_{1}, \ldots, d x_{n}$ is a basis. In fact, $\Omega_{F / K}$ is the dual space of $D(F / K)$, ie. $\Omega_{F / K}$ is the space of F-linear maps from $D(F / K) \rightarrow F$. Each $d x$ can be thought of as the map $d x(D)=D(x)$. If $\Phi: D(F / K) \rightarrow F$, let $\mathbf{K}_{i}=\Phi\left(\frac{\partial}{\partial x_{i}}\right)$. Let $\omega=\sum \mathbf{K}_{i} d x_{i}$, then ω is induced by the map Φ.

If V is a variety and $p \in V$ we consider the space of local differentials at p. This is the dual space of the tangent space $\mathcal{T}_{p}(V)$. Let ω be a differential of $K(V) / K$, say $\omega=\sum g_{i} d f_{i}$. We say that ω is finite at $p \in V$ if all of the g_{i}, f_{i} are defined at p. In this case ω has a local component ω_{p} defined by $\omega_{p}(\delta)=\sum g_{i}(p) \delta\left(f_{i}\right)$.

If G is a connected algebraic group, we say that ω is an invariant differential if and only if it is in the dual space of $\mathcal{L}(G)$. The space of invariant differentials is isomorphic to the space of local differentials at 1 . Moreover if D^{1}, \ldots, D^{n} are a basis for $\mathcal{L}(G)$, then $\omega^{1}, \ldots, \omega^{n}$ is a basis for the dual space where

$$
\omega^{i}\left(D^{j}\right)=\left\{\begin{array}{rr}
1 & \text { if } i=j \\
0 & i \neq j
\end{array}\right.
$$

Suppose $k \subseteq K$ and V is defined over k. We may choose the transcendence base x_{1}, \ldots, x_{n} such that $x_{i} \in k(V)$. In this way we may assume that all of our bases are defined over k. If $\delta \in D(K / k)$ and $p \in V$, then δ determines an element δ_{p} of the tangent space of V at p by $\delta_{p}(f)=\delta(f(p))$. If ω is a differential on V defined over k and well defined at p, then $\omega_{p}\left(\delta_{p}\right)$ is defined and in K. Then map $\delta \mapsto \omega_{p}\left(\delta_{p}\right)$ is a differential of K / k which we will call $\omega(p)$ the induced differential of ω at p. More specifically, if $\omega=\sum g_{i} f_{i}$ where g_{i} and $f_{i} \in O_{p} \cap k(V)$, then $\omega(p)(\delta)=\sum g_{i}(p) \delta\left(f_{i}(p)\right)$.

If G is a connected algebraic group and $\beta \in G(K)$ let $\tau(\beta): G \rightarrow G$ by $\tau(\beta)(x)=\beta x \beta^{-1}$. In the manner we discussed above $\tau(\beta)$ induces automorphisms $\tau(\beta)^{*}: K(G) \rightarrow K(G)$ and $\tau(\beta): \mathcal{L}(G) \rightarrow \mathcal{L}(G)$. In general a map $\phi: \mathcal{L}\left(G_{0}\right) \rightarrow \mathcal{L}\left(G_{1}\right)$ induces ϕ^{*} mapping the invariant differentials on G_{1} to the invariant differentials on G_{0}. Thus we have $\tau(\beta)^{*}$ an automorphism of the invariant differentials on G.

The next result shows the compatibility of the group operations with forming induced differentials from invariant differentials. We postpone the proof to Appendix B.

Theorem 9.9. Let $\alpha, \beta \in G(K)$ and let ω be an invariant differential on G. Then $\omega(\alpha \cdot \beta)=\left(\tau(\beta)^{*} \omega\right)(\alpha)+\omega(\beta)$. In particular if G is abelian, then $\omega(\alpha \cdot \beta)=\omega(\alpha)+\omega(\beta)$.

We now return to the following setting. K is an algebraically closed differential field and G is a connected algebraic group defined over C_{K}. We let D be the derivation on $K . C_{K}$ plays the role of k in the above discussion.

Lemma 9.10. Let $\alpha \in G(K)$. Then $\alpha \in G\left(C_{K}\right)$ if and only if for every invariant differential ω on $G, \omega(\alpha)(D)=0$.

Proof.

First, if $\alpha \in G\left(C_{K}\right)$, then for any $f \in C_{K}(G) \cap O_{\alpha}, D(f(\alpha))=0$. Since, the space of invariant differentials has a basis of differentials defined over C_{K}, this implies that every invariant differential vanishes at D.

Conversely, if $\alpha \notin G\left(C_{K}\right)$, then there is a local coordinate x_{i} such that $x_{i}(\alpha) \notin C_{K}$. The local differential $d x_{i}$ on G translates to a local differential at 1 and this extends to an invariant differential ω on G. But then $\omega(\alpha)(D)=$ $D\left(x_{i}(\alpha)\right) \neq 0$.

Corollary 9.11. Let $\alpha, \beta \in G(K)$. Then $\alpha \cdot \beta^{-1} \in G\left(C_{K}\right)$ if and only if for every invariant differential ω on $G, \omega(\alpha)(D)=\omega(\beta)(D)$.
Proof. Let $\gamma=\alpha \cdot \beta^{-1}$. By 9.8 ,for all ω

$$
\begin{aligned}
\omega(\alpha)(D) & =\omega(\gamma \beta)(D) \\
& =\tau(\beta)^{*} \omega(\gamma)(D)+\omega(\beta)(D)
\end{aligned}
$$

By $9.9, \tau(\beta)^{*} \omega(\gamma)(D)=0$ for all ω if and only if $\gamma \in G\left(C_{K}\right)$ (since $\tau(\beta)^{*}$ is an automorphism of the invariant differentials).

If G is an algebraic group defined over C_{K}. Let $\omega_{1}, \ldots, \omega_{n}$ be a basis for the invariant differentials on G, such that each ω_{i} is defined over C_{K}. For $\alpha \in G$ let $h_{i}(\alpha)=\omega_{i}(\alpha)(D)$. If $\omega=\sum g_{i} d f_{i}$ where the $g_{i}, f_{i} \in C_{K}(G)$, then $\omega(\alpha)(D)=\sum g_{i}(\alpha) D\left(f_{i}(\alpha)\right)$. Thus f_{i} is definable in the differential field K. Let $F: G(K) \rightarrow K^{n}$ by $F(\alpha)=\left(h_{1}(\alpha) \ldots h_{n}(\alpha)\right)$. By $9.10, F(\alpha)=F(\beta)$ if and only if $\alpha \beta^{-1} \in G\left(C_{K}\right)$. Thus the image of F can be identified with the quotient $G(K) / G\left(C_{K}\right)=\Gamma(K)$.

In particular,
Corollary $9.12 \Gamma(\mathbf{K})=G(\mathbf{K}) / G\left(C_{\mathbf{K}}\right)$ can be embedded into \mathbf{K}^{n}.

References

All of the results in this section are due to Kolchin. They can be found in [Kolchin 2,5,6]. The proof of Theorem 9.5 that we give here is due to Poizat [Poizat 3]. Poizat's book Groupes Stables contains Hrushovski's elegant model
theoretic proof of van den Dries theorem (9.4). The treatment we give here on G-primitives is taken from [Pillay-Sokolović].

The basic results on derivations and differentials on algebraic groups can be found in [Rosenlicht 3]). The commutative case of Theorem 9.8 was proved by Rosenlicht while the general case is from [Kolchin 6].

§10.Superstable differential fields:

We would like to prove the differential analogs of the following theorems about algebraically closed fields. We know that the theory of algebraically closed fields is quantifier eliminable and ω-stable. These results of Pillay and Sokolovic give partial converses.

Theorem 10.1. i) (Macintyre-McKenna-van den Dries) If K is an infinite field and the theory of K admits quantifier elimination in the language of fields, then K is algebraically closed.
ii) (Cherlin-Shelah) If K is an infinite field (possible with extra structure) and the theory of K is superstable, then K is algebraically closed.

It would be natural to conjecture that any quantifier eliminable or superstable differential field is differentially closed. This question is open. We first note that the quantifier elimination question is subsumed by the superstability question.

Lemma 10.2. If T is a quantifier eliminable theory of differential fields (in the language of differential fields), then T is ω-stable.

Proof.

Let $K \vDash T$. By quantifier elimination any type over K is determined by the set of quantifier free formulas in the type. Thus an n-type is determined by the ideal of differential polynomials in $K\left\{X_{1}, \ldots, X_{n}\right\}$ that vanish at a realization. Thus the number of types is equal to the number of prime differential ideals over K. By the Ritt basis theorem, every prime differential ideal is finitely generated. Thus there are only $|K|$ types over K. Thus K is ω-stable.

In this section we will prove the following theorem from [Pillay-Sokolović].
Theorem 10.3. If K is a superstable differential field with a non-trivial derivation (we allow the possibility of extra structure), then K has no proper strongly normal extensions.

We begin by summarizing some of the Berline-Lascar [Berline-Lascar] theory of superstable groups which we will use in the proof.

Lemma 10.4. (Berline-Lascar) If K is a superstable field then for some ordinal α and some natural number $m, R U(K)=\omega^{\alpha} m$.

Definition. Suppose G be a superstable group and $A \subseteq G$ is ∞-definable. We say that A is α-indecomposable if A / H has only one class for any definable subgroup H with $R U(A / H)<\omega^{\alpha}$.

Theorem 10.5. (Berline-Lascar Indecomposability Theorem) If $R U(G)=\omega^{\alpha} n$ and ($A_{i}: i \in I$) is a family of ∞-definable α-indecomposable sets each containing the identity of G, then the group H generated by the A_{i} is ∞-definable and H is of the form $A_{i_{1}}^{ \pm 1} \ldots A_{i_{n}}^{ \pm 1}$.

Finally we recall Lascar's U-rank inequality. Here \oplus denotes the Cantor sum on the ordinals.

Theorem 10.6. (Lascar's Rank Inequality):

$$
R U(a / A b)+R U(b / A) \leq R U(a, b / A) \leq R U(a / A b) \oplus R U(b / A)
$$

Let K be a saturated superstable differential field with $R U(K)=\omega^{\alpha} m$. By Theorem 10.1 ii), K is an algebraically closed field. The Cherlin-Shelah analysis of superstable fields also shows that any superstable field has a unique type of maximal rank. We call this the generic of K.

Corollary 10.7. i) $R U\left(C_{K}\right)<\omega^{\alpha}$.
ii) $R U\left(x / x^{\prime}\right)<\omega^{\alpha}$.
iii) If $A \subseteq K$ and $a \in K$ is generic over A, then a^{\prime} is generic over A.

Proof.

i) C_{K} is an algebraically closed field, so K is an infinite dimensional vector space over C_{K}. Thus for all $n R U(K)>R U\left(C_{K}^{n}\right)=R U\left(C_{K}\right) n$. Thus $R U\left(C_{K}\right)<\omega^{\alpha}$.
ii) Clear from i) since C_{K} is the kernel of the derivation.
iii) By the U-rank inequalities,

$$
R U(x / A) \leq R U\left(x, x^{\prime} / A\right) \leq R U\left(x / A x^{\prime}\right) \oplus R U\left(x^{\prime} / A\right)
$$

Since $R U(x / A)=\omega^{\alpha} m$, ii) implies that $R U\left(x^{\prime} / A\right)=\omega^{\alpha} m$.
Lemma 10.8. Let $A \subset K$ and let $a \in K$ be generic over A. Then a is differentially transcendental over A.

Proof. Suppose not. Then we can find i and n such that $a^{(i)}$ is strongly algebraic over $A, a^{(i+1)}, \ldots, a^{(n)}$. Thus $a^{(i)}$ is algebraic over $A a^{(i+1)}$. By 10.7 iii) $a^{(i)}$ is generic over A. Thus since a and $a^{(i)}$ realize the same type over A, a is algebraic over $A a^{\prime}$. But for any constant $c \in C_{K}, R U(a+c / A) \oplus R U(c / A) \geq$ $R U(a+c, c / A) \geq R U(a / A)$. Since $R U(c / A)<\omega^{\alpha}, R U(a+c / A)=\omega^{\alpha} m$, so
$a+c$ is generic over A. Thus $t\left(a+c, a^{\prime} / A\right)=t\left(a, a^{\prime} / A\right)$. Since C_{K} is infinite this contradicts the fact that a is algebraic over $A a^{\prime}$.

We can in fact prove something stronger.
Lemma 10.9. Let $A \subseteq K$ and let $a \in K$ be differentially algebraic over A, then $R U(a / A)<\omega^{\alpha}$.

Proof. We may without loss of generality assume that $A \models T h(K)$ and (by taking forking extensions) that $R U(a / A)=\omega^{\alpha}$. Let $p=t(a / A)$.

Let $\Phi_{0}=\{x \in K: x$ realizes $p\}$. Fix $b \in \Phi_{0}$ and let $\Phi=\left\{x-b: x \in \Phi_{0}\right\}$. Since p is stationary, Φ is α-indecomposable with respect to additive subgroups of K. For each $x \in K$ let $\Phi_{x}=x \Phi$. The Φ_{x} are α-indecomposable and contain 0 . By 10.5 the additive subgroup H generated by the Φ_{x} is ∞-definable and there are $x_{1}, \ldots, x_{n} \in K$ such that $H=\Phi_{x_{1}}+\Phi_{x_{2}} \ldots+\Phi_{x_{n}}$. Since $x H \subset H$ for all $x \in K, H$ is an ideal. Thus $H=K$.

Let $y \in K$ be generic over $A\left\langle b, x_{1}, \ldots, x_{n}\right\rangle$. There are y_{1}, \ldots, y_{n} realizing p such that $y=\sum x_{i}\left(y_{i}-b\right)$. But then, since the y_{i} are differentially algebraic over A, y is differentially algebraic over $A\langle b, \bar{x}\rangle$ contradicting the genericity of y.

We will prove that K has no proper strongly normal extensions. Let Λ be a very saturated differentially closed field containing K. It suffices to show that for G an algebraic group defined over C_{K} if $\Gamma(\Lambda)$ is the quotient space $G(\Lambda) / G\left(C_{\Lambda}\right)$ and $\rho: G(\Lambda) \rightarrow \Gamma(\Lambda)$ is the quotient map, then ρ maps $G(K)$ onto $\Gamma(K)$.

Lemma 10.10. Let G be a connected n-dimensional algebraic group defined over C_{K}. Then $R U(G(K))=\omega^{\alpha} m n$ and every orbit of $\Gamma(K)$ under the action of $G(K)$ has U-rank $\omega^{\alpha} m n$.

Proof.

The first remark is clear. More generally if V is an n-dimensional algebraic variety over a superstable field F, then $R U(V)=R U(F) n$.

Let $x \in \Gamma(K)$. Let $\operatorname{Stab}(x)=\{g \in G(K): g x=x\}$. Let F be the differential closure of K. There is $h \in G(F)$ such that $h / G\left(C_{F}\right)=x$. Since $C_{F}=C_{K}, g \in \operatorname{Stab}(x)$ if and only if $h^{-1} g h \in G\left(C_{K}\right)$ if and only if $g \in$ $h G\left(C_{K}\right) h^{-1}$. Since $R U\left(C_{K}\right)<\omega^{\alpha}, R U(\operatorname{Stab}(x))<\omega^{\alpha}$.

The orbit of $x \in \Gamma(K)$ under $G(K)$ is isomorphic to $G(K) / \operatorname{Stab}(x)$. Using the U-rank inequality we see that each orbit has U-rank $\omega^{\alpha} m n$.

Since $R U(G(K))=\omega^{\alpha} m n$ and $R U\left(G\left(C_{K}\right)\right)<\omega^{\alpha}$. By the U-rank inequality we must have $R U(\Gamma(K))=\omega^{\alpha} m n$. Thus there are only finitely many orbits of $\Gamma(K)$ under $G(K)$. We will show that there is exactly one. In this case $\rho: G(K) \rightarrow \Gamma(K)$ is onto and we are done.

To prove this it suffices to show that $\Gamma(K)$ has a unique generic type. By 9.12, $\Gamma(\Lambda) \subset \Lambda^{n}$. Thus $\Gamma(K) \subset K^{n}$. But $\Gamma(K)$ has rank $\omega^{\alpha} m n=R U\left(K^{n}\right)$. Since K^{n} has a unique generic type, $\Gamma(K)$ has a unique generic type.

References

The material in this section is from [Pillay-Sokolović].
Theorem 10.3 generalizes a theorem of [Michaux] who proved that a quantifier eliminable differential field has no proper Picard-Vessiot extensions.

Poizat's book Groupes Stables contains treatments of the Berline-Lascar analysis of superstable groups and the Cherlin-Shelah results on superstable fields.

Appendix A: Seidenberg's Embedding Theorem

In [Seidenberg 1,2] Seidenberg proved that any countable differential field can be embedded into a field of germs of meromorphic functions. This follows from an embedding lemma for finitely generated differential fields.

Let $\operatorname{Mer}(U)$ denote the field of meromorphic functions on U, for $U \subseteq \mathbf{C}$ open.

Lemma A.1. Let $K=\mathbf{Q}\left\langle u_{1} \ldots u_{n}\right\rangle$ and $K_{1}=K\langle v\rangle$. Suppose U is an open ball in \mathbf{C} and $\tau: K \rightarrow M e r(U)$ is a differential field embedding. Then there is an open ball $V \subseteq U$ and an extension of τ to an differential embedding of K_{1} into $\operatorname{Mer}(V)$.

Corollary A.2. Let K be a countable differential field. Then K is isomorphic to a subfield of the field of germs of meromorphic functions at the origin.
proof. By viewing K as a limit of finitely generated extensions and iterating A. 1 we can find a point x such that K can be embedded into the germs of meromorphic functions at x. By changing coordinates we may assume $x=0$.

The proof of lemma A.1, uses the following "primitive element theorem" from [Seidenberg 3]. Which we will prove shortly.

Theorem A.3. Suppose K is a differential field with a non-constant element. If u and v are differentially algebraic over K, then $K\langle u, v\rangle=K\langle u+\lambda v\rangle$ for some $\lambda \in K$.

Proof of A.1. Let $g_{i}=\tau\left(u_{i}\right)$. By shrinking U we may assume that each g_{i} is analytic on U. Let $\alpha \in U$ such that $f(\alpha) \neq 0$ for all $f \in \mathbf{Q}\left\langle g_{1}, \ldots, g_{m}\right\rangle \backslash\{0\}$. Changing coordinates we may assume that $\alpha=0$. Let $g_{i}(z)=\sum c_{i, j} z_{j!}^{j!}$ for $z \in U$ (shrinking U if necessary). Note that $g_{i}^{(j)}(0)=c_{i, j}$. By choice of $\alpha, f \mapsto f(0)$ is a field embedding of $\mathbf{Q}\left\langle g_{1}, \ldots, g_{n}\right\rangle$ into \mathbf{C} with $g_{i}^{(j)} \mapsto c_{i, j}$. As fields

$$
\mathbf{Q}\left\langle g_{1}, \ldots, g_{n}\right\rangle \cong \mathbf{Q}\left(c_{i, j}: i \leq n, j \in \omega\right)
$$

case 1. v is differentially transcendental over K.
Choose $d_{0}, d_{1}, d_{2}, \ldots \in \mathbf{C}$ algebraically independent over $\mathbf{Q}\left(c_{i, j} . i \leq n, j \in \omega\right)$ and such that $h(z)=\sum d_{j} \frac{z^{j}}{j!}$ converges on a neighborhood of $V \subseteq U$ of 0 . We claim that h, h^{\prime}, \ldots are algebraically independent over $\mathbf{Q}\left\langle g_{1} \ldots g_{n}\right\rangle$. Suppose p is a polynomial with coefficients in \mathbf{Q} such that

$$
p\left(g_{1}, g_{1}^{\prime}, \ldots, g_{1}^{(l)}, \ldots, g_{n}, g_{n}^{\prime}, \ldots g_{n}^{(l)}, h, \ldots, h^{(m)}\right)=0
$$

Then

$$
p\left(c_{1,0}, c_{1,1}, \ldots, c_{1, l}, \ldots, c_{n, 0}, c_{n, 1}, \ldots c_{n, l}, d_{0}, \ldots, d_{m}\right)=0
$$

Since the d_{i} are algebraically independent $p\left(\bar{c}, Y_{0}, \ldots, Y_{m}\right)$ is identically zero. Thus by the isomorphism above

$$
p\left(g_{1}, g_{1}^{\prime}, \ldots, g_{1}^{(l)}, \ldots, g_{n}, g_{n}^{\prime}, \ldots g_{n}^{(l)}, Y_{0}, \ldots, Y_{m}\right)
$$

is identically zero. Thus h is differentially transcendental over $\mathbf{Q}\left\langle g_{1}, \ldots, g_{n}\right\rangle$ and $K_{1} \cong \mathbf{Q}\left\langle g_{1}, \ldots, g_{n}, h\right\rangle$.
case 2. v is differentially algebraic over K.
Without loss of generality we may assume that K has differential transcendence degree at least one over \mathbf{Q} (use case 1 to extend K if necessary). Let u_{1}, \ldots, u_{n-1} be a differential transcendence base for K and let $K_{0}=$ $\mathbf{Q}\left\langle u_{1}, \ldots, u_{n-1}\right\rangle$. By the primitive element theorem there are u_{n} and v such that $K=K_{0}\left\langle u_{n}\right\rangle$ and $K_{1}=K_{0}\langle v\rangle$. Let r be maximal such that $v, v^{\prime}, \ldots, v^{(r-1)}$ are algebraically independent over K_{0}. Let p be an irreducible polynomial with coefficients in \mathbf{Q} such that

$$
p\left(u_{1}, u_{1}^{\prime}, u_{1}^{(l)}, \ldots, u_{n-1}, u_{n-1}^{\prime}, u_{n-1}^{(l)}, v, \ldots, v^{(r-1)}, Y\right)
$$

is the minimal polynomial of $v^{(r)}$ over $K_{0}\left(v, v^{\prime}, v^{(r-1)}\right)$.
Let d_{0}, \ldots, d_{r-1} be algebraically independent over $\mathbf{Q}\left(c_{i, j} . i<n, j \in \omega\right)$. Since the $c_{i, j}$ are algebraically independent,

$$
p\left(c_{1}, c_{1},{ }^{\prime}, c_{1}^{(l)}, \ldots, c_{n-1}, c_{n-1}^{\prime}, \ldots c_{n-1}^{(l)}, d_{0}, \ldots, d_{r-1}, Y\right)
$$

is irreducible. Let d_{r} be a zero of it. Then $\frac{\partial p}{\partial Y}\left(\bar{c}, d_{0}, \ldots, d_{r}\right) \neq 0$.
By the implicit function theorem there is W an open neighborhood of $\left(\bar{c}, d_{0}, \ldots, d_{r-1}\right)$ and an analytic function $F: W \rightarrow \mathbf{C}$ such that $F\left(\bar{c}, d_{0}, \ldots, d_{r-1}\right)=d_{r}$ and $p(\bar{w}, f(\bar{w}))=0$ for all $\bar{w} \in W$. Consider the differential equation:

$$
y^{(r)}=F\left(g_{1}(z), g_{1}^{\prime}(z), g_{1}^{(l)}(z), \ldots, g_{n-1(z)}, g_{n-1}^{\prime}(z), \ldots, g_{n-1}^{(l)}(z), y, \ldots, y^{(r-1)}\right)
$$

We can find a solution h which is analytic on a neighborhood of 0 such that for $h^{(i)}(0)=d_{i}$ for $i=0, \ldots, r$. Sending v to h, gives τ^{*} an embedding of K_{1} extending $\tau \mid K_{0}$. Unfortunately, we might have $\tau^{*}\left(u_{n}\right)=g_{n}^{*} \neq g_{n}$.

Let $d_{j}=h^{(j)}(0)$ for $j>r$. By shrinking (and shifting) U, we may assume that g_{n}^{*} is analytic on U and $g_{n}^{*}=\sum c_{n, j}^{*} \frac{z^{j}}{j!}$. Thus the map sending $u_{i}^{(j)}$ to $c_{i, j}$ for $i<n, u_{n}(j)$ to $c_{n, j}^{*}$ and $v^{(j)}$ to d_{j} is a field isomorphism from K_{1} to

$$
\mathbf{Q}\left(c_{1,0}, c_{1,1}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n, 0}^{*}, c_{n, 1}^{*}, \ldots, d_{0}, d_{1}, \ldots\right)
$$

Since

$$
\begin{aligned}
& \mathbf{Q}\left(c_{1,0}, c_{1,1}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n, 0}^{*}, c_{n, 1}^{*}, \ldots\right) \cong \\
& \mathbf{Q}\left(c_{1,0}, c_{1,1}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n, 0}, c_{n, 1}, \ldots\right)
\end{aligned}
$$

we can find $d_{0}^{*}, d_{1}^{*}, \ldots$ such that

$$
\begin{aligned}
& \mathbf{Q}\left(c_{1,0}, c_{1,1}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n, 0}^{*}, c_{n, 1}^{*}, \ldots, d_{0}, d_{1}, \ldots\right) \cong \\
& \mathbf{Q}\left(c_{1,0}, c_{1,1}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n, 0}, c_{n, 1}, \ldots, d_{0}^{*}, d_{1}^{*}, \ldots\right)
\end{aligned}
$$

Let $h_{1}(z)=\sum d_{i}^{*} \frac{z^{2}}{i!}$. Let F_{1} be a function analytic near $\left(\bar{c}, d_{0}^{*}, \ldots, d_{r-1}\right)$ giving a branch of $p=0$ such that $F\left(\bar{c}, \bar{d}^{*}\right)=d_{r}^{*}$. Then h_{1} is the unique formal solution to

$$
y^{(r)}=F\left(g_{1}(z), g_{1}^{\prime}(z), g_{1}^{(l)}(z), \ldots, g_{n-1(z)}, g_{n-1}^{\prime}(z), \ldots, u_{n-1}(l)(z), y, \ldots, y^{(r-1)}\right)
$$

with $y(0)=d_{0}^{*}, \ldots, y^{(r)}(0)=d_{r}^{*}$. Since the initial value problem has a convergent solution near the origin, h_{1} must converge on a neighborhood of 0 .

It is easy to see that mapping v to h_{1} extends τ to an embedding of K_{1} into $\operatorname{Mer}(V)$ for some open ball $V \subset \mathbf{C}$.

We now examine the primitive element theorem. First, note that some assumption on K is necessary. If K contains only constant elements and $L=$ $K(u, v)$ where u and v are algebraically independent constants. Then clearly no $u+\lambda v$ generates L / K.

The proof uses the following lemma due to Ritt.
Lemma A.4. Let K be a differential field and let $\xi \in K$ with $\xi^{\prime} \neq 0$. Let $G(X) \in$ $K\{X\}$ be nontrivial of order n, then there are rational numbers c_{0}, \ldots, c_{n} such that $G\left(\sum c_{i} \xi^{i}\right) \neq 0$.

Proof.

Suppose not. Let $H(X)$ be of minimal order r such that for all rationals $c_{0}, \ldots, c_{n} H\left(\sum c_{i} \xi^{i}\right)=0$. Let $h\left(Y_{0}, \ldots, Y_{r}\right) \in K[\bar{Y}]$ such that $H(X)=$ $h\left(X, X^{\prime}, \ldots, X^{(r)}\right)$. Let $U_{j}=\sum Z_{i}\left(\xi^{i}\right)^{(j)}$. Let $g\left(Z_{0}, \ldots, Z_{n}\right)=h\left(U_{0}, \ldots, U_{r}\right)$. Then $H\left(\sum c_{i} \xi^{i}\right)=g\left(c_{0}, \ldots, c_{n}\right)$.

Since g vanishes on \mathbf{Q}^{n+1}, g is identically zero (as \mathbf{Q}^{n} is Zariski-dense in $\left.K^{n}\right)$. Thus $\frac{\partial g}{\partial Z_{i}}=0$ for each j.

Thus for $j=0, \ldots, r$

$$
\sum_{i=0}^{r} \frac{\partial h}{\partial U_{i}} \frac{\partial U_{i}}{\partial Z_{j}}=0
$$

For $j=0$ we get

$$
\frac{\partial h}{\partial U_{0}}=0
$$

and for $j>0$

$$
\sum_{i=0}^{r} \frac{\partial h}{\partial U_{i}} \xi^{j^{(i)}}=0
$$

From this we see that the vectors

$$
\left(\xi, \xi^{\prime}, \ldots, \xi^{(r)}\right), \ldots,\left(\xi^{r},\left(\xi^{r}\right)^{\prime}, \ldots,\left(\xi^{r}\right)^{(r)}\right)
$$

are linearly dependent. By lemma 4.1 they are linearly dependent over C_{k}. Thus $\sum b_{i} \xi^{r}=0$ for some constants b_{0}, \ldots, b_{r} where not all of the b_{i} are zero. Since ξ is algebraic over C_{K} (by 2.1), $\xi \in C_{K}$, a contradiction.

Proof of A. 3.

Consider $K\langle u, v\rangle\langle X\rangle . u+v X$ is differentially algebraic over $K\langle X\rangle$. Let G be irreducible such that

$$
\begin{equation*}
G\left(X, X^{\prime}, \ldots, X^{(r)},(u+v X), \ldots,(u+v X)^{(s)}\right)=0 \tag{1}
\end{equation*}
$$

and s is minimal.
Let $w=u+v X$. For $i<s \frac{\partial w^{(v)}}{\partial X^{(v)}}=0$. While for $i=s \frac{\partial w^{(r)}}{\partial X^{(r)}}=v$.
Implicitly differentiating (1) with respect to $X^{(s)}$ we get

$$
\begin{equation*}
\frac{\partial G}{\partial X^{(s)}}+\frac{\partial G}{\partial w^{(s)}} v=0 \tag{2}
\end{equation*}
$$

Because of the minimality of $G, \frac{\partial G}{\partial w(\cdot)}$ is not identically zero. By lemma A.4, we can find $\lambda \in K$ such that $\frac{\partial G}{\partial w^{(\sigma)}}(\lambda, u+v \lambda) \neq 0$. Using (2) we see that $u, v \in K\langle u+v \lambda\rangle$.

Appendix B: The proof of 9.8

In this section we will give Kolchin's proof of Theorem 9.8.
First suppose G and H are algebraic groups defined over an algebraically closed field $K, f: G \rightarrow H$ is rational and $x \in G$. As usual we have f^{*} : $K(H) \rightarrow K(G)$ by $f^{*} g=g \circ f$. This in-turn induces $f: \mathcal{T}_{x}(G) \rightarrow \mathcal{T}_{f(x)}(H)$, by $f \delta(g)=\delta\left(f^{*} g\right)$. Using the isomorphisms between the tangent spaces and the Lie-algebras we obtain $f_{x}^{\#}: \mathcal{L}(G) \rightarrow \mathcal{L}(H)$.

In particular if $\delta \in \mathcal{T}_{x}(G)$ and let $D \in \mathcal{L}(G)$ be such that $D_{x}=\delta$, then $f_{x}^{*} D$ is the element E of $\mathcal{L}(H)$, such that $E_{f(x)}=f \delta$.

Lemma B.1: Suppose $f: G \rightarrow H$ is a homomorphism, then $f_{x}^{\#}$ does not depend on x.

proof:

Let $\delta \in \mathcal{T}_{x}(G)$ and let $\widehat{D} \in \mathcal{L}(G)$ be such that $\widehat{D}_{x}=\delta$. Let $D=f_{x}^{\#} \widehat{D}$. For $h \in O_{1}$.

$$
\begin{aligned}
D_{1}(h) & =T_{f(x)^{-1}} D_{f(x)}(h) \\
& =D_{f(x)}\left(T_{f(x)^{-1}}^{*} h\right) \\
& =D_{f(x)}\left(t \mapsto h\left(f\left(x^{-1}\right) t\right)\right) \\
& =f \bar{D}_{x}\left(t \mapsto h\left(f\left(x^{-1}\right) t\right)\right) \\
& =\bar{D}_{x}\left(t \mapsto h\left(f\left(x^{-1}\right) f(t)\right)\right) \\
& =\bar{D}_{x}\left(t \mapsto h\left(f\left(x^{-1} t\right)\right)\right)
\end{aligned}
$$

Suppose $E=f_{y}^{\#} \bar{D}$. Then

$$
\begin{aligned}
E_{1}(h) & =\bar{D}_{x}\left(t \mapsto h\left(f\left(y^{-1} t\right)\right)\right) \\
& =T_{y x^{-1}} \bar{D}_{x}\left(\left(t \mapsto h\left(f\left(y^{-1} t\right)\right)\right)\right. \\
& =\bar{D}_{x}\left(\left(t \mapsto h\left(f\left(y^{-1} y x^{-1} t\right)\right)\right)\right. \\
& =\bar{D}_{1}(h)
\end{aligned}
$$

Thus $D_{1}=E_{1}$ so $D=E$.
If $f: G \rightarrow G_{1}$ and $g: G_{1} \rightarrow G_{2}$, then $(g \circ f)_{x}^{\#}=g_{f(x)}^{\#} \circ f_{x}^{\#}$.
Lemma B.2: a) If $f: G \rightarrow H$ is constantly c, then $f_{x}^{\#}=0$.
b) Let T_{v} be left multiplication by v, then $\left(T_{v}\right)_{x}^{\#}$ is the identity on $\mathcal{L}(G)$.

proof:

a) Let $\delta \in \mathcal{T}_{x}(G)$ and let $D \in \mathcal{L}(G)$ be such that $D_{x}=\delta$. Let $E=f_{x}^{\#} D$. Since $c \in K, E_{f(x)}(h)=f \delta(h)=\delta(h(c))=0$ for all $h \in O_{f(x)}$. Thus $E_{f(x)}$ is the trivial tangent vector. So E is the trivial derivation.
b) This is clear since $\left(T_{v}\right)_{x}^{\#} D_{x}=D_{v x}$ for $D \in \mathcal{L}(G)$.

We fix v a point on G. To simplify notation we will refer to the maps $f^{\#}$ as f. [If for a particular map (a non-homomorphism) it is important which tangent space we use to define the map we assume we use the base point v.]

We consider the following maps:
$-i_{1}, i_{2}: G \rightarrow G \times G$ by $i_{1}(x)=(x, v), i_{2}(x)=(v, x)$.
$-\Delta: G \rightarrow G \times G$ is the diagonal map $x \mapsto(x, x)$.
$-\pi_{1}, \pi_{2}: G \times G \rightarrow G$ are the projections, $\pi_{i}\left(x_{1}, x_{2}\right)=x_{i}$.
$-i: G \rightarrow G$ is the identity.
$-\epsilon: G \rightarrow G$ is the zero map.
$-\lambda_{v}: G \rightarrow G$ is right multiplication $x \mapsto x v$.
$-\psi: G \times G \rightarrow G$ by $\psi(x, y)=x y^{-1}$.
-for $v \in G \tau(v): G \rightarrow G$ by conjugation, $x \mapsto v^{-1} x v$.
Lemma B.3: $\mathcal{L}(G \times G)=i_{1} \mathcal{L}(G) \oplus i_{2} \mathcal{L}(G)$.

proof:

Clearly i_{j} is injective.
Suppose $i_{1} D+i_{2} E=0$. Then

$$
\begin{aligned}
D & =i D+\epsilon E \\
& \left.=\pi_{1} i_{1} D+\pi_{1} i_{2} E, \text { by B. } 2 \mathrm{a}\right) \\
& \left.=\pi_{1} i_{1} D+i_{2} E\right) \\
& =0 .
\end{aligned}
$$

Similarly $E=0$.
Thus $i_{1} \mathcal{L}(G) \oplus i_{2} \mathcal{L}(G)$ has twice the dimension of $\mathcal{L}(G)$, and hence is equal to $\mathcal{L}(G \times G)$.

Lemma B.4: $\Delta=i_{1}+i_{2}$.
proof:
Let $D \in \mathcal{L}(G)$. We will show that for all $g \in K(G),\left(\Delta D-i_{1} D-i_{2} D\right) \pi_{i}^{*} g=$
0 . Since $K(G \times G)=\pi_{1}^{*} K(G) \otimes \pi_{2}^{*} K(G)$, this implies $\left(\Delta D-i_{1} D-i_{2} D\right)=0$.
First, suppose $f \in O_{1}$, then

$$
\begin{aligned}
\left(\Delta D-i_{1} D-i_{2} D\right)_{(1,1)} \pi_{1}^{*} f & =\pi+1\left(\Delta D-i_{1} D-i_{2} D\right)_{(1,1)} f \\
& =\left(\pi_{1} \Delta D-\pi_{1} i_{1} D-\pi_{1} i_{2} D\right)_{(1,1)} \\
& =(i D-i D-\epsilon D)_{(1,1)} f \\
& =0
\end{aligned}
$$

Now let $g \in O_{s}$.

$$
\begin{aligned}
\left(\Delta D-i_{1} D-i_{2} D\right) \pi_{1}^{*} g(s, t) & =\left(\Delta D-i_{1} D-i_{2} D\right)_{(s, t)} \pi_{1}^{*} g \\
& =\left(\Delta D-i_{1} D-i_{2} D\right)_{(1,1)} \pi_{1}^{*} T_{s}^{*} g \\
& =0 \text { (by the claim above) }
\end{aligned}
$$

Thus for all $g \in K(G),\left(\Delta D-i_{1} D-i_{2} D\right) \pi_{1} g=0$. The same is true for π_{2}. Thus by the above remarks, for all $D \Delta D-i_{1} D-i_{2} D=0$. So $\Delta=i_{1}+i_{2}$.

Lemma B.5: $\lambda_{v} \circ \psi=\pi_{1}-\pi_{2}$.
proof:
For any $x \in G \lambda_{v} \circ \psi \circ i_{1}(x)=x$. Thus $\lambda_{v} \circ \psi \circ i_{1}$ is the identity map i.
On the other hand for any $x, \lambda_{v} \circ \psi \circ \Delta(x)=v$. Since this map is constant, the it induces the trivial endomorphism of the Lie-algebra.

By lemma B. $4, \lambda_{v} \circ \psi \circ i_{2}=\lambda_{v} \circ \psi \circ\left(\Delta-i_{1}\right)$. By the above remarks, this is $-i$.

Thus $\left(\lambda_{v} \circ \psi+\pi_{2}-\pi_{1}\right) \circ i_{1}=i+0-i=0$ and $\left(\lambda_{v} \circ \psi+\pi_{2}-\pi_{1}\right) \circ i_{2}$ $=-1+i-0$.

Thus by lemma B.3, $\lambda_{v} \circ \psi=\pi_{1}-\pi_{2}$.
Lemma B.6: $\lambda_{v}=\tau(v)$.
proof:
$\lambda_{v}=T_{v} \tau(v)$, but T_{v} acts on $\mathcal{L}(G)$ as the identity.
For $\delta \in \mathcal{D}(K / k)$, we define a tangent vector at $v l \delta(v)$, the logarithmic derivative by $l \delta(v)(g)=\delta(g(v))$. If f is any rational map, then, of course $f(l \delta(v))=l \delta(f(v))$.

Lemma B.7: $l \delta(x v)=\tau(v) l \delta(x)+l \delta(v)$.
proof:

$$
\begin{aligned}
\tau(v) l \delta(x) & =\lambda_{v} l \delta(\psi(x v, v)) \\
& =\lambda_{v} \circ \psi l \delta(x v, v) \\
& =\pi_{1}-\pi_{2} l \delta(x v, v) \\
& =l \delta(x v)-l \delta(v) .
\end{aligned}
$$

Finally, suppose ω is an invariant differential on G. If $x \in G, \omega_{x}$ is the local component of ω at x. We defined the induced differential $\omega(x)$ on $\mathcal{D}(K / k)$, by $\omega(x)(\delta)=\omega_{x}(l \delta(x))$.

In particular if $x, v \in G(K), \omega(x v)(\delta) \omega_{x v}(l \delta(x v))$ By B. 7 this is

$$
\omega_{v-1} x v(\tau(v) l \delta(x))+\omega_{v}(l \delta(v))
$$

which is

$$
\tau(v)^{*} \omega_{x}(l \delta(x))+\omega_{v}(l \delta(v))=\left(\tau(v)^{*} \omega(x)+\omega(v)\right) \delta
$$

Thus we have proved:
Theorem 9.8: If $x, v \in G(K)$ and ω is an invariant differential on G, then $\omega(x v)=\tau(v)^{*} \omega(x)+\omega(v)$.

Appendix C: Kolchin's Irreducibility Theorem

This appendix is devoted to the following theorem of Kolchin.
Theorem C.1. Let K be an algebraically closed field with derivation D. Suppose $V \subset K^{l}$ is an irreducible algebraic variety defined over K. Then V is D-irreducible.

Suppose V is an irreducible variety. Suppose $(\bar{x}, \bar{y}) \in V$ is a generic point of V where we (without loss of generality) we may assume that x_{1}, \ldots, x_{n} are algebraically independent and y_{1}, \ldots, y_{m} is algebraic over $K(\bar{x})$. For $i=1, \ldots, m$ let $p_{i}(\bar{x}, Y)$ be the minimal polynomial of y_{\imath} over $K(\bar{x})$. An easy induction shows that for all n,

$$
y_{i}^{(j)} \frac{\partial p_{i}}{\partial Y}(\bar{x}, y)=r_{i, j}\left(\bar{x}, \bar{x}^{\prime}, \ldots, \bar{x}^{(j)}, y_{i}, y_{i}^{\prime}, \ldots, y_{i}^{(j-1)}\right)
$$

for some polynomial $r_{i, j}$ with coefficients in K.
If (\bar{x}, \bar{y}) is a D-generic point of V (ie. a point of maximal Morley rank in \mathbf{K}), then $\bar{x}, \bar{x}^{\prime}, \bar{x}^{(2)}, \ldots$ are algebraically independent and

$$
K\langle\bar{x}, \bar{y}\rangle=K\langle\bar{x}\rangle(\bar{y}) .
$$

Thus there is a unique D-generic type.
Since an irreducible algebraic variety has a unique D-generic type there is a unique D-irreducible component of maximal rank. We will need to do a bit more work to show that there is only one D-irreducible component.

Suppose $L \supseteq K$ are differential fields and $\bar{a}, \bar{b} \in L^{n}$. We say that $\bar{a} \mapsto \bar{b}$ is a differential specialization over K if $f(\bar{b})=0$, whenever $f \in K\{\bar{X}\}$ and $f(\bar{a})=0$.

We will use the following lemma on specializations.
Lemma C.2. Let K be an algebraically closed field with derivation D. Let $V \subseteq K^{n}$ be an irreducible variety defined over $K, p \notin I(V)$, and let $\alpha \in V$ be a K-rational point. There is a differential field extension $L \supseteq K$ and β an L-rational point of V such that $p(\beta) \neq 0$ and there is $\beta \mapsto \alpha$ is a differential specialization over K.

proof:

If $\operatorname{dim} V \geq 2$, let H be a hyperplane through α not contained in $V(p)$. Let W be an irreducible component of $V \cap H$ through α. Then $\operatorname{dim} W=\operatorname{dim} V-1$ and $p \notin I(W)$. Thus without loss of generality we may assume V is a curve.

If V is not smooth there is a smooth curve W and a polynomial map σ : $W \rightarrow V$. Let $\alpha^{*} \in W \cap \sigma^{-1}(\alpha)$. Suppose there is a differential field $L \supseteq K$ and β^{*} an L-rational point of W such that $p(\sigma(\beta)) \neq 0$ and $\beta^{*} \mapsto \alpha^{*}$ is a differential specialization over K. Let $\beta=\sigma\left(\beta^{*}\right)$. If C is any D-closed set defined over K and $\beta \in K$, then $\beta^{*} \in \sigma^{-1} C$. Hence $\alpha^{*} \in \sigma^{-1} C$ and $\alpha \in C$. Thus $\beta \mapsto \alpha$ is the desired specialization. Thus without loss of generality we may assume V is a smooth curve.

Let O_{α} be the local ring of regular functions at α and let M_{α} be the maximal ideal of functions vanishing at α. Since V is smooth $M_{\alpha} / M_{\alpha}^{2}$ is a one dimensional K-vector space. Let $t \in M_{\alpha}$ be a generator for $M_{\alpha} / M_{\alpha}^{2}$. Let $K(V)$ be the function field of V, there is a unique derivation $D: K(V) \rightarrow K(V)$ extending the derivation on K with $D(t)=0$.

There is a natural embedding of $K(V)$ into the field of formal Laurent series $K((t))$ sending 0_{α} into $K[[t]]$ and M_{α} into $t K[[t]]$. Consider the derivation δ defined on $K((t))$ defined by

$$
\delta\left(\sum_{i=m}^{\infty} a_{i} t^{i}\right)=\sum_{i=m}^{\infty} D\left(a_{i}\right) t^{i}
$$

Clearly $\delta(K[[t]]) \subseteq K[[t]]$ and $\delta(t K[[t]]) \subseteq t K[[t]]$. Since there is a unique derivation from $K(V)$ to $K((t))$ extending D and sending t to 0 , we must have $D: O_{\alpha} \rightarrow O_{\alpha}$ and $D: M_{\alpha} \rightarrow M_{\alpha}$.

Let $\pi: O_{\alpha} \rightarrow K$ be the evaluation map $f \mapsto f(\alpha)$. If $f \in O_{\alpha}$, then for some $a \in K$, and $g \in M_{\alpha}, f=a+g$. Then

$$
\begin{aligned}
\pi(D(f)) & =\pi(D(a)+D(g)) \\
& =D(a)+\pi(D(g)) \\
& =D(a)
\end{aligned}
$$

since $D(g) \in M$. Since $D(a)=D(\pi f), \pi$ commutes with D, thus π is a differential specialization.

Let $L=K(V)$. Let $\beta=\left(x_{1}, \ldots, x_{n}\right) \in L$ be the coordinate functions. Clearly $\pi(\beta)=\alpha$. Since p is not identically 0 on $V, p(\beta) \neq 0$.

We now give the proof of C.1.
Let p_{i} and $r_{i, j}$ be the polynomials described above. If (\bar{x}, \bar{y}) is any point of V, then $p_{i}\left(\bar{u}, v_{i}\right)=0$ and

$$
y_{i}^{(j)} \frac{\partial p_{i}}{\partial Y}(\bar{x}, y)=r_{i, j}\left(\bar{x}, \bar{x}^{\prime}, \ldots, \bar{x}^{(j)}, y_{i}, y_{i}^{\prime}, \ldots, y_{i}^{(j-1)}\right)
$$

for all j.
Let

$$
p(\bar{X}, \bar{Y})=\prod_{i=1}^{m} p_{i}\left(\bar{X}, Y_{i}\right)
$$

For any $f(\bar{X}, \bar{Y}) \in K\{\bar{X}, \bar{Y}\}$ there is a polynomial g with coefficients in K and natural numbers s and t such that if $p(\bar{x}, \bar{y}) \neq 0$, then

$$
f(\bar{x}, \bar{y})=\frac{g\left(\bar{x}, \bar{x}^{\prime}, \ldots, \bar{x}^{(s)}, \bar{y}\right)}{p(\bar{x}, \bar{y})^{t}}
$$

Suppose $(\bar{u}, \bar{v}) \in V$ is D-generic and $f(\bar{u}, \bar{v})=0$. Then $g\left(\bar{u}, \bar{u}^{\prime}, \ldots, \bar{u}^{(s)}, y\right)=$ 0 . Since $\bar{u}, \bar{u}^{\prime}, \ldots, \bar{u}^{(s)}$ are algebraically independent,

$$
g\left(\bar{X}, \bar{X}^{\prime}, \bar{X}^{(s)}, \bar{Y}\right)=h_{0}(\bar{X}, Y) h_{1}(\bar{X}, Y)
$$

where $h_{0} \in K\left[\bar{X}, \ldots, \bar{X}^{(s)}, \bar{Y}\right]$ and $h_{1} \in K[\bar{X}, \bar{Y}]$ and $h_{1} \in K[\bar{X}, \bar{Y}]$ vanishes on all of V. It follows that if $f \in K\{\bar{X}, \bar{Y}\}$ vanishes at the D-generic of V, then f vanishes on $\{(\bar{x}, \bar{y}) \in V: p(\bar{x}, \bar{y}) \neq 0\}$.

Since for any $\alpha \in V$, we can find $L \subset K$ and an L-rational point β in $V \backslash V(p)$ with $\beta \mapsto \alpha$ a differential specialization, it follows that any $f(\bar{X}, \bar{Y})$ which vanishes on the D-generic of V vanishes on all of V. Thus if W is the D-irreducible component containing the D-generic, we must have $V=W$.

References

Books

J. Baldwin, Fundamentals of Stability Theory, Springer Verlag, 1988.
M. Hirsh and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, 1974.
A. Buium, Differential Algebra and Diophantine Geometry, Hermann, 1994.
I. Kaplansky, Dıfferential Algebra, Hermann, 1957.
E. Kolchin, Differential Algerbra and Algebraic Groups, Academic Press, 1973.
S. Lang, Algebra, Addison Wesley, 1971.
S. Lang, Introduction to Algebraic Geometry, Interscience, 1959.
D. Lascar, Stabılıty in Model Theory, Longman Scientific \& Technical, 1987.
A. Magid, Lectures on Differential Galois Theory, American Mathematical Society, 1994.
B. Poizat, Cours de Théorie des Modèles, Nur al-Mantiq wal-Ma'rifah, 1987.
B. Poizat, Groupes Stables, Nur al-Mantiq wal-Ma'rifah, 1985.
J. Ritt, Differential Algebra, Dover, 1950.
(i. Sacks, Saturated Model Theory, Benjamin,1972.

Papers

[Berline-Lascar] C, Berline and D. Lascar, "Superstable groups", Annals pure and applied logic, vol 30, 1986.
[Blum] "Differentially closed fields: a model theoretic tour", in Contributions to Algebra, ed. H. Bass, P. Cassidy and J. Kovacic, Academic Press 1977.
[Brestovski] M. Brestovski, " Algebraic independence of solutions of differential equations of the second order", Pacific J. Math. vol 140, 1989.
[''herlin-Shelah] G. Cherlin and S. Shelah, "Superstable fields and groups", Annals Math. Logic vol 18, 1980.
[(iramain 1] F. Gramain, "Non-minimalite de la cloture différentielle I: la preuve de S. Shelah", Théories Stables, Paris Seminar Notes 1980-83.
[Gramain 2] F. Gramain, "Non-minimalite de la cloture différentielle II: la preuve de M. Rosenlicht", Théories Stables, Paris Seminar Notes 1980-83.
[Hrushovski-Sokolović] E. Hrushovski and Ž. Sokolović, "Minimal subsets of differentially closed fields", Trans. AMS, to appear.
[Kolchin 1] E. Kolchin, "Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations", Bulletin AMS vol.54, 1948.
[Kolchin 2] E. Kolchin, "Galois Theory of Differential Fields", Amer. J. Math vol 75, 1953.
[Kolchin 3] E. Kolchin, "Constrained extensions of differential fields", Advances in Math. vol 12, 1974
[Kolchin 4] E. Kolchin, " Algebraic matrix groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations" Annals of Math vol 49, 1948.
[Kolchin 5] E. Kolchin, "On the Galois Theory of Differential Fields", Amer. J. Math vol 77,1955.
[Kolchin 6] E. Kolchin, "Abelian extensions of differential fields, Amer. J. Math, vol 82, 1960.
[Lascar 1] D. Lascar, "Les corps différentiellement clos dénombrables", Théories Stables, Paris Seminar Notes 1980-83.
[Lascar 2] D. Lascar, "Relation entre le rang U et le poids", Fundamenta Math. vol 121 (1984).
[Macintrye-McKenna-van den Dries] A. Macintyre, K. McKenna and L. van den Dries, "Elimination of quantifiers in algebraic structures", Advances in Math vol 47, 1983.
[Marker] D. Marker, "Introduction to the model theory of fields", this volume.
[Michaux] C. Michaux, "Sur l'élimination des quantificateurs dans les anneaux différentiels, Comptes Rendus 47, 1983.
[Pillay] A. Pillay, "Differential algebraic groups and the number of countable differentially closed fields", this volume.
[Pillay-Sokolović], A. Pillay and Ž. Sokolović, "Superstable differential fields", JSL 57, 1992.
[Poizat 1] B. Poizat, "Deux remarques à propos de la propriété de recouvrement fini", Journal of Symbolic Logic, vol 49, 1984.
[Poizat 2] B. Poizat, "Rangs des types dan les corps différentiels", Théories S'tables, Paris Seminar Notes 1977/78.
[Poizat 3] B. Poizat, "Une théorie de Galois imaginaire", Journal of Symbolic Logic vol 48, 1983.
[Poizat 4] B. Poizat, "C'est beau et chaud", Théories Stables, Paris Seminar Notes 1980-83.
[Rosenlicht 1] M. Rosenlicht, "The non-minimality of differential closure", Pacific J. Math. vol 52, 1974.
[Rosenlicht 2] M. Rosenlicht, "On Lioulville's theory of elementary functions", Pacific J. Math, vol 65, 1976.
[Rosenlicht 3] M. Rosenlicht, "A note on derivations and differentials on algebraic groups", Portugal Math vol 16, 1957.
[Seidenberg 1] A. Seidenberg, "Abstract differential algebra and the analytic case", Proc. AMS vol. 9, 1958.
[Seidenberg 2] A. Seidenberg, "Abstract differential algebra and the analytic case II", Proc. AMS vol. 23, 1969.
[Seidenberg 3] A. Seidenberg, "Some basic theorems in differential algebra (characteristic p, arbitrary), Trans. AMS vol. 73, 1952.
[Shelah] S. Shelah, "Differentially closed fields", Israel J. Mathematics vol 16, 1973.
[Wood] C. Wood, "The model theory of differential fields revisited", Israel Journal of Mathematics, vol 25, 1976.

