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Summary. This is a direct continuation of a joint work with P. Vojtas in which
we proved soundness and completeness of fuzzy SLD-resolution for arbitrary many-
valued logic with two continuous conjunctions. Using this result here we prove
that the maximal value of grade for a fuzzy answer is attained during fuzzy SLD-
resolution in logic with only one continuous conjunction. Based on this result we
prove better characterization of the least fuzzy Herbrand model of fuzzy definite
logic program, which allows us to give a refinement of the completeness part.

1. Introduction

In [12] authors (P. Vojtaδ and L. Paulίk) consider theoretical (mathematical)
model of extended logic programming in many valued logic with arbitrary
triple of connectives (seq,etι,et2), where eti evaluates modus ponens con-
taining the implication seq, and et2 is the conjunction from bodies of clauses.
Declarative semantics is based on generalization of P. Hajek's RPL and RQL.
Let us make several remarks concerning these logics in more general way.

It is worth mentioning here, that well-known non-classical logics was
proposed by Lukasiewicz and Gόdel and that main interest was payed
on 1-tautologies in these logics. J. Pavelka made further development of
Lukasiewicz logic on propositional level ([10]). He considered not only sin-
gle formula φ but also a numerical value r (grade) connected with the for-
mula and proposed deduction calculus for maintaining graded formulas (φ\ r)
meaning truth value of φ is at least r. He introduced notion of graded proof
and norma \φ\τ means the supremum of values for graded proof of φ from
a theory T. Norma \\φ\\τ means the infimum of values which formula φ
gets in models of T. J. Pavelka proved completeness theorem of the form
\φ\τ = \\φ\\τ> Further development of Pavelka's ideas was done by V. Novak
on predicate level [9]. Substantial simplification of these logics was achieved
in P. Hajek's RPL and RQL, see [3],[5].

Recently P. Hajek and D. Svejda in [7] proved strong completeness for
finitely axiomatized theory in Lukasiewicz logic and as a consequence also
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completeness for finite Pavelka's Rational logic (if T is a finite fuzzy theory
and r is a rational number such that \\φ\\τ = r, then T h (<p; r)). This means
that the supremum in the definition of \φ\τ is attained in deduction process.

Let us note that completeness theorem (\φ\τ - IM|τ) does not generally
hold for Gόdel and product logic (see e.g. [4]).

Complete axiomatization for 1-tautologies in product logic was proposed

in [6].
In [12] we introduced a procedural semantics for SLD-resolution with two

continuous conjunctions (as we mentioned above) and prove soundness and
completeness theorem (in the sense (\φ\p = |M|p). But in [12] is not proved
that the best possible answer is really attained during computation. We only
proved that we can obtain answers with values which are arbitrary close to the
best one (see Theorem 11). Now we are able to prove that during computation
with one continuous conjunction (et* = etj = et^) the best possible answer
is really attained (see Theorem 14 and Theorem 17).

Moreover, we can state some more general remark. If the variant of fuzzy
logic uses deduction rules based on t-norms, in the sense that the value of
a consequent of a deduction step is t-norm value from values of antecedents,
(it is not possible to increase value during deductions), then as a corollary of
our Lemma 13 we have: If a fuzzy theory T : Fml ->> [0, 1] is such that range
of T, T(Fml) is finite (even when theory T itself is infinite), then

for every formula φ G Fml. (We can write max instead of sup for |<^|τ )
For information and references concerning motivations and applications

of fuzzy logic programming see e.g. [12].

2. Declarative and procedural semantics

Let us recall several definitions and theorems from [11], [12], which we will
need in the next sections.

Let £ be a first order language containing variables, function symbols,
predicate symbols, constants, quantifiers and connectives -i, seq and et (in-
tended meaning is that seq is an implication — the leftarrow writing version
is qes and et is a conjunction). Connectives usually preserve rationality, i.e.
if r, q are rational, then the value #*(r, q) is rational. The syntactical level is
not touched by many valuedness of semantics.

We base our declarative semantics only on fuzzy Herbrand interpretations
(skipping here arbitrary interpretations). Herbrand universe Uc consists of
all ground terms, having function symbols we are going to interpret them
crisp, Herbrand base BC consists of all ground atoms. Note, that this step is
not touched by fuzziness. An n-ary predicate symbol should be interpreted
as a fuzzy subset of U%, i.e. as a mapping from U£ into the unit interval
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[0, 1]. Gluing together all fuzzy predicates we interpret all of them at once by
a mapping / : BC -> [0, 1].

For a connective # the corresponding truth value function will be de-
noted by #' (i.e. a dot over the very connective). For arbitrary x,y € [0,1]
put -«* x = I — x and connective et* : [0, 1]2 -> [0, 1] is arbitrary t-norm,
(i.e. commutative, associative, monotone in both coordinates, and with 1 as
a neutral element). Let us make a notational agreement: for a conjunction et
which is binary we often harm the arity, using associativness denoting multi-
ple composition. The implication seq' : [0, 1]2 -» [0, 1] is coupled with et* in
such a way that modus ponens

(A,et°(x,y))

is a sound rule (see [2] and [3, 5]). This means that whenever f ( φ ) > x and
f(φ seq ψ) > y, then f ( φ ] > et'(x,y)', denote this by MP(seq,et). Recall
that for seq there is the largest et'aeq(x,y) = inf{z;seq*(z,z) > y} for which

is modus ponens sound and seq(x,y) = sup{z : et*eq(:r,z) < y} holds ([2]).

So our assumption that et* evaluates modus ponens with seq* in a sound way
means that et* < et*eq holds.

Let / : B£ -> [0, 1] be a fuzzy Herbrand interpretation. The truth value
for ground atoms A € BC is defined to be f(A). For arbitrary formula ψ and
an evaluation of variables e : Vαr -> Uc the truth value f(φ)[e] is calculated
using following rules along the complexity of formulas:

seq = se

tφ)(e] = ef(/(¥>)[e],/(VO[e])

f((Vx)φ)[e] = mf{f(φ)[e']:e'=xe}

where e' =x e means that e' can differ from e only at x.
Finally let truth value of a formula φ under fuzzy Herbrand interpretation

/ be same as that of its generalization and does not depend on evaluation:

f ( ψ ) = Wψ) = mf{/M[e] : e arbitrary}.

Definition 2.1. (See [3, 5].) A fuzzy theory is α partial mapping T assigning
formulas a rational number . Partiality of the mapping T we understand as of
being defined constantly zero outside of the domain dom(T). A fuzzy Herbrand
interpretation f is a model of a fuzzy theory T if for all formulas φ 6 dom(T)
we have f ( φ ) > T(φ).

A (seq, et)-definite program clause is a formula V((£ιet et#n) seq A),
where A,#ι, . . . , Bn are atoms. We often write it in the left arrow form as
A qes #ι, . . . , Bn, where qes is the leftarrow writing of seq, commas in the
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antecedent denote conjunction et. Similarly we define (seq, et)-facts and goals.
The empty clause is denoted by D.

Let the symbol « denote the following equivalence on the set of all for-
mulas: φ w ψ if φ is a variant of φ.

Definition 2.2. A fuzzy theory P is called a fuzzy (seq, et)-definite program,

if

1. dom(P) is a set of (seq, et)-definite program clauses or facts,
2. dom(P)/~ is finite
3. for φ w φ and φ e dom(P) we have ψ e dom(P) and P(φ) = P(φ) > 0.

Let us recall several notions and facts concerning procedural semantics ([11],
[12]). Following P. Hajek ([3],[5]) we define a graded formula being a pair
(<^;r), where φ is a formula and r £ [0,1] is a rational number. Especially,
(A qes; r), (A qes BI, . . . , Bn\ r), and (qes BI, . . . , Bn; r) are a graded fact,
a graded clause, and a graded goal, respectively.

Definition 2.3. Let G = (qes AI, . . . , A m , . . . , Ak\ r) and C = (A qes
Bι,...,B/;
q) be a graded goal and a graded clause, respectively. Then a graded goal G1

is {-derived from G and C using mgu θ if the following conditions hold:

1. Am is an atom, called the selected atom in G
2. θ is a mgu of Am and A
3. G' = (qes(Aι,...,Am-ι,Bι,...,Bι,Am+ι,...,Ak)θ;ret'q).

Definition 2.4. Let P be a fuzzy (seq,et)-definite program and let H be
a (seq, et)-definite goal. A pair (0;r) consisting of a substitution θ and a ra-
tional number r is a graded computed answer (GCA) for P and H if there
is a sequence GO, .. - , Gn of graded goals, a sequence D\,..., Dn of suitable
variants of clauses from the domain of P and a sequence θ\,..., θn of mgu's
such that

1. Go = (#;!)
2. G +i is f-derived from GI and (A+i PίA+i))
3. θ = 0ι o o θn restricted to variables of H
4. Gn = (D;r)

(Go,.. ., Gn is called a graded SLD-refutationJ.

Definition 2.5. A pair (x\θ) consisting of a real number r and a substitution
θ is a fuzzy Herbrand correct answer for a fuzzy (seq, et)-definite program P
and et-goal H = -ι3(-Aιet etAn) if for all fuzzy Herbrand interpretations
f : Be -» [0,1] which is a model of P we have /(V((Aι et et An)θ)) > x.

Observation. Let us observe the connection between procedural semantics
defined above and that of [12]. In [12] we used two different conjunctions
eti and et2, so we could not use commutativity and associativity law in full
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scope. We had to store values for atoms in the bodies of clauses (connected
by et2) until we have all of them and only then we used eti for evaluation
of modus ponens. Now we have only one conjunction et, used for evaluation
in the body of clause as well as for evaluation of modus ponens. Hence, from
now on we can use several theorems, (which were fully proved in [12]) also
for procedural semantics used here, as it is just the special case for et^ = et^.

To finish this part (most of material is a slight modification of that in
[11], [12]), let us state the Soundness Theorem (cf. [11],[12]) in the form :

Theorem 2.1 (Soundness for fuzzy (seq,et)-SLD-resolution). Assume
MP(seq,et). Let P be a fuzzy (secret)-definite program and H an et-goal. Let
(r;0) be a graded computed answer for P and H. Then (r;0) is a fuzzy Her-
brand correct answer.

3. Approximate completeness of fuzzy SLD-resolution

In our proof we follow [11], [12] with a fuzzy analogy of classical crisp fix-
point approach of [1],[8]. Let us recall some notations (see [8], [!],[! 2]). Let
(L, <, -L, T) be a partial order with smallest (J_) and largest (T) element. L is
a complete lattice if for all X C L the least upper bound lub(X) and greatest
lower bound glb(X) exists. A set X C L is directed if every finite subset of X
has an upper bound in X. A mapping T : L -* L is monotone, if x < y im-
plies T(x) < T(y) and moreover it is continuous if T(lub(X)) = lub(T(X))
holds for every directed subset X of L. Note that for monotone mappings
T(lubpO) > lub(TpO) holds for all X. We say a e L is the least fixpoint of
Tif

a = lfp(T) = glb{x : T(x) = x} = glb{z : T(x) < x}.

There is another characterization of lfp(Γ). Denote by transfinite induction

= _L

= T(Tt(α - 1)) for α successor

= lub{Tt/3; β < a} for α limit

Then for a complete lattice L and a continuous mapping T : L ->• L holds
true that lfp(T) = T^ω.

Denote

= {/ : / is a mapping from BP into [0, 1]} = [0, l]Bp .

Let functions OBP be constantly zero and IBP constantly one on Bp and
for f,g € TP let / < g holds if for all A € BP is f ( A ) < g(A). Then
(^p, <,0βp, lBp) is a complete lattice where for X C [0, l]Bp lub(X)(A) =
sup{/(A);A € X} and glb(X)(A) = inf{/(A) : A € X}. Moreover X is
directed if for /i, . . . , fn G X is max{/ι, . . . , fn} € X.
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Definition 3.1. (Definition 7 in [12]) Let P be a (seq,et)- definite program.
The mapping Tp : TP -> TP defined bellow we call the (seq,et,F)- operator
(if the context is doubtless simply called operator).

For f G Tp, let Tp(f) is a mapping from Bp into [0, 1] defined
T P ( f ) ( A ) = sup{r : there is (A qes AI, . . .,An] a ground instance of C £
dom(P) and r = P(C)ef /(Ai)ef ef f(An)}.

Note, that for a fact (A qes.) G dom(P) the list AI, . . . , An is empty and we
understand r = 1 et* P(C) = P(C) in the previous definition.

Let us also observe that range of / G Tp can have infinitely many values
and there can be infinitely many values for different ground instances of
AI, . . . , An. So we cannot write max instead of sup in the previous definition.

Theorem 3.1 (Fixpoint character of the least fuzzy Herbrand model).
(Theorem 10 in [12]) Assume et' = et*eq is continuous. Let P be a fuzzy
(seq, et)- definite program and Tp is the corresponding (seq, et,P) operator.
Then

Ifp(Γp) - Γpfu; = Mp

where Mp is the ([0, 1] p, <) least fuzzy Herbrand model of P.

Definition 3.2. (Definition 11 in [12]) Define success-fuzzy Herbrand inter-
pretation of P as /s(p) : Bp -> [0, 1] by

fs(P)(A) = sup{r : (r,id) is GCA for P and A}.

Theorem 3.2. (Theorem 12 in [12]) Assume et* = et*eq is continuous. Let
P be a fuzzy (seq, et)- definite program. Then

f»(P) = MP,

i.e. the success-fuzzy Herbrand interpretation of P is equal to least fuzzy Her-
brand model of P.

In [12] we proved completeness theorem in the form that during SLD-
resolution we can obtain answers which values are arbitrary close to the
best one.

Theorem 3.3. (Theorem 13 in [12]) Assume et* = et'seq is continuous. Let
P be a fuzzy (seq, et)- definite program and G an et-definite goal. For every
(x\θ) a fuzzy Herbrand correct answer for P and G and for every e > 0
there exists a (secret) -graded computed answer (q',σ) for P and G such that
x — e < q and θ — σ^ for some 7.
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4. Attaining supremum value

Before we formulate additional statement to the Fixpoint characterization of
the least fuzzy Herbrand model, let us observe that elements in Tp(f)(A) are
values of expressions like

where # are some of confidence factors of definite program clauses. Assume
in general case, that et* = t, where t is an arbitrary t-norm. Observe that
xty<xtl=x and x t y < 1 1 y = y for all x, y e [0, 1].

Definition 4.1. Let t be an arbitrary t-norm and U C [0, 1]. Denote by V(U)
a set of all values of all terms (expressions)

qι t <?2 t ••• t qk,

forqι,q2,...,qk € U and k = 1, 2, . . .

Our key lemma is the following

Lemma 4.1. // asetUc [0, 1] is finite then the set V(U) does not contain
any infinite strictly increasing sequence.

Proof. Let n be the number of elements of a set U. The proof goes by induction
along n, the number of values used (n = \U\).

I. Let n = 1, i.e. U = {qι} In this case it is possible to form only terms
like

0ι » qi t qι, qitqit < Z ι , . . .

Because of monotonicity of t it is obvious that a longer expression cannot
have bigger value than a shorter one. Hence, it is impossible to form any
infinite strictly increasing sequence.

II. Let the statement of the lemma holds for all n < k. We have to prove
it for n = k + 1. Let U = {(ft, . . . ,qk,qk+ι}- Thanks to commutativity and
associativity of t-norm t we can divide the expression

Qίi t t qit , q{l , . . . qi{ G C7, / G N,

into two parts. The first one (initial) contains only elements from the set

{?!,•••,

qk} and the second one (terminal) contains only several occurrences of the
element q^+i . Of course, every part can be empty, but not both of them in
the same time.

Assume by the contrary, that the set V(U) contains infinite strictly in-
creasing sequence of elements. This sequence contains subsequence, for which
the lengths of expressions are also increasing. In this subsequence we can se-
lect another one, in which at least one of the two parts must be built from
subexpressions of increasing length. Let us consider the following cases:
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1. There is a maximal length of the first parts, (only the second parts
have increasing lengths of subexpressions). Then there is at least one instance
of the initial part, for which there are infinitely many continuations in the
second parts. We know that ifxty<xtz then y < z. (For, if y > z
then from the definition of t-norm we have xty>xtz.) Hence the second
parts in these continuations form strictly increasing infinite sequence. This is
a contradiction.

2. There is a maximal length of the second parts, (only the first parts
have increasing lengths of subexpressions). Similarly, as in case 1, we can
find infinite strictly increasing sequence of values of subexpressions in the
first parts, what is again a contradiction.

3. It remains the case, when the lengths of both parts are increasing.
If the first parts contain infinite strictly increasing subsequence we have an
contradiction to induction hypothesis immediately. If the first parts contain
infinite constant subsequence, then the second parts form an infinite strictly
increasing sequence (similarly as in case 1 and 2). Again, we get a contradic-
tion. Finally, assume that the first parts contain infinite strictly decreasing
subsequence

bι>b2> ...>bi> ...

In connection with values c\, 02, . . . , c;,... of the second parts we have by our
assumption that

&ι t ci < 62 t C2 < < &i t Q < ...

If we assume that c» > c +i for some i then 6; t c; > b{+ι t Ci > bi+ι t Ci+i.
We get contradiction, so Ci < Ci+ι for all i = 1,2,... We have found infinite
strictly increasing sequence in the second parts, what is a contradiction to
induction hypothesis. Hence the lemma is proved. D

On the base of previous Lemma 13 we can state

Theorem 4.1. For every A € Bp there is a number n0 such that for every
n > HQ

(Γptno)μ) = (Tpϊn)(A) = (TPfa)(A),

i.e. every element ofTp^ω attains his maximal value.

Proof. Let A e BP. Every element of TP t 0 has value 0, hence (TP t 0)(A) =
0. If the program P contains a fact Cqes., where P(C) = r, and A is a ground
instance of C, then after first step of iteration we have (Tp f 1 )C<4) = r;
otherwise (TP t I)(A) = 0. From the definition of TP follows that every
element of Tp t ω is a value of an expression q\ et' et* qk, where q\,..., qk
are in the range of P. Recall that dom(P)/« is finite, so the range of P
is finite as well. Hence from our Lemma 13 we have that there is no infinite
strictly increasing sequence of elements of Tp f ω. It means, that after a finite
number n0 of steps of iteration, the value (TP | nQ)(A) attains the maximal
value, which cannot increase during further iterations. (Of course, this value
can remain 0.) Π

Let us recall two lemmas from [8]:
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Lemma 4.2 (Mgu Lemma). (Lemma 8.1 in [8], p. 47) Let P be a definite
program and G a definite goal. Suppose that P\J{G} has an unrestricted SLD-
refutation, i.e. the unifiers used need not be most general. Then P\J{G} has
an SLD-refutation of the same length such that, ΐ /0 ι , . . . ,0n are the unifiers
from the unrestricted SLD-refutation and θ(,..., θ'n are mgu's from the SLD-
refutation, then there exists a substitution 7 such that θι... θn = θ(... θ'n^.

Lemma 4.3 (Lifting Lemma). (Lemma 8.2 in [8], p. 47) Let P be a defi-
nite program, G a definite goal and θ a substitution. Suppose there exists an
SLD-refutation o/Pu{G0}. Then there exists an SLD-refutation ofP\J{G} of
the same length such that, ifθι,...,θn are the mgu's from the SLD-refutation
ofP\j{GΘ} and θ[,..., θ'n are the mgu's from the SLD-refutation ofP\J{G},
then there exists a substitution 7 such that θι... θn = θ(... θ'n^.

Now we are in the position to give promised refinement of Completeness
Theorem (we can drop all things concerning e).

Theorem 4.2 (Tight completeness of fuzzy (seq, et)-SLD-resolution).
Assume et* = etgeq is continuous. Let P be a fuzzy (seq, et)-definite program
and G an et-definite goal. For every (x',θ) a fuzzy Herbrand correct answer
for P and G there exists a (seq, et)-combined graded computed answer (q',σ)
for P and G such that x <q and θ = σ*γ for some 7.

Proof. (Simplification of that from [12].) Let us observe that Theorem 10 im-
plies completeness result for ground atoms: Assume (#; θ) is a correct answer
for P and a goal consisting of ground atom A then x < Mp(AΘ) = Mp(A) =
fs(p)(A). Prom the Theorem 14 follows that fs(p)(A) is the maximum of
computed answers (maximum is attained), we are done. (Note that wlog we
can assume that our goal consists of one atom.)

Now let A be an atom (not necessarily ground) and (x\ θ) a fuzzy Herbrand
correct answer for P and A. Let {Xi,... ,Xn} be variables of Aθ and let
{αι,...,αn} be constants distinct from everything appearing in P and A.
Denote δ = {Xι/aι,..., Xn/an}. Then Aθδ is ground and x < MP(i(AΘ}) <
Mp(Aθδ). So by the result for the ground atom Aθδ there is a GCA ((/ id)
witnessed by a derivation GO, ..., G/ for P and Aθδ. Replacing αi's in Gi by
Xi's we get a successful derivation G'{ for P and Aθ giving the same computed
answer (</; id). Now arguing in the same way as in Lemma 15 (Mgu Lemma)
and Lemma 16 (Lifting Lemma) of Lloyd ([8],p. 47) we can find a sequence of
mgu's θ(... θ'n = σ witnessing that the derivation G" obtained from GJ only
changing substitutions is a successful derivation, θ = σj and the computed
answer (g; σ) gives the same numerical value, because clauses and facts of P
used along the derivation G" are the same as in G^ (and same as in Gi). G

Acknowledgement. The author thanks to P. Vojtaδ for valuable discussions and
many advices during preparation of this article.
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