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An honest function is, roughly speaking, a unary, recursive, and strictly
increasing function with a very simple graph. Thus if / is an honest function,
then the growth of / reflects the computational complexity of /. The honest
elementary degrees are the degree structure induced on the honest functions
by the reducibility relation "being (Kalmar) elementary in". (Other subre-
cursive reducibility relations will also work, for example "being primitive
recursive in", but not "being polynomial time computable in the length of
input\ "Being polynomial time computable in the input1 might work, at
least in some respects.) A recursive function turns out to be total iff it is ele-
mentary in some honest function. Thus, since the set of functions elementary
in a particular honest function constitutes a complexity class, the structure
of honest elementary degrees will provide a measure for the computational
complexity of any total recursive function /. If / is not elementary in a honest
function of degree a, it is because / is too hard to compute, i.e. it requires
more resources to compute / than the honest degree a allows.

The structure of subrecursive honest degrees is studied, explicitly or im-
plicitly, in Meyer and Ritchie [11], Basu [2], Machtey [8] [9] [10], Simmons
[16], and Kristiansen [5] [6]. Machtey shows that the structure of elementary
honest degrees is a lattice with strong density properties, for instance be-
tween any degrees a, b such that a < b there are two incomparable degrees.
Kristiansen studies a jump operator on the structure. Among other results
he shows that it is possible to invert the jump; there exist low degrees; there
exist degrees which are neither high nor low; every situation compatible with
a' U b' < (a U b)7 is realized in the structure; every situation compatible
a < b => a' < b' is realized in the structure, e.g. we have incomparable de-
grees a, b such that a' < b' and incomparable degrees a, b such that a' = b'
etcetera. Moreover there is a close relationship between the elementary hon-
est degrees and the subrecursive hierarchies described in the book of Rose
[15]. Let 0 be the degree of the elementary functions, let •' be the jump op-
erator from [6], and let f0,^1,^2,... denote the classes in the Grzegorczyk
hierarchy. Then the class £3 is exactly the functions elementary in an hon-
est function of degree 0, the class B4 is exactly the functions elementary in
an honest function of degree 0', the class £5 corresponds to the degree 0"
and so on. By introducing an ω-jump in an obvious way, we will be able to
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climb beyond the Grzegorczyk classes and generate elementary honest de-
grees that correspond to higher levels in the transfinite hierarchies. Heaton
and Wainer [4] study the relationship between subrecursive hierarchies and
a jump operator similar to •'.

The most popular current subrecursive degree theory is not a theory of
honest degrees, but a theory that is concerned with reducibility between re-
cursive sets. Due to its importance in computer science, "being polynomial
time computable in" is the most popular reducibility relation between the
sets. In our discussion it is convenient to use the reducibility relation "being
(Kalmar) elementary in", and we use <E to denote this relation. Thus the
degrees in the set-degree theory are the equivalence classes induced on the
recursive sets by the <£-relation. (For the time being it is not important
whether we are talking about m-degrees or T-degrees.) This set-degree the-
ory is in many respects different from the honest degree theory induced by
the same reducibility relation. The proof methods are different, the degree
structures are different, and it seems that a theory of set-degrees does not
admit a jump operator.

In a classical paper Ladner [7] proves that neither the polynomial m- nor
T-degrees of recursive sets are a lattice. (They are just upper semi-lattices.)
He also shows density results and minimal pair results for the same struc-
tures. Ladner's proof methods are based on traditional recursion theoretic
constructions, and his methods and results generalize to a wide variety of
subrecursive reducibilities, e.g. to "being elementary in" and "being prim-
itive recursive in". After Ladner researchers have used refinements of his
methods in further studies of the structure of polynomial time degrees of
recursive sets. See Ambos-Spies [1] for an overview and further references. I
believe the techniques developed in the area can be transferred to all other
reasonable subrecursive reducibility relations between sets, and as far as I
know all the techniques involve some kind of constructions. In the study of
the honest degrees it is possible to obtain a lot of results without doing any
constructions at all. Instead in our proofs we exploit that there exists a bound
on the growth of the functions in a honest degree. For instance all the results
in Kristiansen [6] are achieved by such means. Exactly how far we can get
in the study of the honest degrees without constructions, is an interesting
question.

I have argued that the honest degrees are degrees of computational com-
plexity, and I am about to argue that the set-degrees are not. Let B be a
recursive non-elementary set, and let B = {A \ A <E B and A is a set}. Then
B is not a complexity class in the sense that every set computable within a
certain amount of resources belongs to B. No, A <E B iff B contains enough
information to decide membership in A within elementary time. So B is the
class of sets that is computable in elementary time if we have access to the
information in 5, i.e. if we do not have to compute B. It is reasonable to
view the set-degrees as degrees of information content and not as degrees of
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computational complexity. If a set A is not subrecursively reducible to a set
in the set-degree a, it is because A contains too much information, i.e. more
information than the degree a permits.

The objective of this paper is to obtain some relationships between the
computational complexity and the information content of sets. Let the set
A be of a certain computational complexity, i.e. A is of a certain honest
degree. How much information can A possibly contain, i.e. which sets are
subrecursively reducible to A? This paper gives answers to such questions,
and hopefully this paper contributes to bridge a gap between the two different
approaches to subrecursive degree theory.

1. General preliminaries and definitions

I assume the reader is familiar with the most basic concepts of classical
recursion theory. An introduction and survey can be found in the books [12]
and [14]. I also assume acquaintance with subrecursion and, in particular,
with the elementary functions. An introduction to this subject can be found
in [13] or [15]. Here I just state some important basic facts and definitions.
See [13] and [15] for proofs.

The initial elementary functions are the successor (<S), projections (If),
zero (0), addition (+), and modified subtraction (-) functions. The elemen-
tary schemes are composition, i.e. /(x) = /ι(#ι(x),... ,(/m(x)) and bounded

sum and product, i.e. /(x,y) = Σt<y0(x»*) and /(x>y) = Πi<y0(χι*) τhe

class of elementary functions is the least class which contains the initial ele-
mentary functions and is closed under the elementary schemes. A relation or
a predicate R(x.) is elementary when there exists an elementary function /
with range {0,1} such that /(x) = 0 iff R(x) holds. That a function / has an
elementary graph means that the relation /(x) = y is elementary. If we can
define a function g from the function / plus the initial elementary functions
by the elementary schemes, we say that g is elementary in f.

The definition scheme (μz < x ) [ . . . ] is called the bounded μ-operator, and
(μz < y)[R(x, z)] denotes the least z < y such that the relation β(x, z) holds.
Let (μz < y)[β(x,z)] = 0 if no such z exists. The elementary functions are
closed under the bounded μ-operator. If / is defined by a primitive recursion
over g and h and /(x,2/) < j(x,t/), we say that / is a limited recursion over
g, h and j. (It is convenient to think about limited recursion as a scheme with
g, h and j as parameters, although the j is actually not used to generate /.)
The elementary functions are closed under limited recursion, but not under
primitive recursion. Moreover, the elementary relations are closed under the
operations of the propositional calculus and under bounded quantification,

i.e. (V* < y)[R(x)] and (3x < y)[R(x)].
The class of elementary functions is the closure of {0,<S, If, 2x,max} un-

der composition and limited recursion. A proof of this characterization of the
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elementary functions can be found in [15] or [3]. They prove that the elemen-
tary functions equal the third Grzegorczyk class £3, and 83 is defined to be
the class {0,5,Zf,-E2>max} closed under composition and limited recursion.
It is easy to see that the class £3 remains the same if we use 2X in place of E%
in the definition. (E%(x) = Ef(2) where E\(x) = x2 + 2.) Thus it follows that
the class of functions elementary in / is the closure of {0,<S,Zf,2x,max, /}
under composition and limited recursion.

All the closure properties of the elementary functions can be proved by us-
ing Gδdel numbering and coding techniques. Uniform systems for coding the
finite sequences of natural numbers are available inside the class of elemen-
tary functions. Let F/(x) be the code for the sequence {/(O), /(I),... f ( x ) ) .
Then Ff belongs to the elementary functions if / does. We are quite informal
and indicate the use of coding functions with the notations (...). Our coding
system is monotone, i.e. (XQ, ,xn) < (#o» - »#n,2/) for every value of y,
and (zo, . . . ,Zi , . . . ,Zn) < (XQ, - - ,&< 4-1,... ,zn)

A relation ~ between two functions holds almost everywhere (a.e.) iff
there is a number k such that for all x > k we have g(x) ~ f ( x ) . Notation:

g(x) &~ f ( x ) . The function fk is the fc'th iterate of the unary function /,
i.e. fQ(x) = x and fk+l(χ) = f f k ( x ) .

2. Theorems on total recursive functions

Definition 2.1. A function f is honest iff (i) f is unary, (ii) f ( x ) > 2X,
(Hi) f is monotone (nondecreasing), and (iυ) f has an elementary graph.

It is clause (iv) in the definition which is essential. We require that an
honest function has an elementary graph because we want no "hidden com-
plexity" in the function. We want the growth of the function to mirror the
computational complexity of the function. The structure of honest degrees
would be the same if an honest function were not required to satisfy (i), (ii),
and (iii), but those requirements are needed for other purposes. Meyer and
Ritchie [11] give some characterizations of the honest functions.

We define recursive function, recursive index, computation tree, and other
well-known concepts in the usual way. When e is a recursive index for the
function /, we adopt the traditional abuse of notation and write {e}(x) both
for (i) the computation of /(x) associated with e and for (ii) the eventual
result of the computation. Let U be the function such that U((x\,..., xm)) —
Xm, i.e. a function that gives the last coordinate of a sequence number. When
y codes the empty sequence, or when y is not a sequence number at all, let
U(y) = 0. Let Tn be the Kleene predicate for n = 0,1,2,... , i.e. the predi-
cate Tn(e, xi, - - - , #n> t) holds iff t is a computation tree for {e}(xι,..., xn).
The relation Tn is elementary. (According to Rose [15], this was one of the
main motivations for introducing the elementary functions in the first place.)
The function U is also elementary, and for each total recursive / we have
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/(zι, . . . ,Zn) = {e}(zι,...,zn) =U(μz[Tn(e,xι,...,xn,z)]) when e is are-
cursive index for /. We will now state refined versions of the Kleene Normal
Form Theorem and the Second Recursion Theorem. The proofs are close
to the usual proofs of the original theorems, just a little bit of additional
book-keeping is required.

Theorem 2.1 (The Normal Form Theorem). An n-ary function g is
elementary in an honest function f iff there exist a recursive index e for
g and a fixed number k such that

Proof. Suppose g(x) = {e}(x) = U(μy < /*(max(x))[7ϊι(e,x,y)]). Then it is
trivial that g is elementary in /; the Kleene predicate Tn is elementary, the
functions U and max are elementary, and the elementary functions are closed
under composition and the bounded μ-operator. To prove the other direction
of the equivalence, assume that g is elementary in the honest function /. Then
g can be generated from the functions 0, 5, 1% , max and / by composition
and limited recursion. Complete the proof of the theorem by induction on
such a generation of g.

Theorem 2.2 (The Recursion Theorem). Let g be an n+l-ary function
elementary in an honest function f . Let x = xi, . . . ,xn. Then there exists a
recursive index e and a fixed number k such that

fl(e,x) - {e}(x) - U(μz<fk(max(x))[Tn(e,x,z)]).

Proof. Prove a refined version of the S™-theorem. Such proof of has a struc-
ture similar to the proof of the ordinary S™ -theorem. Then carry out a proof
that is similar to Kleenes proof of the original Second Recursion Theorem.
No surprises come up, and we leave the details.

Definition 2.2. {e}'(x) = U(μt < /(max(x))[?;(e,x,t)]).

Under this notation the Normal Form Theorem says that a function g is
elementary in an honest function / iff there exists a recursive index e (for g)

and a fixed number k such that 0(x) = {e}f (x) = {e}(x). The Recursion
Theorem says that if g is elementary in /, then there exist numbers e, k such
that #(e,x) = {e}f (x). The following implication is trivial:

fl(max(x)) > /(max(x)) Λ {e}(x) - {e}'(x) => {e}(x) - {e}*(x) .

3. The honest functions and the elementary degrees

Definition 3.1. Let f <E g denote that f is elementary in g, let f <E g
denote that f <E 9 and g <£E f , and let f =E g denote that f <E 9 and
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9 <E f - The equivalence classes induced by =E are the elementary degrees.
We let deg(f) = {g \ g =E /} and refer to deg(f) as the degree of /. We use
<» < for the ordering induced on the degrees by <E,<E An elementary degree
a is honest iff & = deg(f) for some honest f. We will use small bold-faced
letters early in the Latin alphabet, i.e. a, b, c,..., to denote honest elementary
degrees. If a < b < c then a is a degree below b, and b is a degree above a,
and b is a degree between a and c. Every degree in this paper is an honest
elementary degree. // we just say degree or honest degree, we do really mean
honest elementary degree. From now on we reserve the letters f and g to
denote honest functions only.

The next theorem is important. It enables us to avoid the usual recursion
theoretic constructions when we are proving results on honest degrees and
functions.

Theorem 3.1 (The Growth Theorem). Let f and g be honest functions.
Then

g <E f & g(x) < f k ( x ) for some fixed k .

Proof. The left-right direction of the equivalence follows trivially from the
Normal Form Theorem. Now suppose that g(x) < f k ( x ) . Since g is honest,
the relation g ( x ) = y is elementary. We have g(x) = (μy < fk(x))[g(x) = y].
Hence g <E f since the elementary functions are closed under composition
and the bounded μ-operator.

Definition 3.2. Let f be an honest function. We define the function f by
f'(x) = fx(x). We call •' the jump operator. Let a be an honest elementary

degree. Then a' =f deg(f') where f is some honest function in a. (The degree
a; does not depend on the choice of f in a. This follows from the Growth
Theorem.) We let 0 denote the honest degree deg(2x), i.e. 0 is the class of
elementary functions. Further we let

[(d,k)γ(x) = {d}fk(x) d=f Z/(μt</ f c(max(x))[Tn(d,xι,x,*)]).

We say that e is an /-elementary index for φ whenever -0(x) = [e] ̂ (x) and
f is some honest function.

We may also define a meet and a join operator on the honest elementary
degrees since the structure is a lattice, but we do not need such operators in
this paper. Anyway, the function max(f(x),g(x)) is the l.u.b. of the honest
functions / and </, and the function mm(f(x),g(x)) is the g.l.b. of the honest
functions / and g. See [6] and [9].

The jump operator seems a bit arbitrary, but it is very natural. The next
few lemmas tell us that it is indeed an analogue to the jump operator on the
Turing degrees.

Lemma 3.1. Let f be an honest function. Then {[e]^}eeu> is an enumeration
of the functions elementary in f.
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Proof. Let e be an arbitrary natural number. Let ψ = [e]f and let e = (d, k).
Then, straightaway from the definitions, we have

Thus Ψ is elementary in / since U, Tn etc. are elementary. Further, suppose
ψ is elementary in /. By the Normal Form Theorem there exists a recursive
index d for ψ and a fixed number k such that ι/>(x) = {d}f (x). Let e = (d, k).
Then we have ψ = [e]Λ

Lemma 3.2. Let J ( f ) ( ( x \ , x * ) ) = [x\]f(x*). Then f =E J ( f ) whenever f
is an honest function.

Proof. First we prove that /' is elementary in J ( f ) . The fc'th iterate of /,
i.e. /*, is elementary in / for all k E ω. There exists an elementary function
ψ such that f k ( x ) = [ψ(k)]f(x). Thus we have f(x) = J ( f ) ( ( φ ( x ) , x ) ) and
thereby /' <E J ( f } Next we prove that J ( f ) is elementary in /'. Let
α x ι , X 2 = #ι and bxι,X2 = x ̂ . Then

= [ax]f(bx) = {aax}fbax (bx) = U(μt < fbax(bx)[Tι(aax,bx,t)] .

(The first equality holds by the definition of J ( f ) , the second by the defi-

nition of [ ] f , and the third by the definition of { }f .) It is trivial that the
function fbax(bx) is elementary in /'. Thus J ( f ) <E f since ZY,7I etc. all
are elementary functions.

Definition 3.3. A binary function p is a universal function for an honest
degree a = deg(f) iff for all unary ξ <E f there exists an n such that ξ(x) =
p(n,x). Let f and g be honest functions. We write f <̂ C g when there is a
universal function p for the degree deg(f) such that p <E 9- We also write
< for the corresponding relation on the degrees.

That the relation a < b holds means that in some sense b lies far above
a. The situation a <C b implies that a < b, but there exist degrees a, b such
that a < b and a ^ b. The next theorem gives a characterization of the
^-relation. Meyer and Ritchie [11] prove related results.

Theorem 3.2. Let g and f be honest functions. Then (1) g <C /, (2)

(Ξm)(Vfc)[^(x) (<° Γ(x)}, and (3) (3ψ <E /)(V0 <E g)[Φ(x) '*< Ψ(x)]
are equivalent.

Proof. (2) => (3): Assume (2). Then we can pick a number ra such that

gk(x) (Ά<} fm(x) for all k. By the Growth Theorem we have that fm <E /,
and that every function elementary in g is bounded by gk for some fixed
k. Thus (3) follows. (3) => (1): Assume (3). Then there exists a function ψ

elementary in / which majorizes (a.e.) the function g™, i.e. gm(x) < ψ(x)
for every fixed ra. This implies that for every ra there exists an n such that
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gm(x) < n + ψ(x) (*). Let ξ be any unary function elementary in g. By the
Normal Form Theorem we have a recursive index d for £ and a fixed number
ra such that

Let p((d,n),x) = U((μt < n + ψ ( x ) ) [ T ι ( d , x , t ) ] ) . Then p <E /, and for every
unary function £ G deg(#) there exists a number k such that ξ(x) = ρ(k,x).
Thus (1) holds. (1) => (2): Let ψ(x) = (maxi<x maxj<x ρ(i, j)) + 1, where p
is a universal function for deg(#) and p <E f. Now ψ <E /, so the Growth
Theorem yields a fixed ra such that ψ(x) < /m(x). It is easy to verify that
ψ majorizes (a.e.) every function which is elementary in g. Since gk <E g for

every fixed fc, we have gk(x) < ψ(x) < fm(x) for every fixed k. Thus (2)
holds.

4. Main results

Definition 4.1. A set is a unary function with range {0, 1}. We will use the
first few capital letters in the Latin alphabet to denote sets, and we will write
x G A instead of A(x) = 0 etcetera. We denote the sets in the lower cone of
the honest degree a by ^^(a)*, i.e.

* =f {^4 I A is a set and A <E f for some f such that deg(f) = a.}

A set A is (elementarily) ra-reducible to a set B iff there exists an ele-
mentary function ψ such that x G A & ψ(x) G B. A set B is <£,(a)*-hard iff
every set in <£(a)* is m-reducible to B.

Fix an honest function f such that deg(f) = a. A set B is effectively
^(a^-hard iff there exists an elementary function ψ such that for every
f -elementary index e for a set A G ̂ (a)* we have x G A <£> ψ(e,x) G B.

Theorem 4.1. The cone <jj(b)* contains an effectively <E(a)*-hard set iff

dProof. Let B d= {(e, x) \ [e]9(x) = 0} where g is an honest function. We have
B <E g' by Lemma 3.2. Let A <E g, and let e be a p-relative index for A.
Then x G A & (e,x) G B. Thus, whenever b lies above a', the cone <B(b)*
contains an effectively <£(a)*-hard set.

Now assume that a' ^ b and that B G <B(b)* is an effectively ^(a)*-
hard set. We shall derive a contradiction from these assumptions. Let a =

deg(0) and b = deg(/). Further let A<((e,z)) = 1 - {e}9*(x) if {e} is a unary

function, and let Ai((e,x)) = 1 if {e} is not unary. Then Ai <E g for every
i G ω. Thus there exists an elementary function £ such that for all fixed i
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we have x £ Ai <& ξ(e,x) € B whenever e is a g-elementary index for Ai.
Let ψ(ϊ) give a p-elementary index for Ai. Note that Ψ is elementary. Let
φ(y,x) = B ( ξ ( ψ ( ( y , x ) ) , ( y , x ) ) ) . Then we have φ(y,x) = A(y,x}((y,x)) (i).
We also have φ <E f because B <E /. Thus the Recursion Theorem yields
a recursive index e and a fixed k such that φ(e,x) — {e}f (x) = {e}(x) (ii).
Since deg(p') = a' ^ b = deg(/), the Growth Theorem says that for every
fixed k there exist infinitely many x such that gx(x) = g'(x) > fk(x) (iϋ)
When we put (i), (ii) and (iii) together we get

φ(e,x) (* {e}f(x)

= {e}9* (x) (iii) for some large x

— {e}9 (x) ( , •) is monotone

φ \-{eγ^\x)

= A(β f X)({e,x)) def. o f A i

= Φ ( e , x ) . W

So there exist e,x such that φ(e,x) φ φ(e,x). Contradiction!

Lemma 4.1. Assume that f , g are honest functions and that there exist in-
finitely many x such that gl(x) > fk+l(x). Then, for every number m there
exist infinitely many x such that gi((m,x}} > f k ( ( m , x ) ) .

Proof. The pairing function ( , •) is polynomial and monotone in both argu-

ments. Let m be any fixed number. Then we have (m,x) < f(x) since /
is an honest function. (We have f(x) > 2X for any honest /.) Therefore it is
possible to pick an arbitrarily large x such that

f k ( ( m , x ) ) < fk+l(x) < g\x) < ^((m,*)).

Theorem 4.2. Assume 0 < b. The cone <β(b)* contains a <E(a)*-hard
set iff SL C b.

Proof. Let g and / be honest functions such that deg((?) = a <C b = deg(/).
By Theorem 3.2 there exists a universal function p for the degree a such that
P <E /• Let B = {(y,x) \ p(y,χ) = 0}. Then B <E f and thus B E^b)*.
Let A be any set such that A <E g> We show that A is m-reducible to B.
Since p is an a-universal function there exists n such that A(x) = p(n, x). Fix
such an n and let ξ(x) — (n, x). Then ξ is elementary and x G A <£> ξ(x) G B.
Thus A is m-reducible to B. That was the proof of the if-direction.

In order to prove the only-if-direction assume that B E <^(b)* is <β(a)*-
hard, that a f£ b, and that 0 < b. We will derive a contradiction from
these assumptions. Let g and / be honest functions such that deg(ρ) = a and
deg(/) = b. By Theorem 3.2 we have

(Vfc)(3i) [ g{(x) > fk(x) for infinitely many x ] (I)
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since a ̂  b. Let

i - {y}fh « y » χ ) ) if { y } i s unary
3,ndfk((y,x))<gί((y,x))

0 otherwise

For every fixed i and k the set A{^ is elementary in g. (Here is an argument
to support the this claim: The graph of / is elementary since / is honest.
By induction on k it is easy to show that the graph of fk is elementary.

Thus the function ξ(x) = (μz < g i ( x ) ) [ f k ( x ) = z] is elementary in g because
the relation f k ( x ) = z is elementary. Moreover, if ξ(x) φ 0 then f k ( x ) <
gl(x), and if ξ(x) = 0 then f k ( x ) £ gl(x) Therefore it is possible to decide
elementarily in g whether f k ( x ) < gl(x) for fixed i and fc. Now it is easy to
see that it is also possible to decide elementarily in g whether x G Ai^- So
Ai,k <E g ) The set B is elementary in /. The Normal Form Theorem says
that there exists a recursive index βo for B and a fixed number j such that
B(x) = {eo}*3 (x). By assumption B is ^^(a^-hard. Thus, for all fixed i and
fc there exists an elementary ψ such that x G A{^ & Ψ(x) G B. We have also
assumed 0 <C b = deg(/). This assumption implies that for every elementary

function ψ there exists a recursive index e\ such that ψ(x) &= {e\}f(x).
We have Ai^(x) = B(ψ(x)) for some elementary ψ. Thus for all fixed i,k

there exists a recursive index e\ such that Ai^(x] (&=} {CQ}^ ({eι}f(x)), and

{ev}f3 ({eι}f (χ}) — {e}fm(x) f°r some recursive index e and fixed number
m. So it is possible to pick a fixed number ra such that for every t, k there
exists a recursive index e such that

Aί,k(x)( = ){eYm(x). (II)

Note that e depends on i and fc, but m does not.
Now fix m such that (II) holds. Fix k such that k > m. Fix i such that

gl(x) > fk+l(x) for infinitely many x. Such an i exists by (I). Then fix a

d such that Ai^(x) (<=° {d}fm(x). Such a d exists by (II). Now we have

Ai,k(x) *= {d}*™(x) = {d}f (x). Thus, when we substitute (d,x) for x in
the last formula, we get

Aiyk((d,x}} — {d}f ((d,x)) for every sufficiently large x. (Ill)

We have chosen i such that g ί ( x ) > /fc+1(#) holds for infinitely many
x. Hence, by Lemma 4.1, there exists an arbitrarily large number n such
that gl((d,ri)} > fk((d,n)). Fix a sufficiently large such n. Now we have

Ai,k((d,n)) = 1 - {d}f ((d,n)) by the definition of A^, but we also have

Ai ffc((d,n» = {d}fk((d,n}) by (III). So we have numbers i,k,d,n such that
Aitk((d,n)) 7^ A{?fc((d,n)), i.e. we have a contradiction.
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Let a be any honest degree such that 0 < a. The structure of the sets in
the lower cone of a is obviously an ideal (with respect to the partial ordering
<#)- By the previous theorem we may infer that such a structure is never a
principal ideal since b f£ b for all honest degrees b.

We know that there exists a whole <C-dense set of honest degrees between
a and a'. (See Meyer and Ritchie [11], Simmons [16] and Kristiansen [5].)
Unfortunately it is not known whether the elementary honest degrees are «C-
dense. (This is stated as an open problem in Meyer and Ritchie [11].) Anyway,
let us suppose that the answer to this open question is positive. Suppose also
that 0 < a. Then there isn't any least degree b such that <β(b)* contains a
<£(a)*-hard set. This is a consequence of the previous theorem. In contrast
Theorem 4.1 says that there is a least degree b such that <B(b)* contains
an effectively <B(a)*-hard set, namely b = a'. No degree b strictly below
or incomparable to a7 is such that <^(b)* contains an effectively a-hard set.
(It is a pity that we need the condition 0 -C b in the previous theorem. Is
it possible that <B(a)* possesses a <B(0)*-hard set when a is some honest
degree very close to 0?)

Let b be an arbitrary set which lies strictly above a, i.e. a < b. The
previous theorem says that <B(b)* does not necessarily possess a <B(a)*-
hard set. (We may have a < b, but not a < b.) This leads us to ask if it
is necessarily the case that <B(b)* contains any set at all which isn't also
contained in <B(a)*; or if a and b are incomparable, is it necessarily the case
that <β(a)* and <β(b)* are incompatible? The next theorem answers these
questions.

Theorem 4.3. We have the equivalence <β(a)* C <^(b)* 4Φ> a < b.

Proof. If a < b, then <E(a)* C <F(b)* follows trivially. Assume a ^ b

and that a = deg(/) and b = deg(^). Let A ( ( y , x ) ) =f 1 - { y } f ( x ) whenever

y is an index for a unary function. (Let A ( ( y , x ) ) =f 1 if {y} is not a unary
function.) It is obvious that A is elementary in /, i.e. A £ <B(a)*. We will
now derive a contradiction from the assumption that A 6 <s(b)* So assume
A <E 9- Then the Recursion Theorem proclaims the existence of e and k
such that A ( ( e , x ) ) = {e}9 (x) (*). But since / £E 9 we may use the Growth
Theorem and pick an ra such that /(ra) > gk(m) (**). Now the following
contradiction emerges:

m)) (=> (eγ(m) < > {e}'(m) ί \^{^(m) = A((e,m)) .
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