A Bounded Arithmetic Theory for Constant Depth Threshold Circuits*

Jan Johannsen
IMMD 1, Universität Erlangen-Nürnberg, Germany
email: johannsen@Cinformatik.uni-erlangen.de

Summary. We define an extension \bar{R}_{2}^{0} of the bounded arithmetic theory R_{2}^{0} and show that the class of functions Σ_{1}^{b}-definable in \bar{R}_{2}^{0} coincides with the computational complexity class $T C^{0}$ of functions computable by polynomial size, constant depth threshold circuits.

1. Introduction

The theories S_{2}^{i}, for $i \in \mathbb{N}$, of Bounded Arithmetic were introduced by Buss [3]. The language of these theories is the language of Peano Arithmetic extended by symbols for the functions $\left\lfloor\frac{1}{2} x\right\rfloor,|x|:=\left\lceil\log _{2}(x+1)\right\rceil$ and $x \# y:=2^{|x| \cdot|y|}$. A quantifier of the form $\forall x \leq t, \exists x \leq t$ with x not occurring in t is called a bounded quantifier. Furthermore, a quantifier of the form $\forall x \leq|t|$, $\exists x \leq|t|$ is called sharply bounded. A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.

The class of bounded formulae is divided into an hierarchy analogous to the arithmetical hierarchy: The class of sharply bounded formulae is denoted Σ_{0}^{b} or Π_{0}^{b}. For $i \in N, \Sigma_{i+1}^{b}$ (resp. Π_{i+1}^{b}) is the least class containing Π_{i}^{b} (resp. Σ_{i}^{b}) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification.

Now the theory S_{2}^{i} is defined by a finite set $B A S I C$ of quantifier-free axioms plus the scheme of polynomial induction

$$
A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(x)
$$

for every Σ_{i}^{b}-formula $A(x)\left(\Sigma_{i}^{b}-P I N D\right)$.
For a class of formulae Γ, a number-theoretic function f is said to be Γ-definable in a theory T if there is a formula $A(\bar{x}, y) \in \Gamma$, describing the graph of f in the standard model, and a term $t(\bar{x})$, such that T proves

$$
\begin{gathered}
\forall \bar{x} \exists y \leq t(\bar{x}) A(\bar{x}, y) \\
\forall \bar{x}, y_{1}, y_{2} A\left(\bar{x}, y_{1}\right) \wedge A\left(\bar{x}, y_{2}\right) \rightarrow y_{1}=y_{2}
\end{gathered}
$$

The main result of [3] relates the theories S_{2}^{i} to the Polynomial Time Hierarchy PH of Computational Complexity Theory (cf. [9]):

[^0]The class of functions that are Σ_{i+1}^{b}-definable in S_{2}^{i+1} coincides with $F P^{\Sigma_{i}^{P}}$, the class of functions computable in polynomial time with an oracle from the ith level of the PH.

In particular, the functions Σ_{1}^{b}-definable in S_{2}^{1} are precisely those computable in polynomial time.

The theories R_{2}^{i} were defined in various disguises by several authors $[1,10$, 5]. Their language is the same as that of S_{2}^{i} extended by additional function symbols for subtraction - and $M S P(x, i):=\left\lfloor\frac{x}{2^{i}}\right\rfloor$. They are axiomatized by an extended set $B A S I C$ of quantifier-free axioms plus the scheme of polynomial length induction

$$
A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(|x|)
$$

for every Σ_{i}^{b}-formula $A(x)\left(\Sigma_{i}^{b}-L P I N D\right)$.
R_{2}^{1} is related to the complexity class $N C$, the class of functions computable in polylogarithmic parallel time with a polynomial amount of hardware:

The Σ_{1}^{b}-definable functions of R_{2}^{1} are exactly those in NC.
In [10] it was shown that R_{2}^{0} is equivalent to S_{2}^{0} in the extended language, which is trivially equivalent to the theory given by the BASIC axioms and the scheme of length induction

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A(|x|)
$$

for every Σ_{0}^{b}-formula $A(x)\left(\Sigma_{0}^{b}-L I N D\right)$.
$T C^{0}$ denotes the class of functions computable by uniform polynomial size, constant depth families of threshold circuits (cf. [2]). This class can be viewed as the smallest reasonable complexity class, e.g. it is the smallest class known to contain all arithmetical operations: integer multiplication is complete for it under a very weak form of reducibility.

Let B be the set of functions containing all projections, the constant 0 , $s_{0}(x):=2 x, s_{1}(x):=2 x+1, B i t(x, i)$ giving the value of the i th bit in the binary representation of x, \# and multiplication. The class $T C^{0}$ was characterized in [6] as the smallest class of functions that contains the initial functions in B and is closed under composition and the operation of concatenation recursion on notation (CRN), where a function f is defined by CRN from g and h_{0}, h_{1} if

$$
\begin{array}{rlr}
f(\bar{x}, 0) & =g(\bar{x}) & \\
f\left(\bar{x}, s_{0}(y)\right) & =2 \cdot f(\bar{x}, y)+h_{0}(\bar{x}, y) & \text { for } y>0 \\
f\left(\bar{x}, s_{1}(y)\right) & =2 \cdot f(\bar{x}, y)+h_{1}(\bar{x}, y) &
\end{array}
$$

provided that $h_{i}(\bar{x}, y) \leq 1$ for all \bar{x}, y and $i=0,1$. It follows from this characterization by methods from [4] that the characteristic function of any
predicate defined by a Σ_{0}^{b}-formula in the language of R_{2}^{0} is in $T C^{0}$, and that $T C^{0}$ is closed under sharply bounded minimization, i.e. if $g \in T C^{0}$, then f defined by $f(x):=\mu i \leq|x| g(i)=0$ is also in $T C^{0}$.

We shall define an extension \bar{R}_{2}^{0} of R_{2}^{0} the Σ_{1}^{b}-definable functions of which are exactly the functions in $T C^{0}$. In [6], an arithmetical theory $T T C^{0}$ is presented that also characterizes $T C^{0}$. We shall compare our work to this in the final section of the paper.

2. Definition of $\overline{\boldsymbol{R}}_{2}^{\mathbf{0}}$

Before the theory \bar{R}_{2}^{0} can be defined, we have to develop R_{2}^{0} a little. To be able to talk about the bits of a number, we first define $\operatorname{Mod} 2(x):=x-2 \cdot\left\lfloor\frac{1}{2} x\right\rfloor$ and then $\operatorname{Bit}(x, i):=\operatorname{Mod} 2(M S P(x, i))$. In R_{2}^{0}, a number is uniquely determined by its bits, as the extensionality axiom

$$
|a|=|b| \wedge \forall i<|a|(\operatorname{Bit}(a, i)=\operatorname{Bit}(b, i)) \rightarrow a=b
$$

can be proved in R_{2}^{0} (see [7] for a proof).
We shall need the possibility to define a number by specifying its bits. So for a class of formulae Γ, let the Γ-comprehension scheme be the axiom scheme

$$
\exists y<2^{|t|} \forall i<|t| \quad(B i t(y, i)=1 \leftrightarrow A(i))
$$

for every formula $A(i) \in \Gamma$.
Next we need the possibility of coding pairs and short sequences. The coding used is based on the one presented in [5], but we need a refined analysis to show its accessibility in R_{2}^{0}.

First let $\overline{s g}(x):=1 \dot{-x}$, and then $[x \leq y]:=\overline{s g}(x \dot{y})$. Obviously, $[x \leq$ $y]=1$ iff $x \leq y$ and $[x \leq y]=0$ else. Further let $[x<y]:=[S x \leq y]$, and then define

$$
\max (x, y):=[x \leq y] \cdot y+[y<x] \cdot x
$$

Let now $x \frown y:=x \cdot 2^{|y|}+y$, then we define

$$
\langle x, y\rangle:=\left(2^{|\max (x, y)|}+x\right) \frown\left(2^{|\max (x, y)|}+y\right)
$$

We go on to define $D M S B(x):=x-2^{\left.\left\lvert\, \frac{1}{2} x\right.\right\rfloor \mid}$, front $(x):=M S P\left(x,\left\lfloor\frac{1}{2}|x|\right\rfloor\right)$ and $\operatorname{back}(x):=x-\operatorname{front}(x) \cdot 2^{|f r o n t(x)|}$, and finally

$$
(x)_{1}:=D M S B(f r o n t(x)) \text { and }(x)_{2}:=D M S B(\operatorname{back}(x))
$$

Using extensionality, one can prove in R_{2}^{0} that $(\langle x, y\rangle)_{1}=x$ and $(\langle x, y\rangle)_{2}=y$, hence these functions form a pairing system. The pairing function is not surjective, but its range can be described by

$$
\operatorname{pair}(x): \leftrightarrow x>2 \wedge \operatorname{Mod} 2(|x|)=0 \wedge \operatorname{Bit}\left(x,\left\lfloor\frac{1}{2}|x|\right\rfloor-1\right)=1 .
$$

Inductively we can define $(x)_{i}^{(2)}:=(x)_{i}$ for $i=1,2$, and for $n \geq 2$ and $j \leq n$

$$
\begin{aligned}
\left\langle x_{1}, \ldots, x_{n}, x_{n+1}\right\rangle & :=\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{n+1}\right\rangle \\
(x)_{j}^{(n+1)} & :=\left((x)_{1}\right)_{j}^{(n)} \\
(x)_{n+1}^{(n+1)} & :=(x)_{2}
\end{aligned}
$$

Note that all the functions defined up to now are terms in the language of R_{2}^{0}. Furthermore, they are all in $T C^{0}$, since the function symbols in the language represent functions in $T C^{0}$.

We define a restricted form of division for small numbers by the formula

$$
z=\operatorname{LenDiv}(x, y): \leftrightarrow(y=0 \wedge z=0) \vee(y>0 \wedge z \cdot y \leq|x| \wedge(S z) \cdot y>|x|)
$$

then in R_{2}^{0} we can prove $\forall x, y \exists z \leq|x| z=\operatorname{LenDiv}(x, y)$ as follows: Consider the following instance of $\Sigma_{0}^{b}-L I N D$:

$$
b \cdot 0<S|a| \wedge \forall x(b \cdot x<S|a| \rightarrow b \cdot S x<S|a|) \rightarrow \forall x b \cdot|x|<S|a|
$$

Since $b>0 \rightarrow \neg \forall x b \cdot|x|<S|a|$ is provable, and $b \cdot 0 \geq S|a|$ can be refuted, we get from the contrapositive of the above

$$
b>0 \rightarrow \exists x(b \cdot x \leq|a| \wedge b \cdot S x>|a|)
$$

from which the claim follows easily. The uniqueness of a z with $z=$ $\operatorname{LenDiv}(x, y)$ is also easily proved in R_{2}^{0}.

Now the formula $z=\operatorname{Len} \operatorname{Div}(x, y)$ is Σ_{0}^{b}, and z is always bounded by $|x|$, hence we can extend the language by a function symbol for LenDiv such that any sharply bounded formula in the extended language is equivalent to a Σ_{0}^{b}-formula in the original language.

Let $\operatorname{LenMod}(x, y):=|x|-y \cdot \operatorname{Len} \operatorname{Div}(x, y)$. For readability, we write $\left\lfloor\frac{|x|}{y}\right\rfloor$ for $\operatorname{LenDiv}(x, y)$ and $|x| \bmod y$ for $\operatorname{LenMod}(x, y)$. Let furthermore $L S P^{\prime}(x, y):=x-M S P(x,|y|) \cdot 2^{|y|}$; we also write $\operatorname{LSP}(x,|y|)$ for this, where $\operatorname{LSP}(x, i)$ is intended to be the number consisting of the rightmost i bits of x, i.e. $x \bmod 2^{i}$. Now we define a coding for sequences of numbers of length less than $|a|$ by

$$
\begin{aligned}
\operatorname{Seq}_{a}(w) & : \leftrightarrow|w| \bmod |a|=0 \wedge \forall i<\left\lfloor\frac{|w|}{|a|}\right\rfloor \operatorname{Bit}(w,(i+1) \cdot|a|)=1 \\
\operatorname{Len}_{a}(w) & :=\left\lfloor\frac{|w|}{|a|}\right\rfloor \\
\beta_{a}(w, i) & :=D M S B(\operatorname{LSP}(M S P(w,(i-1) \cdot|a|),|a|))
\end{aligned}
$$

Note that $\beta_{a}(w, i)$ is a term, and $S e q_{a}(w)$ as well as any sharply bounded formula containing $L e n_{a}$ are equivalent to a Σ_{0}^{b}-formula. Finally we define

$$
\begin{aligned}
\operatorname{Seq}(w) & : \leftrightarrow \operatorname{pair}^{(w) \wedge \operatorname{Seq}_{(w)_{1}}\left((w)_{2}\right)} \\
\operatorname{Len}(w) & :=\operatorname{Len}_{(w)_{1}}\left((w)_{2}\right) \\
\beta(w, i) & :=\beta_{(w)_{1}}\left((w)_{2}, i\right)
\end{aligned}
$$

The remarks above concerning $\beta_{a}, S e q_{a}$ and $L e n_{a}$ also apply to $\beta, S e q$ and Len. Finally we need a term $\operatorname{SqBd}(x, y)$ such that a sequence of length $|x|$ all of whose entries are bounded by y has a code less than $\operatorname{SqBd}(x, y)$. For this we can set $S q B d(x, y):=4(x \# 2 y)^{2}$.

By using sharply bounded minimization, one sees that the functions LenDiv and LenMod, and hence also the sequence coding operations, are in $T C^{\circ}$.

Now for a class of formulae Γ, the Γ-replacement axiom scheme is

$$
\begin{gathered}
\forall x \leq|s| \exists y \leq t(x) A(x, y) \rightarrow \exists w<\operatorname{SqBd}(2 s, t(|s|))[\operatorname{Seq}(w) \wedge \\
\wedge \operatorname{Len}(w)=|s|+1 \wedge \forall x \leq|s| \beta(w, S x) \leq t(x) \wedge A(x, \beta(w, S x))]
\end{gathered}
$$

for every formula $A(x, y) \in \Gamma$.
Finally, the theory \bar{R}_{2}^{0} is defined as R_{2}^{0} extended by the schemes of Σ_{0}^{b} comprehension and Σ_{0}^{b}-replacement. A result in [7] shows that this extension is proper.

3. Definability of $\boldsymbol{T} \boldsymbol{C}^{0}$-functions

For every Σ_{1}^{b}-formula $A(\bar{a})$ we define a formula $\operatorname{Witness}_{A}(w, \bar{a})$ (to be read as " w witnesses $A(\bar{a})$ ") inductively as follows: If $A(\bar{a})$ is a Σ_{0}^{b}-formula, then

$$
\operatorname{Witness}_{A}(w, \bar{a}) \quad: \equiv A(\bar{a})
$$

If $A(\bar{a}) \equiv B(\bar{a}) \circ C(\bar{a})$ for $\circ \in\{\wedge, \vee\}$, then

$$
\operatorname{Witness}_{A}(w, \bar{a}): \equiv \operatorname{Witness}_{B}\left((w)_{1}, \bar{a}\right) \circ \operatorname{Witness}_{C}\left((w)_{2}, \bar{a}\right) .
$$

If $A(\bar{a}) \equiv \exists x \leq t(\bar{a}) B(\bar{a}, x)$ and $A(\bar{a})$ is not a Σ_{0}^{b}-formula, then

$$
\operatorname{WitNess}_{A}(w, \bar{a}): \equiv(w)_{2} \leq t(\bar{a}) \wedge \operatorname{WitNess}_{B}\left((w)_{1}, \bar{a},(w)_{2}\right) .
$$

If $A(\bar{a}) \equiv \forall x \leq|s(\bar{a})| B(\bar{a}, x)$ and $A(\bar{a})$ is not a Σ_{0}^{b}-formula, then

$$
\begin{aligned}
\operatorname{WitNess}_{A}(w, \bar{a}): & =S e q(w) \wedge \operatorname{Len}(w)=|s(\bar{a})|+1 \wedge \\
& \wedge x \leq|s(\bar{a})| \operatorname{WitNESS}_{B}(\beta(w, x+1), \bar{a}, x) .
\end{aligned}
$$

If $A(\bar{a}) \equiv \neg B(\bar{a})$ and $A(\bar{a})$ is not a Σ_{0}^{b}-formula, then let $A^{*}(\bar{a})$ be a formula logically equivalent to $A(\bar{a})$ obtained by pushing the negation side inside by de Morgan's rules, and let

$$
\operatorname{Witness}_{A}(w, \bar{a}) \quad: \equiv \operatorname{WitNess}_{A^{*}}(w, \bar{a}) .
$$

Clearly, $\operatorname{Witness}_{A}(w, \bar{a})$ is equivalent Σ_{0}^{b}-formula for every Σ_{1}^{b}-formula $A(\bar{a})$.
Proposition 3.1. For every Σ_{1}^{b}-formula $A(\bar{a})$ there is a term $t_{A}(\bar{a})$ such that:

1. $\bar{R}_{2}^{0} \vdash \mathrm{Witness}_{A}(w, \bar{a}) \rightarrow A(\bar{a})$
2. $\bar{R}_{2}^{0} \vdash A(\bar{a}) \rightarrow \exists w \leq t_{A}(\bar{a}) \mathrm{WITNESS}_{A}(w, \bar{a})$

This is proved by a straightforward induction on the complexity of the formula $A(\bar{a})$. For part $(i i)$, in the case where $A(\bar{a})$ starts with a sharply bounded universal quantifier, Σ_{0}^{b}-replacement is needed.

Proposition 3.2. The Σ_{1}^{b}-replacement axioms are provable in \bar{R}_{2}^{0}.
Proof. By Prop. 3.1, every Σ_{1}^{b}-formula $A(x, y)$ is equivalent in \bar{R}_{2}^{0} to a formula of the form $\exists z \leq u(x, y) B(x, y, z)$ for some term $u(x, y)$ and $B(x, y, z) \in \Sigma_{0}^{b}$, hence it suffices to deduce the replacement axiom for such a formula.

From the premise of the replacement axiom for this formula we can now easily conclude $\forall x \leq|s| \exists p \leq\langle t(x), u(x, t(x))\rangle B\left(x,(p)_{1},(p)_{2}\right)$, and an application of Σ_{0}^{b}-replacement yields

$$
\begin{gathered}
(*) \exists v \leq S q B d(2 s,\langle t(|s|), u(|s|, t(|s|))\rangle)[S e q(v) \wedge \operatorname{Len}(v)=|s|+1 \wedge \\
\left.\wedge \forall x \leq|s| \beta(v, S x) \leq\langle t(x), u(x, t(x))\rangle \wedge B\left(x,(\beta(v, S x))_{1},(\beta(v, S x))_{2}\right)\right]
\end{gathered}
$$

Next we need the following
Lemma 3.1. For every term $t(x)$ the following is provable in \bar{R}_{2}^{0} :

$$
\begin{gathered}
\forall v S e q(v) \rightarrow \\
\exists w[\operatorname{Seq}(w) \wedge \operatorname{Len}(w)=\operatorname{Len}(v) \wedge \forall i \leq \operatorname{Len}(w) \beta(w, S i)=t(\beta(v, S i))]
\end{gathered}
$$

This lemma, which is easily proved by Σ_{0}^{b}-replacement, for $t(x)=(x)_{1}$ applied to the v from (*) yields a sequence as required in the conclusion of the replacement axiom.

Now we are ready to show
Theorem 3.1. Every function in $T C^{0}$ is Σ_{1}^{b}-definable in \bar{R}_{2}^{0}.
Proof. It is trivial that the Σ_{1}^{b}-definable functions in \bar{R}_{2}^{0} comprise the initial functions in B and are closed under composition, hence it remains to prove that they are closed under CRN.

So let f be defined by CRN from g, h_{0} and h_{1}, let g and h_{i} be Σ_{1}^{b}-defined by the formulae $C(\bar{x}, y)$ and $B_{i}(\bar{x}, y, z)$ resp. and the terms $s(\bar{x})$ and $t_{i}(\bar{x}, y)$, for $i=0,1$.

First we show the existence of the sequence of those values of the functions h_{i} that are needed in the computation of $f(x, y)$ by CRN, i.e. we prove in \bar{R}_{2}^{0}

$$
\begin{gathered}
\exists w \leq S q B d(2 y, m(\bar{x}, y)) S e q(w) \wedge \operatorname{Len}(w)=|y|+1 \wedge \\
\wedge \forall i \leq|y|\left[\left(\operatorname{Bit}(y, i)=0 \wedge B_{0}(\bar{x}, M S P(y,|y| \dot{-} i), \beta(w, i+1))\right) \vee\right. \\
\left.\vee\left(B i t(y, i)=1 \wedge B_{1}(\bar{x}, M S P(y,|y|-i), \beta(w, i+1))\right)\right]
\end{gathered}
$$

where $m(\bar{x}, y):=\max \left(t_{0}(\bar{x}, y), t_{1}(\bar{x}, y)\right)$. This follows by Σ_{1}^{b}-replacement from

$$
\forall i<|y| \exists z \leq m(\bar{x}, y)\left[\begin{array}{l}
\left.\operatorname{Bit}(y, i)=0 \wedge B_{0}(\bar{x}, M S P(y,|y|-i), z)\right) \vee \\
\left.\vee \quad\left(\operatorname{Bit}(y, i)=1 \wedge B_{1}(\bar{x}, M S P(y,|y|-i), z)\right)\right]
\end{array}\right.
$$

which is easily obtained from the existence conditions in the Σ_{1}^{b}-definitions of h_{0} and h_{1}.

Now we show that for every sequence w and number a there is a number consisting of a concatenated with the least significant bits of the terms of w, i.e.

$$
\begin{aligned}
\forall a, w \operatorname{Seq}(w) \rightarrow & \exists z \leq 1 \# a w[|z|=|a|+\operatorname{Len}(w) \wedge \\
\wedge \forall i<|z| & (i<\operatorname{Len}(w) \wedge \operatorname{Bit}(z, i)=\operatorname{Mod} 2(\beta(w, i+1))) \\
\vee & (i \geq \operatorname{Len}(w) \wedge \operatorname{Bit}(z, i)=\operatorname{Bit}(a, i-\operatorname{Len}(w)))]
\end{aligned}
$$

which is easily deduced in \bar{R}_{2}^{0} by use of Σ_{0}^{b}-comprehension. Setting $g(\bar{x})$ for a and the sequence from above for w yields the existence condition for a Σ_{1}^{b}-definition of f, with the bounding term $1 \# s(\bar{x}) \cdot S q B d(2 y, m(\bar{x}, y))$. The uniqueness is easily proved by use of extensionality.

4. Witnessing

The converse of Thm. 3.1 is proved by a witnessing argument as in [3]. For this, \bar{R}_{2}^{0} has to be formulated in a sequent calculus with special rules for the introduction of bounded quantifiers, the $B A S I C$, comprehension and replacement axioms as initial sequents and the $\Sigma_{0}^{b}-L I N D$ rule

$$
\frac{A(b), \Gamma \Longrightarrow \Delta, A(S b)}{A(0), \Gamma \Longrightarrow \Delta, A(|t|)}
$$

where the free variable b must not occur in the conclusion, except possibly in the term t.

Since the formulae in the initial sequents are all Σ_{1}^{b}, we can, by a standard cut elimination argument, assume that every formula appearing in the proof of a Σ_{1}^{b}-statement is in $\Sigma_{1}^{b} \cup \Pi_{1}^{b}$. Therefore we can prove the following witnessing theorem by induction on the length of a proof:

Theorem 4.1. Let Γ, Δ be sequences of Σ_{1}^{b}-formulae and Π, Λ sequences of Π_{1}^{b}-formulae such that

$$
\bar{R}_{2}^{0} \vdash \Gamma, \Pi \Longrightarrow \Delta, \Lambda=: \mathcal{S}
$$

let furthermore all free variables in \mathcal{S} be among the \bar{a}. Let $G: \equiv \Lambda \Gamma \wedge \Lambda \neg \Lambda$ and $H: \equiv \bigvee \Delta \vee \bigvee \neg \Pi$. Then there is a function $f \in T C^{0}$ such that

$$
\mathrm{N} \models \operatorname{Witness}_{G}(w, \bar{a}) \rightarrow \operatorname{Witness}_{H}(f(w, \bar{a}), \bar{a})
$$

Proof. The induction base has four cases: A logical axiom $A \Longrightarrow A$, where A is an atomic formula, is trivially witnessed, and likewise the initial sequents stemming from the BASIC axioms. A function witnessing a Σ_{0}^{b} comprehension axiom

$$
\exists y<2^{|t|} \forall i<|t|(B i t(y, i)=1 \leftrightarrow A(i))
$$

can be defined by CRN from the characteristic function of the predicate $A(i)$, which is in $T C^{0}$ since $A(i)$ is a Σ_{0}^{b}-formula.

A witness for the left hand side of a Σ_{0}^{b}-replacement axiom

$$
\begin{gathered}
\forall x \leq|s| \exists y \leq t(x) A(x, y) \Longrightarrow \exists w<\operatorname{SqBd}(2 s, t(|s|))[S e q(w) \wedge \\
\wedge \operatorname{Len}(w)=|s|+1 \wedge \forall x \leq|s| \beta(w, S x) \leq t(x) \wedge A(x, \beta(w, S x))],
\end{gathered}
$$

is a sequence of length $|s|+1$ whose i th term is a pair $\left\langle\ell_{i}, r_{i}\right\rangle$, where ℓ_{i} is a witness for $A\left(i-1, r_{i}\right)$. Similar to Lemma 3.1 we obtain the sequence $R:=\left\langle r_{i}\right\rangle_{i \leq|s|+1}$. This sequence satisfies the matrix $B(w):=[\ldots]$ of the right hand side of the replacement axiom, and since $B(w)$ is equivalent to a Σ_{0}^{b}-formula, this can be witnessed by any value. Thus $\langle 0, R\rangle$ witnesses $\exists w \leq \operatorname{SqBd}(2 s, t(|s|)) B(w)$.

In the induction step there is a case distinction corresponding to the last inference in the proof. In the cases of bounded quantifier inferences, we further have to distinguish whether the principal formula of the inference is Σ_{0}^{b} or not. Most of the cases are straightforward or easily adapted from existing witnessing proofs like the proof of the main theorem in [3].

The only more difficult cases are ($\forall \leq:$ right) where the principal formula is not Σ_{0}^{b}, and LIND. W.l.o.g. we can assume that a ($\forall \leq:$ right) inference is of the form

$$
\frac{b \leq|t|, \Gamma \Longrightarrow \Delta, A(b)}{\Gamma \Longrightarrow \Delta, \forall x \leq|t| A(x)}
$$

with Γ, Δ consisting of Σ_{1}^{b}-formulae. Then the induction hypothesis yields a function $f \in T C^{0}$ such that $f(w, b)$ witnesses $\bigvee \Delta \vee A(b)$ provided that w witnesses $b \leq|t| \wedge \wedge \Gamma$.

We need a function g such that $g(w)$ witnesses $\bigvee \Delta \vee \forall x \leq|t| A(x)$ whenever w witnesses $\wedge \Gamma$. Let now $w^{\prime}:=\left\langle 0,(w)_{1}^{(|\Gamma|)}, \ldots,(w)_{|\Gamma|}^{(|\Gamma|)}\right\rangle$ and let

$$
g(w):=\left\langle\left(f\left(w^{\prime}, 0\right)\right)_{1}^{(|\Delta|+1)}, \ldots,\left(f\left(w^{\prime}, 0\right)\right)_{|\Delta|}^{(|\Delta|+1)}, s(w, t)\right\rangle
$$

where $s(w, t)$ is a code for the sequence $\left\langle(f(w, i))_{|\Delta|+1}^{(|\Delta|+1)}\right\rangle_{i \leq|t|}$. The function s can be defined by use of CRN, and thus g is in $T C^{0}$. Now it is easily verified that g has the desired witnessing property.

Finally we consider a $L I N D$-inference of the form

$$
\frac{A(b), \Gamma \Longrightarrow \Delta, A(S b)}{A(0), \Gamma \Longrightarrow \Delta, A(|t|)}
$$

with Γ, Δ as above. Since $A(b)$ is Σ_{0}^{b}, by induction there is $f \in T C^{0}$ such that for each w, b with w witnessing $A(b) \wedge \wedge \Gamma$, either $f(w, b)$ witnesses $\bigvee \Delta$ or $A(S b)$ holds. Now define

$$
g(w):=f(w, \mu y \leq|t| \mathrm{WiTNESS} \vee \Delta(f(w, y)))
$$

then for w witnessing $A(0) \wedge \bigwedge \Gamma$, either $g(w)$ witnesses $\bigvee \Delta$ and we are done, or for every $y \leq|t| f(w, y)$ does not witness $\bigvee \Delta$. Since w also witnesses $A(y) \wedge \wedge \Gamma$, we can conclude $A(S y)$ from this for every such y, hence we can conclude $A(|t|)$ inductively from $A(0)$ then. Since $A(|t|)$ is Σ_{0}^{b}, it is then trivially witnessed.

From this witnessing theorem we obtain the converse of Thm. 3.1:
Corollary 4.1. Every function Σ_{1}^{b}-definable in \bar{R}_{2}^{0} is in $T C^{0}$.
Proof. If f is Σ_{1}^{b}-definable in \bar{R}_{2}^{0}, there is a Σ_{1}^{b}-formula $A(\bar{a}, b)$ and a term $t(\bar{a})$ such that \bar{R}_{2}^{0} proves $\exists y \leq t(\bar{a}) A(\bar{a}, y)$. Then by Thm. 4.1 there is a function $g \in T C^{0}$ such that $g(\bar{a})$ witnesses this. But then $(g(\bar{a}))_{2}$ satisfies $A\left(\bar{a},(g(\bar{a}))_{2}\right)$ for every \bar{a}, and hence $f(\bar{a})=(g(\bar{a}))_{2}$, and thus $f \in T C^{0}$.

Together with Thm. 3.1 we get the characterization of the functions in $T C^{0}$:
Theorem 4.2. The Σ_{1}^{b}-definable functions in \bar{R}_{2}^{0} are exactly those in $T C^{0}$.

5. Conclusion

We have characterized the class $T C^{0}$ as the Σ_{1}^{b}-definable functions in \bar{R}_{2}^{0}. From this characterization, we can conclude things like

$$
\text { If } \bar{R}_{2}^{0}=R_{2}^{1} \text {, then } T C^{0}=N C \text {, and } \bar{R}_{2}^{0}=S_{2}^{1} \text { implies } T C^{0}=F P .
$$

or, viewed from a different perspective:
Under the hypothesis that $T C^{0} \neq F P$ (or $T C^{0} \neq N C$), S_{2}^{1} (resp.
R_{2}^{1}) is not conservative over \bar{R}_{2}^{0} w.r.t. $\forall \Sigma_{1}^{b}$-sentences.
In [6], a theory $T T C^{0}$ is defined that also yields a characterization of $T C^{0}$. For the purpose of comparison, we recall the definition of $T T C^{0}$: The language is the same as that of \bar{R}_{2}^{0}. To state its axioms we first need a technical definition:

A formula A is called essentially sharply bounded, or esb, in a theory T, if A is in the smallest class Γ of formulae s.t.

1. every atomic formula is in Γ.
2. Γ is closed under propositional connectives and sharply bounded quantification.
3. if $A(\bar{x}, y)$ and $B(\bar{x}, y)$ are in Γ, and $\forall y, z \leq t(\bar{x}) A(\bar{x}, y) \wedge A(\bar{x}, z) \rightarrow y=z$ and $\forall \bar{x} \exists y \leq t(\bar{x}) A(\bar{x}, y)$ are provable in T, then the formulae

$$
\exists y \leq t(\bar{x}) A(\bar{x}, y) \wedge B(\bar{x}, y) \text { and } \forall y \leq t(\bar{x}) A(\bar{x}, y) \rightarrow B(\bar{x}, y)
$$

are in Γ.
Now the theory $T T C^{0}$ is given by the BASIC axioms, esb-LIND and the esb-comprehension scheme, i.e. $T T C^{0}$ is the least theory T that contains the basic axioms and has the property that whenever $A(x)$ is esb in T, then

$$
A(0) \wedge \forall x(A(x) \rightarrow A(x+1)) \rightarrow \forall x A(|x|)
$$

and

$$
\exists y<2^{|t|} \forall i<|t|(B i t(y, i)=1 \leftrightarrow A(i))
$$

are axioms of T.
The theory $T T C^{0}$ characterizes $T C^{0}$ in the following way: $T C^{0}$ coincides with the class of $e s b$-definable functions in $T T C^{0}$. Compared to this characterization, the one in the present paper is, in the author's opinion, much more natural.

First, the notion of Σ_{1}^{b}-definability is a more useful one than that of esbdefinability, since it delineates the functions in $T C^{0}$ among a probably larger class of functions (those whose graph is in $N P$ vs. those whose graph is in $T C^{0}$). This might be easily remedied since it could be the case that the Σ_{1}^{b}-definable functions of (some extension of) $T T C^{0}$ also coincide with $T C^{0}$.

But second, the theory $T T C^{0}$ itself has a quite cumbersome definition. We think that the axiomatization of a theory should be such that the set of axioms is easily decidable. This is not the case with $T T C^{0}$: It seems that for a $\forall \Sigma_{1}^{b}$-sentence, determining whether it is an axiom of $T T C^{0}$ is as difficult as deciding its provability in $T T C^{0}$.

There is of course the possibility that $T T C^{0}$ is equivalent to \bar{R}_{2}^{0}, but this seems to be unlikely, or at least difficult to prove, in view of the following fact: A crucial step in the obvious proof of equivalence would be to show that every $e s b$-formula is equivalent to a Σ_{0}^{b}-formula in $T T C^{0}$. Now the esbformulae in $T T C^{0}$ describe exactly the predicates in $T C^{0}$. But in [8] it was shown that the class of predicates definable by Σ_{0}^{b}-formulae in (a variant of) the language of R_{2}^{0} is a proper subclass of P. Hence a proof of equivalence as above would separate $T C^{0}$ from P, and thus solve a difficult open problem in Complexity Theory.

References

1. B. Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53:150, 1991.
2. D. A. M. Barrington, N. Immermann, and H. Straubing. On uniformity within NC ${ }^{1}$. Journal of Computer and System Sciences, 41:274-306, 1990.
3. S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
4. P. Clote. On polynomial size Frege proofs of certain combinatorial principles. In P. Clote and J. Krajiček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 162-184. Clarendon Press, Oxford, 1993.
5. P. Clote and G. Takeuti. Bounded arithmetic for $N C, A \log T I M E, L$ and $N L$. Annals of Pure and Applied Logic, 56:73-117, 1992.
6. P. Clote and G. Takeuti. First order bounded arithmetic and small boolean circuit complexity classes. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 154-218. Birkhäuser, Boston, 1995.
7. J. Johannsen. A note on sharply bounded arithmetic. Archive for Mathematical Logic, 33:159-165, 1994.
8. S.-G. Mantzivis. Circuits in bounded arithmetic part I. Annals of Mathematics and Artificial Intelligence, 6:127-156, 1992.
9. L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1-22, 1976.
10. G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 364-386. Clarendon Press, Oxford, 1993.

[^0]: * This paper is in its final form, and no version of it will be submitted for publication elsewhere

