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Summary. We study complexity of type reconstruction with subtypes. As proved
recently, this problem is polynomially equivalent to checking satisfiability of systems
of inequalities. Therefore we concentrate on the latter problem and show how a vari-
ant of the transitive closure logic can be used to find an interesting class of posets
for which this problem can be solved in polynomial time. Further we propose alter-
nation as a framework suitable for presenting and explaining the aforementioned
complexity for various classes of underlying subtype relation.

Introduction

Recent results of Hoang and Mitchell [3] show that the problem of Type
Reconstruction with subtyping (TRS) is polynomial-time equivalent to the
problem of Satisfiability of Subtype inequalities (SSI). So now the latter prob-
lem, as the only known algebraic equivalent of the former, gains importance
in the study of foundations of programming languages involving subtyping.

In connection with SSI problem, its special case called FLAT-SSI was
considered by many authors [10, 7, 8, 4, 2]. The latter is equivalent to the re-
tractability problem, known from the theory of partial orders [6]. The purpose
of the research was to provide some kind of 'taxonomy' amongst posets, hav-
ing in mind the complexity of satisfiability-checking. The problem of FLAT-
SSI attracted research interests mainly as an 'attack route' towards the gen-
eral SSI problem, and thus towards the problem of type reconstruction with
subtyping. The aim of this paper is to establish further links between SSI and
FLAT-SSI. Sections 2. through 4. show that for posets for which feasibility of
FLAT-SSI is witnessed by formulae of transitive closure logic, SSI is feasible
too. Section 5. shows that for posets for which FLAT-SSI is NP-complete
(wrt some class of reductions), SSI is PSPACE complete. It also proposes
alternation as the framework within which relations between complexity of
FLAT-SSI and SSI can be explained.

* This work has been partially supported by Polish KBN grant 2 P301 031 06
and ESPRIT BRA "Gentzen".
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1. Preliminaries

1.1 Subtype inequalities

Let Q be a finite poset. The elements of Q are constant symbols of the
signature which in addition contains a binary operation symbol ->. Let TQ
be the term algebra over this signature. The carrier of TQ is partially ordered
by extending the order from Q to all terms by the rule

n. < tι t2< r2

(tι -> *2) < (n -> r2)

A system Σ of inequalities is a finite set of formulas of the form

Σ = {Tι < p i , . . . , T n <pn},

where r's and p's are terms over the above signature with variables from set
V. Σ is said to be flat if every term in Σ is of size 1, i.e. it is either a constant
symbol or a variable. Σ is said to be satisfiable in Tc if there is a valuation
v : V ->• Tc such that Ti[υ] < pi[υ] holds in Tc for all i.

1.2 Shapes and weak satisfiability

The set Ti of shapes is the set of terms without variables over the signature

r = <o,-o.
The shape of a term t € TQ (without variables) is defined as follows:

(c)* = 0 for c G Q, (* -> ti)* = (i)* -> (u)*

Note that the subtype order on TQ is stratified, i.e. only terms of the
same shape are comparable. In the sequel we shall operate on strata of this
ordering, defined as follows:

Qo = Q
Qσ->r = {t->u:teQσ,ueQτ}

A system of inequalities Σ = {TI < pi, . . . , rn < ρn} is said to be weakly
satisfiable if Σ* = {(TI)* = (PI)*,..., (τn)* = (pn)*} is satisfiable in T^. The
most general unifier of Σ* will be denoted by mgu(Σ+)

Weak satisfiability is clearly a necessary condition for satisfiability. It is
decidable in (and in fact complete for) polynomial time since it is an instance
of the unification problem.

In the sequel, we shall deal only with weakly satisfiable sytems. In some
places we shall assume (for the sake of proofs, not algorithms) that all in-
equalities of the system are annotated with proper shape and use the notation

t<σ u

for an inequality in shape σ.
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1.3 Retractions and obstacles

We say that RDQ retracts to Q (R > Q) if there exists an order preserving
and idempotent (i.e such that / o / = /) map / : R ->• Q.

The problem of Q-retractability is defined as follows: given R D Q,
does R retract to Q. For every Q, Q-FLAT-SSI is logspace-equivalent to
Q-retractability. Henceforth we shall identify flat systems of inequalities over
Q with corresponding extensions of Q.

V. Pratt and J. Tiuryn [7] introduce the notion of an obstacle to re-
tractability — a property of a larger poset which prevents it from retracting
onto another one. An obstacle is called complete for Q if R retracts to Q
whenever R does not satisfy it. The reader is referred to this paper for an
in-depth explanation of this concept.

1.4 Intractable posets

An n-crown is a poset with 2n elements 0,1,..., 2n — 1 ordered in such a way
that 2i < (2i ± 1) mod 2n.

V. Pratt and J. Tiuryn [7] show that for n-crowns (n > 2), FLAT-SSI is
NP-complete. Moreover, in [Tiu92] it is shown that for these posets SSI is
PSPACE-complete. In section 5. we show how this result can be generalized.

Fig. 1.1. (a) 2-crown (b) 3-crown

2. Transitive closure logic for subtype inequalities

2.1 Syntax

Let σ, <TI , σ2 ... be shapes. The set of annotated TC-formulas over Q is the
least set ATCq such that

- Every atomic formula tι <σ £2, where tι,t2 are terms from Tq(X) is in
ATCQ.
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- If ψ and ψ are in TCg, and every variable x free in φ and ψ has identical
annotations in both formulae, then

(φVψ), (φ/\<φ]

- If ψ is in TCg, and every free occurrence of x is annotated by σ then

is in ATCQ.
- if ψ is in ΛTCg, σ = σi , . . . , σn, then

is in ATCq, where x,y are n- vectors of individual variables, tι,ta are
n- vectors of Q-terms, and t denotes the vector t\, . . . , tn

We shall say that a formula is flat if it contains no occurrences of an arrow
and all its variables are annotated with 0. In such a case the annotations are
of no consequence and we can safely omit them.

2.2 Projections

First we define projections on shapes:

0 4 i = 0, i = 1, 2 (σi ->• σa) 4 < = σ;

Next we define projections on terms:

c^i = c xσ i i = xσ^, i = 1, 2

Now we define projections of ATC-formulae: ( )|1,( )42 : ATCg

(t <o w) 4 i = * <o tz

(* <σ!-*σa w) i - (u;i)< σ ι (ui)
(t<σι^σ2u)±2 = (U2)< σ a(U2)

(3xσ.ψ) 4 i = 3xσ^.φ[xσ^/xσ], i = l,2
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3. The proof system

3.1 Lonely Variables

Given an ATC-formula φ (or a term £), we define the set of its lonely variables,
LV(φ) as follows:

LV(x)

LV(t -> u)

LV(t < u)

LV(φ Λ ψ)

LV(φ V ψ)

LV(3x.φ)

LV(TC(\xσ,yσ.φ)(t,u)

{x}

0

LV(t) U LV(u)

LV(φ) U LV(φ)

LV(φ) U LV(φ)
LV(φ)\{x}

(LV(φ)\{x,y})(JLV(t)ULV(u)

3.2 Closures

Let t ^ u denote the formula TC(\xσ,yσ.x < y)(t,u), The closure of a
formula φ (denoted φ) is defined as follows:

t < u = t

φ /\ψ — φ /\ψ

φ V ψ = φ V0

3xσ.φ = 3xσ.φ

3.3 Inference rules

Let Σ be weakly satisfiable and all its variables be annotated according to
mgu(Σ*). Consider the inference system depicted in Fig. 3.1

3.4 Normal derivations

We shall say that a derivation is in normal form if all the applications of the
rule (J,) are made as early as possible. Now it is easy to observe, that

In the normal derivation of

ψl Λ</?2

ψl Vψ2

ΓC(λχ-,yσ.<Λ)(t,u)

the last rule is

(Λ)

(v)
ΓCo or TCS

Proposition 3.1. Any derivation from a flat system Σ is normal, and the
last rule is always an introduction of the main connective.
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LV(φ)=<t

φ

^ '

Σ\- φι V φ2 ^ '

=τ

( '
Σ h 3xτ.φ

* '" (TC0

Σ\-'

Fig. 3.1. An inference sytem for ATC-formulae

Proposition 3.2. Any normal derivation of ΓC(λxσ,y<τ.(^)(t,u) always
ends either with single use of ΓCΌ or like

Σ h γ>[t/x, n/y] Σ h ^[rk/x, u/y]

Σ h

Proposition 3.3. For ^xed y?, one can check in time polynomial in \Σ\,
whether Σ h φ.

4. Results

Lemma 4.1. Let φ be the complete obstacle for Q. For every flat system of
inequalities Σ, Σ is satisfiable iff

Q(JΣ\/φVNGC(Q)

Theorem 4.1. Let φ be the complete obstacle for Q. For every system of
inequalities Σ, Σ is satisfiable iff it is weakly satisfiable and

Q\jΣ\/φVNGC(Q)
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Proof. The (=>) implication is obvious. The opposite implication is proved
by induction on the number of equivalence classes of ~ defined on υar(Σ) as
follows

x ~y iff Σ*\=x = y

where the induction basis follows from the lemma 4.1.

Corollary 4.1. For any TC-feasible Q and Σ — a system of inequalities
over Q one can check in time polynomial in \Σ\, whether Σ is satisfiable.

5. Sub typing and Alternation

The aim of this chapter is to establish further links between SSI and FLAT-
SSI, claiming the following:

Conjecture 5.1. Given a poset Q such that Q-FLAT-SSI is complete for
NTM(s,t), Q-SSl is complete for ATM(s,t).

In our opinion, the 'nondeterminism vs alternation' concept constitutes
a framework within which various complexity phenomena bound with sub-
typing can be explained. Sure enough, there is still a lot of open questions
and gaps to be filled, but we present it with hope that it will encourage fur-
ther research in this area. One example would be the apparent 'gap' in the
poset hierarchy. So far we know no posets for which SSI is NP-complete or
FLAT-SSI — P-complete. Within our framework, the explanation for this
gap is provided by the fact that (unless P=NP or NP=PSPACE) NP is not
an alternating complexity class and (unless P=NLOGSPACE or P=NP), P
is not a nondeterministic complexity class.

5.1 Motivating examples

First let us look at several examples known so far that supporting the the-
sis that arrows in the systems of inequalities correspond on the complexity
level exactly to the transition from nondeterministic classes to corresponding
alternating classes. This is at the same time a resume of current knowledge
about the complexity of SSI:

1. If P is discrete, then
- P-FLAT-SSI is in NLOGSPACE1;
- P-SSI is equivalent to the unification, and hence ALOGSPACE-com-

plete.
2. If P is a disjoint union of lattices (but not discrete), then

- P-FLAT-SSI is NLOGSPACE-complete [2];

1 the problem whether it is NLOGSPACE-hard is equivalent to a known open
problem in complexity, whether SYMLOGSPACE=NLOGSPACE
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- P-SSI is ALOGSPACE-complete [8].
3. If P is a non-discrete Helly poset, then

- P-FLAT-SSI is NLOGSPACE-complete [2];
- P-SSI is ALOGSPACE-complete [1].

4. If P is a non-discrete TC-feasible poset, then
- P-FLAT-SSI is NLOGSPACE-complete [7];
- P-SSI is ALOGSPACE-complete (Corollary 4.1).

5. If P is an n-crown (n > 1), then
- P-FLAT-SSI is NP-complete [7];
- P-SSI is AP-hard [8].

5.2 Encoding alternation

In this section we show that the result of Tiuryn can be generalized stating
that for all posets for which FLAT-SSI is NP-hard, SSI is AP-hard. To this
end, we construct an encoding for QBF as an SSI, given encoding of SAT as
FLAT-SSI.

First let us make some assumptions about encodings of instances of SAT
as systems of inequalities. Later we show how these assumptions can be either
removed or replaced. Intuitively, these assumptions express the requirement
that whenever there exists a simulation of NTM, there exists one which is
"regular" enough to be transformed to a simulation of an ATM. This intuition
is formalized in the following

Definition 5.1. Let φ = φ(x) be a 3-CNF propositional formula with vari-
ables x = xι,... xn (and no other)

We say that Σφ, a flat system of inequalities encodes φ if there exist
variables z\,..., zn and constants such that for every pi,. . . ,pn € {0,1}

^= <p[p/x] <£=> Σ^c/z] is satisfiable

We say the encoding is symmetric, if there exists an antimonotonic bi-
jection f : P —ϊ P that extends to an antimonotonic bijection of (the poset
corresponding to) Σφ onto itself and such that c\ = f(c®) for i = 1,..., n.

Theorem S.I. Let P be a poset such that P-FLAT-SSI is complete for NP
under symmetric reductions. Then P-SSI is hard for AP.

Proof. Let
Vzι3t/ι...Vzp(n)3yp(n)</?

be an instance of QBF, φ contains no quantifiers
Let Σφ be a symmetric encoding of φ. We show how to construct a system

of inequalities Σk such that

ψk holds <Φ=> Σk is satisfiable

where
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ψk = 3zn3y n . . .3χk+ι3yk+ιVχk3yk-. .Vxi^yi φ
The construction of Σk is by induction on fc, the number of quantifier

alternations in ψk
Let q be the smallest positive integer such that fq = id (such q must exist

since Σ is finite, moreover it can't be greater than |ΣΊ).
In what follows we use α with sub- or super-scripts. These are new vari-

ables. We will also use new variables [u]1^, where 0 < fc < n, i, j G P and u

is a propositional variable of φ. The variable [u]1^ is a version of [u]*»J', lifted
to level k. The variable αj., which we use below, represents constant i lifted
to level k.

Let us first define sets Δk, for 0 < k < n.

A) = K',o = 4 I < > 3 € P} U {αj = i I i G P}

For fc < n, ZU+i is ̂  plus the equations (5.1-5.4), with i, j ranging over
P.

For k + 1 < p < n and zp G {xp, yp},

Γ(zp,k+ι) = Γ+l(zp,k) -» /'(***) for « = 0,.. .ςr - 1 (5.2)

For 1 < p < fc,

αί)j - αj (5 4Ϊuk+l,k+l — "fc+1 Vυ ^/

For every k > 0, let Σk be the system of inequalities obtained from Σ by
replacing every variable [t/]*)J of Σ by [u]J.'J, and replacing the constant i G P

by a (new) variable a{. Hence, there are no constants in Σk-

Finally we set Σk+i = Δk+i U Σk+ι plus the equation (5.5) with i, j
ranging over P and 1 <p<k + l.

The thesis follows from the following lemmas:

Lemma 5.1. Let Vk = {xk+ι,Uk+ι, ,xn,yn} For all k > 0, and for every
cί(υ)

function ξ : Vk ->• {0, 1}, Σk+i U{zk=ak

k \ v € V^+i } is satisfiable iff for
c

ί(υ)

every i G {0, 1}, Σk U { zfc = ak

k \ v G Vk } U {zfc+ι,fc = 0% } is satisfiable.

For 0 < k < n let

ψk =

Hence, free variables of ψk are among Vk = {xk+i , 2/fc+ι , , Xn, 2/n} The
following result shows correctness of the choice of Σk

Lemma 5.2. For every 0 < k < n and for every valuation ξ : Vk ->• {0, 1},
c« j >

ξ satisfies φk iff Σk U {zj = ak

3 \ Zj eVk} is satisfiable.
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