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Summary. In this paper, we propose a uniform theorem proving tableau method
for a wide class of systems in propositional modal logic. The class is wide enough
to include most well-known systems. In this method, for a given natural number μ,
a modal formula θ is effectively transformed to a first-order formula Δ(θ)μ without
depending on the system addressed. The transformation is based on the idea of
tableau methods. Now, if S is a system that is complete for a class of Kripke frames
characterized by a first-order formula 17, then 5 h θ iff ΣDΔ(θ)μ is provable in first-
order logic for some μ. This method also raises questions that are interesting from
a theoretical viewpoint.

1. Introduction

In this paper, we propose a uniform tableau method for a wide class of sys-
tems in propositional modal logic. Tableau methods are efficient ways of
theorem proving, based on the idea of model elimination [4], [6]. These meth-
ods are known to be especially useful for modal logic. Tableau methods have
been proposed for a number of well-known systems: K, D, T, B, S4, and S5.
However, there are many systems to which tableau methods have not been
proposed yet. For example, S4.1 and S4.2 are not covered. Moreover, each
of the proposed methods requires a system dependent individual device to
achieve a complete theorem proving procedure. At present, there is no general
strategy for obtaining tableau methods for all systems.

The aim of this paper is to propose a uniform tableau method applicable
to a wide class of systems. The class consists of complete normal systems
which are complete for a class of Kripke frames characterized by a first-order
formula. The class is natural and wide enough to include most well-known
systems. In our method, a given modal formula θ is effectively transformed
to a first-order formula Δ(θ)μ for a given natural number μ. This transfor-
mation is independent of the system being addressed: We have the following
correctness theorem.

If 5 is a system, complete for a class of Kripke frames characterized by a
first-order formula 17, then 5 h θ iff ΣDΔ(θ)μ is provable in first-order logic
for some μ.

* This paper is in its final form and no similar paper has been or is being submitted
elsewhere.
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Our method is an extension of prefixed tableau methods [4], [5], [11].
Tableau methods are based on the idea of model elimination. In these meth-
ods, we assume an input formula θ is false in some world of a Kripke structure
of a system and, according to the definition of Kripke structures, we create
worlds, decide the truth of subformulas in those worlds and derive a contra-
diction: some formula is both true and false at the same time in some world.
Hence, we conclude that θ is valid in all the Kripke structures; that is, θ is
a theorem of the system. In a prefixed tableau method, in contrast, we do
not create an actual world, but attribute world indexes to each formula gen-
erated during the proving procedure. Then, we select each pair of prefixed
formulas whose formula parts are the same, but whose truths are different,
and check if the indexes can be the same under special unifications derived
from the accessibility relation of Kripke frames for the system. In [11], the
unifications are given for systems K, D, T, K4, D4, S4, and S5. The unifi-
cation method for these systems is efficient, but is restricted to only a few
number of systems and requires a special device depending on systems. In our
method, on the other hand, we introduce a more general notion for indexes
by using Skolem functions and transform the condition of the contradictions
to a first-order formula. As a result, we obtain a system independent theorem
proving method for a wide class of systems in modal logic.

2. Preliminaries for Modal Logic

2.1 Syntax of modal logic

Definition 2.1. The alphabet used in this paper for a language C of modal
logic is as follows.
logical connectives: Λ, V, -», D, L
countably many propositional variables: p, g, r, . . .

Definition 2.2. Well-formed formulas (wffs) of the language C are defined
recursively in the following.
1) Propositional variables are wffs.
2) If φ and ψ are wffs, then <^>Λ^, φVψ and φDψ are all wffs.
3) If φ is a wff, then -ιφ and Lφ are wffs.

As usual, we use brackets ( and ) for convenience.

2.2 Semantics of modal logic

Definition 2.3. Let W be a non-empty set and R be a binary relation on
W (RCW x W). We call a pair (W,R) a frame. W and R are called a
set of worlds and an accessibility relation on worlds, respectively. Let V be a
binary relation on W and the set of all propositional variables of C (denoted



A Uniform Theorem Proving Tableau Method for Modal Logic 175

by PV). That is VcW x PV. We call a triple (W,R,V) a Kripke structure
of £ and V a valuation. We define models by using the Kripke structure be-
low. In the following, we define the relation M,w ^ 0, where M is a Kripke
structure (W, Λ, F), w £ W and </> is a wff.
1) If p is a prepositional variable , M,w (= p iff (w,p)£ΐΛ
2) M,w |= 0VV> iff M,w |= 0 or M,iϋ |= φ.
3) M,w [= </>Λt/> iff M,w \= φ and M,w \= ψ.
4) M,w \= -ι0 iff not M,w |= 0 (We denote this by M,w \f=φ).
5) M,w (= 0Dι/> iff M,w |£0 or M,w \= ψ.
6) M,w \= Lφ iff for all v such that (w,ι;)E-R, M,v \= φ.

When M,w \= φ for all w€W, we write M \= φ and call the Kripke
structure M a (Kripke) model of 0.

For convenience, we may write M,w \= Tφ and M,w \= Fφ for M,w
[= 0 and M,ιt; ^=0, respectively. Here, T and F denote "true" and "false",
respectively.

A system 5 is called a complete normal system if there is a class of Kripke
frames C such that the set of all the theorems of 5 coincides with the set {φ
I for all (W,R)eC and for all V, (W,R,V) \= φ}. Most well-known systems
are complete normal.

2.3 First-order definable systems

We will define a class of systems to which our proving procedure is uniformly
applicable.

Definition 2.4. Let Σ be a closed wff of FOL whose predicate symbols are
among R and =. The class of frames C(Σ) is defined to be {frame (W, R)
I (VK, R)\=Σ}. A system is called a complete normal system defined by Σ
(we will call it Σ -system for short), if the set of all theorems of the system
coincides with {φ \ for any (W,R)eC(Σ) and any valuation V, (W,R,V) (=
φ}. A system is called first- order definable if it is a complete normal system
defined by Σ for some Σ.

Examples:
If Σ is a tautology, then Σ"-system is the system K.
If Σ is VxR(x,x), then Σ'-system is the system T.
If Σ is VxR(x,x) Λ VxVyVz(R(x,y) ΛR(y,z) D R(x,z)), then Σ'-system is
the system S4.
If Σ is VxR(x,x) Λ Vz Vy Vz(R(x,y) Λ R(y,z)D R(x,z)) Λ Vx Vy Vz(R(x,y)
Λ R(x,z) D 3wR(y,w) Λ R(z,w)), then Σ'-system is the system S4.2.
If Σ is Vχβ(x, x) Λ Vx Vy Vz(Λ(x, y) Λ Λ(y, z) D Λ(x, z)) Λ Vx Vy Vz(Λ(x, y)

-
, , , ,

Λ Λ(x,z) D R(y,z) VΛ(z,y)), then Σ-system is the system S4.3
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3. A Uniform Theorem Proving Method

A prefix is a list of terms constructed from variables and functional symbols.
A signature is a symbol of either T or F. A prefixed formula is a sequence
of three elements in the following order: a prefix, a signature and a wff. For
example, [ f , x , y , g ( x , y ) , z ] F p V L ( p / \ q ) is a prefixed formula.

[Procedure] A wff θ and a natural number μ are given and perform the
following operations in the given order.

step 1. First, associate a new Skolem function symbol with each subformula
of θ that has form Lφ and occurs positively in 0; in other words, nega-
tively in Fθ. We say that the Skolem function symbol corresponds to the
subformula Lφ. This notion is used in the π-rule below.
Next, let μ = 1 and E be the prefixed formula [0]FΘ. Here, 0 is a Skolem
function with 0-ary.

step 2. Apply the following rules to the subformulas of E repeatedly until
no rule is applicable to them. Then, let E1 be the resulting expression.

(α- rule) (β- rule)
sTφΛψ —> sTφ x sTψ sTφVψ —> (sTφ + sTψ)
sFφVψ —> sFφ x sFψ sFφ^ —>(sFφ + sFψ]
sFφDψ —>• sTφ x sFψ sTφDψ —>(sFφ + sTψ)
sT-^φ —> sFφ
sF-iφ—> sTφ (Here, 5 denotes a prefix.)

(i/- rule)
sTLφ —+ s*[xι]Tφx...xs*[xμ]Tφ
Here, #ι, ..,#μ are μ pieces of new variables and * denotes a concatenation
of lists.

(π- rule)
sFLφ —> s*(f(t)]Fφ
Here, / is the Skolem function symbol corresponding to subformula Lφ
and t is the last element of list s.

step 3. Apply the following rules to the subexpressions of E' repeatedly un-
til no rule is applicable to them.
Sx(P + Q)-^SxP + SxQ
(P + Q)xS -^ PxS + QxS

Then, we get the resulting expression 5ι,ι x... x Si,^ +...+5n,ι x... x Sn,kn

Here, 5, P, ζ), and 5;j denote prefixed formulas.

[Notations] We call each Sj,ιX...xS^jy above a branch of θ and denote
the set of all branches of θ by tab(θ)μ. A pair of prefixed formulas whose
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formulas are the same, but whose signatures are different, is called a
connection. For a branch frr, co(br) denotes the set of all connections oc-
curring in br. For a connection co of form ([0ι, ..,ρm]Γp ,[ftι, ..,/ιn]Fp),
rel(co) is defined to be the first-order formula R(gι, ^)A... Λ R(gm-ι, #m)
ΛΛ(Λι,Λ 2 ) Λ...ΛΛ(/ιn_ι,/ιn)Λ(#m = /ιn), where Λ is a binary predicate
symbol.

step 4. Let ι/(0)μ be Λ6retα6(β)Vcoeco(6r) rei(co).

Let π - se*(0)μ be {-R(0ι,s2)Λ... ^R(9P-2,9P-ι)^R(9P-ι^9p) \ prefix
[#ι > ••» #P> '->9t\ appears in some prefixed formula of some branch in tab(θ)
and gp is a function term}.
Let 7r(0)μ be the conjunction of all elements of π — set(θ)μ.
Lastly, let Δ(θ)μ be3xι.3xp[π(θ)μ D ι>(0)μ]. Here, ZI,..,ZP are all the
variables in π(0)Dι/(0).

step 5. If ΣDΔ(θ)μ is a theorem of first-order logic, then output the sen-
tence "0 is a theorem of Σ'-system" and halt.
Otherwise, let μ = μ+l and go to step 2.

step 2 and step 3 are based on the usual transformations of prefixed
tableau methods. rel(co) expresses that the formulas in the connection co are
in the same world with opposite signatures. z/(0) expresses that every branch
has some connection whose formulas belong to the same world. π(0) expresses,
by using function symbols, some information included in the given wff that is
concerned with the existence of worlds, μ plays the same role as in [11]. That
is, in the interpretation of the formula Lφ, we consider only μ worlds, instead
of all worlds. Δ(θ)μ can be written as Vxι..Vxpπ(0)μ D 3x\.3xpv(θ)μ. We
may abbreviate it as Vxπ(0)μ for Vxι..Vxpπ(θ)μ.

We have the following correctness theorem.

Theorem 3.1 ((Correctness Theorem)). 0 is a theorem of the Σ-system
i f f Σ D Δ(θ)μ is a theorem of first-order logic for some μ.

4. Examples

By using examples, we will show how our procedure transforms any given wff
0 of modal logic to the wff Δ(θ)μ of first-order logic.

Example 1.
Input formula: 0 = L(Lp D q) V L(Lq D p)
μ = l

The process of transformation is as follows.
[ϋ\FL(Lp Dq)V L(Lq D p)
[0]FL(Lp Dq)x [Q]FL(Lq D p)
[0, l]FL(Lp Dq)x [0]FL(Lq D p)
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[0, l]TLp x [0, l]Fq x [0, 2}F(Lq D p)
[0, l]TLp x [0, 1]F« x [0, 2]TLq x [0, 2]Fp
[0, 1, wl]Tp x [0, l]Fq x [0, 2]TLςr x [0, 2]Fp
[0, 1, wlJΓp x [0, l]Fg x [0, 2, w2]Γg x [0, 2]Fp

τr(0)ι = Λ(0,1)ΛΛ(0,2)
ι/(0)ι = [fl(0,l) Λ Λ(l,u;l) Λ fl(0,2) Λ (wl = 2)]V[fl(0,2) Λ R(2,w2) Λ

fl(0, 1) Λ (w2 = 1)]

The underlined atoms are redundant because they appear in π(θ)ι as a con-
sequence.
ΣD[R(0, 1)Λ/Z(0, 2)DΛ(1, 2)VΛ(2, 1)]
is the resulting transformed formula.

θ is an axiom of the system S4.3 and S4.3 is the complete normal system
defined by Vx Vy Vz(R(x,y) Λ R(x,z) D R(y,z) V R(z,y}}/\ reflexiveness Λ
transitivity.

Example 2.
Input formula: θ — L(p V ~^L-*q) D (Lp V -*L-^q)
μ=l

The process of transformation is as follows.
Lp[ϋ\FL(p V -Ί/->^) D (Lp V -«L-ιςr)
[0]TL(p V -.L- ςf) x [0]F(Lp V -iL- g)
[0,tϋl]T(pV- L-ιg) x [0]F(Lp V - L- ςf)
[0,tϋl]T(p V -iL-ifl) x [OJFLp x [0]F- L-ιg
([0,wl]Tp+ [0,ιι;l]T-.L-.g) x [0]FLp x
([0,tι;l]Γp+ [0,tι;l]FL-.ς[) x [0]FLp
([0,tι;l]Tp+ [0,n;l]FL-.g) x [OJFLp x [OTL- ςf
([0,tι;l]Γp f [0,ti;l,/(ti;l)]F-ig) x [0]FLp x [0]TL-.ςf
([0,tι;l]Γp+ [0,w;l,/(tι;l)]F-ιί) x [0,l]Fp x [0]TL-.g
([0,tι;l]Γp+[0,ιι;l,/(u;l)]F-ιςf) x [0, l]Fp x [0, w2]T-^q
([0, wl]Tp + [0, ti l, /(tι;l)]Γg) x [0, l]Fp x [0, w2]T->q
([0, ̂ l]Tp 4- [0, ti l, f(wl)]Tq) x [0, l]Fp x [0, w;2]Fg
[0, n ljTp x [0, l]Fp x [0, w2]Fq + [0, ti l, f(wl)]Tq x [0, l]Fp x [0, w2]Fq

π(0)ι = Λ(0,l)Λ(Λ(0,tι;l)DΛ(tι;l,/(ti;l)))

v(θ)ι = R(Q,wl) Λ fl(0,l) Λ(wl=l) Λ Λ(0, wl) Λ fi(wl,/(iί;l)) Λ Λ(0, w2) Λ
(/(wl) = tι;2)

The underlined atoms are redundant.
Σ D 3tι;[(Λ(0,l) Λ(Λ(0,u;) D R(wJ(w)))) D
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is the resulting transformed formula.

It is known that θ is not a theorem of the system T, but of S4. Actu-
ally, for Σ=VxR(x,x), ΣD^[(R(Q,l)Λ(R(0,w)DR(wJ(w)))) DΛ(0,/(1))]
is not proved, but for Σ that includes transitivity, it is proved. Of course, the
former does not mean that θ is not a theorem of T.

Example 3.
Input formula: θ = L(p Λ q) D Lp Λ Lq

The process of transformation is as follows.
[ϋ\FL(p/\q) D LpMq
[0]TL(p Λ q) x [0]F(Lp Λ Lq)
[0,u;l]T(pΛς[) x [0,w2]T(pΛ q) x [ϋ\F(Lp/\Lq)

[Q,wϊ\Tp x [Q,wϊ\Tq x [0,iί;2]Tp x [Q,

π(0)2 = Λ(0,l)ΛΛ(0,2)
ι/(0)2 = (CR(0,ιι;l)Λfl(0,l)Λ(u;l = 1)) V (fl(Q,w2)Λfl(0, l)Λ(w2 = I)))

Λ ((jR(0,wl)Λfl(0,2)Λ(wl = 2)) V (fl(0,w2)Λfl(0,2)Λ(w2 = 2)))
The underlined atoms are redundant.
ΓD3wl3w2 (Λ(0,1)ΛΛ(0,2)D ((R(Q,wl)Λ(wl = I)) V (Λ(0,w2)Λ(w2 =

1)))
Λ ((Λ(0,u;l)Λ(fi;l = 2)) V (Λ(0,u;2)Λ(tι;2 = 2))))

is the resulting transformed formula.

θ is a theorem of any normal system. In fact, Δ(θ)z is proved, while Δ(θ)ι
is not a theorem.

Remark. We can simplify the proving procedure in some cases. First, we
can prove that if some branch does not include any connection for some in-
put μ, then, for any μ' larger than μ, there is always a branch not including
any connection. Therefore, if we find a branch not including a connection,
we can stop the calculation and conclude that θ is not a theorem. Secondly,
as seen in example 1 above, by the completeness of paramodulation [3], if Σ
does not include the predicate = positively, we can remove each predicate of
the form tι = h in the formula i/ by applying mgu(ti>t%) to z/, when they
are unifiable and their variables appear only in the conjunct. If t\ and £2 are
not unifiable, then we can remove the conjunct that includes the predicate
tι = t% from i/.
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5. Soundness and Completeness of the Procedure

The formal proof of soundness and completeness of the procedure is long. We
give only the outline of the proof.

As for the soundness, we must show that if Σ D Δ(θ)μ is a theorem of
first-order logic for some μ, then θ is a theorem of Σ"-system. This is achieved
by purely using the definition of models of modal logic and first-order logic.

As for the completeness, we must show the reverse. We will show the
contraposition of it. That is, if Σ D Δ(θ)μ is not a theorem for any μ, then θ
is not a theorem of Σ'-system. Hence, all we have to do is construct a Kripke
structure M of the system and locate a world w such that M,w |= Fθ from
the precondition.

First, we prove that Δ(θ)μ D Δ(θ)μ+ι is valid. Then, by the compactness
theorem, the precondition means that the set of formulas {Σ",-»4(0)ι,-1^(0)2,
->Δ(Θ)3,...} has a model. Moreover, by Lowenheim Skolem theorem, we can
assume that the model is countable. Let the model be (W,/), where W is the
underlying set and / is the interpretation of the predicate symbol R and the
Skolem functions appearing in {Δ(θ)μ}ι<μ. Then, we can employ (W, R1) as
the Kripke frame of the model we are seeking, where R1 is the interpretation
of R by /. We index the worlds with natural numbers.

In the next step, we give a valuation to the frame. We construct partial
valuations, step by step, depending on μ. First, we place the signed formula
Fθ at the world O7. We consider that partial valuations make θ false at O7.
Next, we decompose the formula Fθ just as done in step 2 of the proving
procedure. For example, if the formula has the form FφVψ, then we place the
two formulas Fφ and F'φ at the world. If the formula has the form Fφ Λ τ/>,
then we split the partial valuation and place Fφ at the world for one of the
partial valuations and Fψ for the other. If a placed formula has the form
TLψ, we place T'φ to the first μ pieces of the accessible worlds according
to their indexes. If a placed formula has the form FLφ, we place F'φ at the
accessible world determined by the interpretation of Skolem functions. We
then iterate this procedure.

As a result, we obtain maps (partial valuations) Vμ from W to the power

set of the set of signed subformulas of θ (1 < i < nμ), where Vμ(w) is the
set of all signed formulas placed at the world w in the branch corresponding
to V*. Here, we can prove that for any μ there is a partial valuation V*

without contradiction: for any world w and any formula 0, Fφ £ V* and Tφ

6 Vμ cannot be simultaneously valid. This is due to the fact that (WJ) is a
model of {Σ,-*Δ(θ)ι,-iΔ(θ)2, -ι2\(0)3v..}. The proof is straightforward from
the construction of the partial valuations, but long and tedious. We define
the extension relation Vμl < Vμ2 (μl < μ2) as Vμl(w)cVμ2(w) for any world

w. Note that if Vμl < Vμ2 and Vμ2 has no contradiction, then Vμl also has
none. Therefore, by this relation, the partial valuations without contradiction
form an infinite tree with a finite number of branches at each node. Then, by
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Konig's lemma, we can find an infinite chain of partial valuations VΊ <V2<... ,
such that each Vμ has no contradiction. Let V^ be the inductive limit of this
sequence. In other words, SψeV^w) iff Sψ€Vμ(w) for some μ, where 5 is
either T or F. We define the valuation V as (W, R!,V),w\=p if Ύp G V^w)
for any propositional variable p. Then we can prove that if Sφ € VOQ(W) then
(W, R^V)^w \= Sφ for any formula 0, where 5 is as above. This is shown
by formula induction. The key point is that Tφ is now placed at every world
accessible from one where TLφ is placed, by taking the limit of the chain.
Therefore, in particular, (W^R^V)fl1 |= F0, and we have thus obtained a
desired model.

6. Termination of the Procedure

The proving method for modal logic proposed here transforms the statement
"a given wff of modal logic is a theorem of a certain system" to the state-
ment "one of some countably many wffs of first-order logic is a theorem".
Therefore, this procedure is semi-decidable, but not decidable in general.
This corresponds to the fact that there is a first-order definable system that
is not decidable [7]. On the other hand, many well-known first-order definable
systems are known to be decidable. It is desirable that our proving method
guarantees termination for those systems. A simple way to realize this is to
find two computable functions ω and d from the set of all wffs to the set of
natural numbers, which have the following properties.

(1) For a given 0, Σ D Δ(θ)μ is a theorem for some μ iff Σ D Δ(φ)μ is a
theorem for some μ less then ω(θ).

(2) The proof search of Σ D Δ(θ)μ (μ<ω(θ)) can be restricted to the
bounded Herbrand space, the depth of whose terms are less then d(θ).

These functions have been obtained for K, D, T, S4, and S5, by analyzing their
tableaux. The basic idea is to find the effectively calculated finite part of their
tableaux such that if all branches have connections, we can find a connection
in the finite part for all branches. To find the finite part, we capture the
periodicity of their tableaux. The method depends on each system and we
have not yet found a general framework for it.

7. Discussion

There is another approach to a uniform proving method called the translation
method [8], which is applicable to the same class of systems. In this method,
a modal formula is directly translated to a first-order formula by introducing
predicate symbols with 1-ary for each propositional variable and an accessibil-
ity relation symbol. Our method, in contrast, uses only two predicate symbols:
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an accessibility relation symbol and =. It is also known that in the transla-
tion method, a transformed formula grows exponentially. Recently, in [9] and
[10], this method was improved by introducing special Skolem functions and
axioms on them. Nonetheless, the method requires a special modification for
systems not containing D and then loses efficiency and generality.

Example 1 in section 4 shows that the procedure has some relationship
with Correspondence Theory [2]. For Sahlqvist's formulas, the procedure
seems to give the condition on accessibility relations corresponding to an
input formula. But, at present, we have no idea about for what class of sys-
tems this method gives the corresponding conditions mechanically.
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