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Summary. In this paper we give perspicuous proofs of Uniform Interpolation for
the theories IPC, K, GL and S4Grz, using bounded bisimulations. We show that
the uniform interpolants can be interpreted as propositionally quantified formulas,
where the propositional quantifiers get a semantics with bisimulation extension
or bisimulation reset as the appropriate accessibility relation. Thus, reversing the
conceptual order, the uniform interpolation results can be viewed as quantifier
elimination for bisimulation extension quantifiers.

1. Introduction

Bisimulation and bounded bisimulation can be used to 'visualize' proofs.
The aim of this paper is to present proofs for uniform interpolation results as
clearly and perspicuously as possible using bounded bisimulation. Ordinary
interpolation for a given theory T says that if T h A —> B, then there is
a formula /(A, B) in the language containing only the shared propositional
variables, say q, such that T h A -> / and T h / -)> B. Uniform interpolation
is a strengthening of ordinary interpolation in which the data in terms of
which the interpolant is to be specified are weaker: the interpolant can be
found from either A and q or from q and B. Thus, if uniform interpolation
holds, there is, for every A and q, a 'post-interpolant' /(A,q) such that
T h A ->> /(A, q) and, for all B such that T h A -> B and such that the shared
propositional variables of A and B are among q, we have T h I (A, q) ->• B.
Similarly for the 4pre-interpolant'. As we will see, uniform interpolation can
be viewed as quantifier elimination for certain propositional quantifiers in
T: the quantifiers that correspond to the trans-model accessibility relation
bisimulation extension (or: bisimulation reset).

In this paper we prove Uniform Interpolation for IPC (Intuitionistic
Propositional Calculus), for K, for GL (Lob's Logic) and for S4GΓZ.1 Uni-

* The present paper is in its final form and no similar paper has been or is being
submitted elsewhere.

1 Uniform Interpolation for IPC was first proved by Pitts using proof theoretical
methods. It was proved by the present method by Ghilardi and Zawadowski
and, independently but later, by the author. Uniform Interpolation for K is due
to Ghilardi. Uniform Interpolation for GL was first proved by Shavrukov. It was
proved by the present method by the author. To give the due credit it should
be pointed out that the method here is similar to the one used by Ghilardi and
Zawadowski and, independently, the author, to prove the result for IPC. The
result for S4Grz is, as far as I know, new in this paper.
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form interpolation for S4Grz is rather surpising, since it fails for the closely
related theory S4, as was shown by Ghilardi and Zawadowski in their paper

2. Models

We start with introducing the notion of Kripke model and specifying some
notations. A (Kripke) model is a structure K. = (K, X, \=,P). Here:

- K is a non-empty set of nodes
- X is a binary relation on K
- P is a (possibly empty) set of propositional variables2

- \= is a relation between K and P

We can, alternatively, view a model K as a function that assigns to a fixed set
of pairwise disjoint labels {2£>il» !=> £} the appropriate objects. In this style
we will write e.g. Pκ for K(P). We will say that K is a P-model if Pκ = P.
Similarly for AT, |=-model, etcetera. Similar conventions will be employed for
other kinds of models. Define: PVK(fc) := {p£Pκ \ k f=κ p} Note that |=
and PV are interdefinable. p, q, r will range over finite sets of propositional
variables. A model K is finite if both KK and PK are finite. We will call the
class of models Mod.

It is often pleasant to think in terms of a node in a model. It is worthwile
to make this notion explicit. A pointed model is a structure IK = (Ko,fc),
where KQ is a model, and k is a node of KQ. A pointed model (K,6) is
called rooted if for all k G K: b -<* fc3 b is called the root. We can confuse
a class of models with its disjoint union, taking as new nodes the pointed
models corresponding to the models of the class. We define, e.g., (K,fc) -<
(K',fc') :<ΦΦ> K = K' and k ^K k'. Thus, we can confuse a pointed model
(K, fc) with a 'free floating' node k. Note that the disjoint union of all models
is not strictly speaking a model in our sense. The set of popositional variables
that is declared to be present need not be constant in different 'nodes'. It is
essential for our purposes for this to be so, since we want to study transitions
between nodes in different models that do not leave the set of variables present
constant. The totality of pointed models will be called Pmod and the totality
of rooted models Rmod.

Suppose K is a —possibly pointed— 'P-model. Then K[Q] is the PnQ-
model obtained by restricting f=κ to Pr\Q. For any k € K, K[fc] is the
rooted model (tf',fc,x', K,?>), where K1 := ϊk := {k'eK \ k -<* k'} and
where -<; and [=' are the restrictions of X respectively [= to K'. (We will often

2 We take the set of propositional variables as 'internal' to the models (and the
languages), because we want to think about model extensions, which involve
changing the set of variables of the model.

3 -<* is the transitive reflexive closure of -<.
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simply write -< and |= for -<' and \=f.) In case we are using the convention
of confusing a node k with its pointed model, {K, fc), we will, e.g., write k[Q]
for(K[Q],fc).

We will consider several properties of models. IK will be said to be tran-
sitive if -<κ is transitive, etcetera. IK is persistent if P\/κ is monotonic w.r.t.
-<κ and C.

It will be convenient to extend the natural numbers ω with an extra ele-
ment oo. Let ω°° be ω U {oo}. We let α, /?, . . . range over ω°°. ω°° is equipped
with the obvous ordering <. We extend addition by: oo + α = α + oo = oo.
We extend cut-off substraction in our structure by: oo — n = oo. We will
avoid the question of what oo — oo is.

Transitive models are going to play a special role in this paper so we will
need some some special notions concerned with transitive models. Consider
any transitive model K. Define:

- k X+ k' :<& k -< kr and not k1 -< k
— k « k' ΦΦ k = k' or (A; -< k1 and k -< k1). So « means being in the same

cluster.
- dκ(k) := sup({(dκ(kf)+l)<Ξω°° \ k1 y+ k})
- If IK is pointed with designated node fc, we put: d(K) :=

Note that if k X+ fc', then dκ(kf) < dκ(k). k is a top node if it is a top node
w.r.t. X+. Note that k is a top node precisely if dκ(k) = 0.

3. Layered Bisimulation

In this section we introduce bisimulation and bounded bisimulation. To avoid
formulating most definitions and theorems twice — once for bounded and once
for ordinary bisimulation — we make use of a portmanteau notion: layered bi-
simulation.4

Consider P-models K and M. We write K := K& and M := KM- A lay-
ered bisimulation or ί-bisimulation Z between IK and M is a ternary relation
between K, ω°° and M, satisfying the conditions specified below. We will
consider Z also as an u ^-indexed set of binary relations between K and M
writing kZam for (fc,α,ra) £ Z. We often write kZm for kZ^m. We give
the conditions:

1. kZam =» PVκ(fc) = PVM(m)
2. k1 ^K kZa+ιm => there is an ra' with k'Zam'

ί.O.W. >-K °£α+l C £α° >-M

4 Bisimulation is used both in computer science and modal logic. See e.g. the
papers in [11] for an impression. In model theory bisimulation and bounded
bisimimulation appears in the guise of Ehrenfeucht games and back-and-forth
equivalence. See [7].
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3. kZa+im -<M m' =»> there is a fc' with k -<κ k'Zam';
i.o.w. Z α ι ° χM C -<κ °̂ α

Note that we allow £-bisimulations to be undefined on some nodes. They may
even be empty. Note also that £-bisimulations occur only between models for
the same set of variables. We call (2) the ziga+ι -property (see Fig. 3.1) and
(3) the zaga+ι-property. If α = oo we simply speak of the zig- and the zag-
property. A binary relation Z between K and M is a bisimulation between

fc' ----- -'m

Fig. 3.1. The ziga+\-property

K and M iff {{fc, oo,m) | kZm} is an £-bisimulation. We will simply confuse
bisimulations Z with the corresponding ί-bisimulations. An ί-bisimulation Z
is a bounded bisimulation if for some natural number n: kZam =>• α < n.

Let IDκ := {(fc,α, fc) | fc E K, a £ ω00}. Suppose Z is an ί-bisimulation
between K and M and that U is an £-bisimulation between M andJM We
define ZoU by: (ZoU)a := Za oUa, and Z by (Z)a := (Za), where (.) is the
usual inverse on binary relations. Za is the relation given by: Zjjj := Za+β.
We say that Z is downward closed if for all a -< β: Zβ C Za, The downward
closure Z\, of Z is the smallest downwards closed relation extending Z. In
the following theorem we collect the necessary elementary facts.

Theorem 3.1. 1. IDκ is an ί-bisintulation.
2. Z^oU is an i-bisimulation between K and N.
3. Z is an £-bisiτnulation between M and IK.
4. Za is an i-bisimulation.
5. The downward closure of Z is an ί-bisimulation.
6. Suppose Z is a set of ί-bisimulations between K and M. Then \J2 is

again an ί-bisimulation between K and M. It follows that there is always
a maximal £-bisimulation, c^M between two models. (l)-(5) imply that
for any a:
- IDK C -K'M
_ ^iςM 0 ^M,N ς ^K,N

_ ~KM Cc±M'K

— c±K'M is downward closed.
Note thatj by the above, each of the ~^M is an equivalence relation.
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7. Consider k £ K and m £ M. Let Z[k,m] be the restriction of Z to
t& x fra. Then Z[k,m] is an ί-bisimulation between K[fc] and M[m].

8. Consider two transitive models K and M. Consider the relation W, given

by:

fcWαm :Φ> for some fc', m' : fc « k'Zam' « m and fc ~o m

PΓe /lave: W zs an i-bisimulation. It followSj e.g., taking M := K and
Z :=\Djc, that « Π ~o is an ί-bisimulation on K.

We will often drop the superscript of c±κ'M In case a = oo, we will drop
the subscript of ~]̂ M (if no confusion is possible). We will say that k and
m (considered as pointed models) n-simulate if k ~n m and that k and m
bisimulate if k ~ m. The following theorem tells us that the number of ^in-
equivalence classes on a model has a fixed finite bound that only depends on
n.

Theorem 3.2. Define F(ΛΓ,0) := 2N, F(N,n + 1) := 2F(N n>+N. έupjxue
|7>| = Λ/", ίΛen ίΛe number of possible c±n equivalence classes is smaller or
equal to F(N,ri).

Proof. By a simple induction on n, noting that the n + 1-equivalence class of
a node A; is fully determined by the atoms forced in k and the n-equivalence
classes of the nodes 'seen' by k. D

In this paper we are particularly interested in things like extending or even
changing the forcing of the propositional variables on nodes. We introduce
the relevant notions. Let fc, fc', m, m'.. . be pointed models.

- k —α,Q m :<& Pk Π Q = Pm Π Q and k[Q] c±α m[Q]. So, roughly, this means
that k and m α-bisimulate w.r.t. the variables in Q.

- k —a,[Q] m :<& k ^a,Q
c m and Q C Pm. So, roughly, this means that k

differs from m modulo ~a only at Q and m is at least a Q-node. We will
say that m is a Q, a-bisimulation reset of fe. In case α = oo, we will speak
of a Q-bisimulation reset.

- k CttίQ m :θ fc :±α>7?fc m and QnPfc = 0 and QuPk = Pm. We will say
that m is a Q, a bisimulation extension of k. In case α = oo, we will speak
of a Q-bisimulation extension.

If we are studying persistent models it is often more natural to think in terms
of certain order ings related to layered bisimulation, than in terms of layered
bisimulation itself. We can think of these orderings as a kind of extension
of the ordering in the model. For the rest of this section we think about
persistent pointed P-models. We let fc,fc',ra,ra'... range over such models.

- k ^o m :& PV(fc) C PV(m)
- k :<α+ι m :& PV(fc)CPV(m), VmVmifcVfc' k' c±α m'

In case α = oo , we will drop the subscript.
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Theorem 3.3. 1. ^a is a partial preordering on pointed, persistent V-
models.

2. k^ *'=> k^ak'.
3. a<β=ϊ^βC^a.
4. k ~a m & k ̂ α m and m Xα k.
5. k XQO m & for some kr>k k' ~ m.

Proof. We prove (4). For α = 0 this is easy. Suppose α > 0. "=»" Easy.
"^=" Suppose k ^α m and m Xα fc. We show that U :=~ u{(λ;,α,ra)} is
an £-bisimulation, and, hence, that k ~a m. Clearly PV(fe) = PV(m). The
zig-property for U follows from the fact that m -<a k. The zag-property for
U follows from the fact that k Xα m. D

4. Basic Facts for IPC

In this section, h will stand for derivability in IPC. Consider any set of propo-
sitional variables, P. We define £l(P) as the smallest set such that:

- if A, B € £*(P), then *#), (Λvfl), (Λ -> B) 6 £*(?).

PV(>1) is the set of prepositional variables occurring in A. Sub(A) is the set
of subformulas of A. A model is an \PC-model if it is transitive, reflexive,
antisymmetric and persistent. In this section all models will be IPC models.
Consider a P-model K we take (=t to be the smallest relation between K and

such that:

- k \=i p :<& k (= p, k \=i T
- fc [=< A/\B :& k [=i A and k\={B
- k\=ι AvB :& k \={ A or k f=f B
- k \=i A -> β :̂  VfcV* (*' N A =^ fc; \=i B)

We will omitt the subscript i, as long as it is sufficiently clear from the context
that the persistent case is intended. Note that, by transitivity, the persistence
for P extends to the persistence for C{(P}. Define further:

- k |= Γ :<» for all A G Γ : k |= A
- K \= A :& for all keK k\=A

A set X is P- adequate ΊίX ζ. 0(P] and X is closed under subformulas. A set
Γ is X-saturated (for IPC) if for any subset Y of X: Γ h V ^ =>Y πΓ φ 0.
Note that it follows that Γ is consistent (the case that Y is 0) and that Γ is
closed under X-consequences (the case that Y is a singleton).

We describe the Henkin construction for IPC. To lighten our notational
burdens we will assume in this section that we work with some fixed P.
Consider a ̂ -adequate set X. The Henkin model for X is the model H := HX ,
where:
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- KM := {Δ I Δ is X-saturated}
- Γ^Δ:&ΓCΔ
-PU:=PΠX
- Γ\=p:&peΓ

It is easily verified that H is an I PC-model.

Theorem 4.1. for all AtX : Γ [=H A & A G Γ.

If X is finite, then lΆχ is finite. We say that M is a rooted Henkin model if it
is of the form MX [Δ] for some X-saturated Δ. We have:

Theorem 4.2 (Kripke Completeness). For Γ C ^(P) and A e £{(P):

Γ \-P A & for all V -models K : Γ \=κ A.

In case Γ is finite, we can improve this to:

Γ \-P A & for all finite P -models K : Γ (=κ A.

For I PC we have a distinctive result involving downward extensions of
models. We first introduce the necessary machinery. Let K be a set of I PC-
models. M := M(K) is the IPC-model with :

- M :={{fc,K) | f c < E # κ a n d K < E K}
- (fc, K) X (ra, M) :& K = M and k -«κ m

- (k,K) \=p:&k^=κp

In practice we will forget the second components of the new nodes, pretending
the domains to be disjoint already. Let IK be a IPC 'P-model. B(K) is the
(rooted) IPC P-model obtained by adding a new bottom b to K and by
taking: b \= p :& K \= p. Finally we define Glue(K) := B(M(K)).

Theorem 4.3 (Push Down Lemma). Let X be adequate. Suppose Δ is
X -saturated and K is an \PC-model with K\= Δ. Then Glue(Hχ [Δ], K) \= Δ.

Proof. We show by induction on A G X that b \= A & A G Δ. The cases
of atoms, conjunction and disjunction are trivial. If (B -> C) G X and
b \= (B -> C), then Δ \= (B -> C) and, hence, (B -> C) G Δ. Conversely
suppose (B -> C) G Δ. If b ^= B, we are easily done. If b |= B, then, by the
Induction Hypothesis: B G Δ, hence C G Δ and, by the induction hypothesis:
b μ C. D

Instead of using the Push Down Lemma we could have employed the Kleene
slash. We say that Δ is P-prime if it is consistent and for every (CvjD) G
£{(P): Δ h (CVL>) =ϊ Δ ϊ- C oτ Δ \- D. A formula A is P-prime if {A} is
P-prime. As usual, we will suppress the P.

Theorem 4.4. Suppose X is adequate and Δ is X -saturated, then Δ is

prime.
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Proof. A is consistent by definition. Suppose Δ h CvD and Δ \f C and
A \/ D. Suppose K \= Δ, K μ= C, M |= Δ and M μ= Zλ Consider
Glue(Hχ(Z\),IK,M). By the Push Down Lemma (Theorem 4.3) we have:
b |= Δ. On the other hand by persistence: b ^ C and b ^ D. Contra-
diction. D

We turn to the consideration of fragments and model descriptions for I PC.
Define i : £*(P) -> ω, by:

- i(p) := i(±) := i(T) := 0

- i(A^B) := i(AvB) := roαx(i(Λ), i(β))
- i(A -> β) := max(i(A),i(B)) + 1
- ιn(P) := μez:̂ ) I iμ) < n}
-I00(P):=Cί(P)

By an easy induction on n we may prove the following theorem.

Theorem 4.5. /n(p) is finite modulo \PC-provable equivalence.

Define for X C C*(P):

-Ίhχ(k):={AeX\k\=A}
- For K pointed with point k: Ύhχ(K) := Thχ(fc)

Theorem 4.6. Suppose that Z is an i-simulation between the P-models K
and M. Then: kZam =>• Th/α(p)(fc) = Th/α(p)(m).

Proof. By induction on A in Ia. Suppose kZam. The cases of atoms, conjunc-
tion and disjunction are trivial. Suppose, e.g., k\£ (B -¥ C). Then, for some
k1 x fe, k' f= B and fc' ̂  C. There is an m' >- m, such that k'Za-ιm' and
hence by the induction hypothesis (applied for α — 1, noting that if A € Ia(P),
then B, C € /β-ι(P)): m' |= B and m' ^ C. Ergo m ̂  (B ->• C). D

Theorem 4.7. A: ^α m => Th/α(p)(fc) C Th/α(-p)(m); for P-nodes k and m.

Proof. In case α = 0, this is trivial. Suppose α > 0 and k ^α m. The proof is
a simple induction on A G Ia(P). The cases of atoms, Λ, v are trivial. Suppose
A = (B -* C) and m ^ (-B -+ C). Then for some m' >: m: m7 |= β and
m1 \£ C. There is a k' >: k, such that k1 ~α_! m; and, hence, by Theorem 4.6:
k'\=B and k' μ C. Ergo λ; μ= (β -> C). D

We formulate a partial converse for Theorem 4.7. It is well known that the
converse for the case of oo, i.e. for the case where one would like to infer
bisimulation from the relation of forcing the same formulas of the full lan-
guage, does not go through. There is a lot of work (for the analogous case of
modal logic) on better converses than the one given here. We refer the reader
to [6] and [8].

Theorem 4.8. Th/n(p)(fc) C Th/n(p)(m) => k ̂ n ra, for p-nodes k and m.
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Proof. Suppose k and m are p-nodes, and Th/n(p)(Λ;) C Th/n(p)(m). We want
to prove: k <n m. In case n = 0 this is trivial. Suppose n > 0. Define, for k'
in the model corresponding to k and m' in the model corresponding to m:

We check that Z is an ^-simulation and that for every k' > k there is an
m' ^ m with k'Znm'.

Suppose i > 0 and k'Zim'. Clearly k' and m' force the same atoms. We
verify e.g. the zig-property. Suppose k' •< k" . Let:

rji(k") := (/\{B6/(-ι(p) \ k" μ B} -* V{Ce/4_ι(p) | *" μ C1}).

Clearly Λ' μ %(*") and ̂ (fc") 6 7, (p). Ergo TO' μ %(*;"). But then for some
m" > TO':

m" |= /^Be/i-iίp) I *" |= 5} and TO" μ= V{<?e/i_ι(P) | tf μ C}.

It follows that fc"Zi_ιm".
To show that for any TO' ̂  m there is a k' V k with k'2nm'. Note that

TO μ ί?n("i')ι er§° ^ ̂  'Jnίwi'), and, thus, for some k':

k' \= /\{£e/n-ι(p) I m' f= B} and f

Hence: kZn-\m.

Let k be a p-node. Define:

- Yn,fc := Yn,fc(p) :=

- Nn,fc := Nn,fc(p) := V{D€ln(p) \ k £ D}

Theorem 4.9. k \= \n,k and k Jt Nn,A;.

Let m be a p-node. We have:

Theorem 4.10. k Xn m ^> m |= Yn,fc ^ * ̂  Nn,m.

Theorem 4.11. For n < n': IPC h Y nι f j b -̂  Yn f f c and IPC h Nn,fc -> Nnι | f c.

Theorem 4.12. k ±n m & IPC h Yn,m -> Yn,fc 4 IPC h Nn,m -> Nn,fc

Proo/. (1) "=Φ-" Suppose k <n m. Let r be any p-node with r \= Yn,m It
follows that m ^n r and, hence, fc ̂ n r. Ergo, r (= Yn j f c. "V Suppose
IPC h Yn,m -> Yn,fc Since m (= Yn,m, it follows that m |= Yn,fc, and, hence,
fc -<n m.

(2) "=>" Suppose k <n m. Let r be any p-node with r ^ Nn ?fc. It follows
that r ^n k and, hence, r ^n m. Ergo: r J£ Nn>τn. "^=" Suppose IPC h
Nn,m -> Nn,jk. Since k ̂  Nn ) f c, it follows that fc ̂  Nn,m and hence: k <n m.

D

Theorem 4.13. Yn,fc ^ α prime formula.

Proof. It is easily seen that Ύn^ is /n(p)-saturated. Apply Theorem 4.4. D
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5. Uniform Interpolation for IPC

Uniform Interpolation was proved for GL by V. Shavrukov (see: [12]). Shavru-
kov used the method of characters as developed by Z. Gleit and W. Goldfarb,
who proved the Fixed Point Theorem of Provability Logic and the ordinary
Interpolation Theorem employing characters (see: [5]). The methods of Gleit
& Goldfarb and later of Shavrukov can be viewed as model theoretical. For
IPC, A. Pitts proved Uniform Interpolation by proof theoretical methods,
using proof systems allowing efficient cut-elimination (see: [10]), developed,
independently, by J. Hudelmaier (see: [9]) and R. Dyckhoίf (see: [1]). Later
S. Ghilardi and M. Zawadowski (see: [3]), and, independently but later, A.
Visser, found a model theoretical proof for Pitt's result using bounded bisim-
ulations.

In this section, we will use ^ for the weak partial orderings and -< for the
associated strict orderings. We prove an amalgamation lemma.

Lemma 5.1. Consider disjoint sets of propositional variables Qy p and 7£.
Let X C £*(Q,p) be a finite adequate set. Let (K,ko) E Pmod(Q,p),
(M,m0) E Pmod(p,7£). Let:

if := \{C£X I C is a propositional variable or an implication}\.

Suppose that fco — 2.ι/+ι,p ^o Then there is a Q-extension (N, ΠQ) o/(M, mo)
such that Thχ(no) =

Proof. Let Z be a downwards closed witness of ko c±2.ι/+ι,P ^o Define
Φx from K to the Henkin model H := Hx as follows: Φχ(k) := Δ(k) :=
{BeX I k \= B}. Define further for k in K dχ(k) := dH(^(fc)). Note that:
dχ(k)<v.

Consider a pair (Δ, m) for Δ in H and ra in M. We say that fc;, fc, ra' is a
witnessing triple for (Δ,m) if:

Δ = Δ(k) = A(k'}, k1 * fc, m' * m, k'

φχ

m

k'
Define:

- N := {(Δ,m) \ there is a witnessing triple for (Δ,m}}

- (Δ, m) ̂ N (Γ, n) :& Δ ^H Γ and m ̂ M n
- (Δ, m) \=κ s :& Δ \=R s or m \=M s
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Note that by assumption fcd£2ι/+ιrao Moreover: 2.dχ(fc0)+1 < 2.I/+1. Hence:
^o^2dx(fc0)+ιmo So we can take fc0, fc0, m0 as witnessing triple for nQ. Let
k', fc, ra' be a witnessing triple for {/I, m). Note that for p e p n X: Δ \= p &
k\=p&m\=p, and hence: (Δ, m) \= p & Δ f= p <^ m |= p. We claim:

Claim 1 n0 ~p,π m0.
Claim 2 For £ e X : (Δ,m) \= B & B G Δ.

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (Δ,m)Bm. It is evident that
Thp,ft ((Zi, m)) = Thp,π(m). Moreover, B has the zig-property. We check that
B has the zag-property. Suppose (Δ,m)Bm X n. We are looking for a pair
(Γ,n) in N such that Δ ^ Γ. Let fc',fc,ra' be a witnessing triple for (Arcι)
Since k'Z2.dx(k')+ι'mf ^ rc> there is a h such that fc7 X hZ<2.dχ(ki)n. We take
Γ := Δ(h). We need a witnessing triple fc'*, fc*,m;* for (Γ,n) We distinguish
two possibilities. First, î = Γ. In this case we can take: k'* := k1, fc* := Λ,

Γ = Δ
Φx k* = h

4

X

-Ίdχ(k')

Δ

Secondly,

x

ΦX -"*dx(k')
m

X

fc'* = fc'
*2dχ(k')+l

m'* = m'

- Γ. In this case we can take: fc'* := ft, fc* := ft, m'* := n. To see
this, note that, since k1 •< ft, we have: Δ — Δ(k') -< Γ. Ergo dχ(h) < dχ(k').
It follows that: 2.dχ(ft) 4-1 < 2.dχ(k'). So, ft^2.dx(fc')-f-ιn (and by downward
closure also

fc'* = jfc* =

m

m
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Finally, clearly,

We prove Claim 2. The proof is by induction on X. The cases of atoms,
conjunction and disjunction are trivial. We treat the case of implication.
Suppose (C -4 D) G X. Consider the node (Δ,m) with witnessing triple
fc',fc,ro'.

Suppose (C -> D) g Δ. In case C € Δ and D & Δ, by the Induction
Hypothesis, (Δ,m) \= C and (Δ,m) \£ D. So, (Δ,m) ft (C -> JD). Suppose
C & Δ. Clearly, k ψ (C -> D), so there is an h > k with ft |= C and
h fi D. Let Γ := 2\(ft). Since, C £ A we find: Z\ -< Γ and, thus, fc X ft.
Note that it follows that 2.dχ(kr) > 2. Since fc£2.dχ(*:')m anc* ^ — ̂ » ^ere is
an n X m with hZ2.dx(k')-ιn' Moreover: 2 dχ(/ι) -f 1 < 2.dχ(fc') — 1. Ergo:
/iZ2.dx(/l)_|_in. So Λ, Λ,n is a witnessing triple for (Γ,n). Clearly, (Δ,m) ^
(Γ,n). By the Induction Hypothesis: (Γ,n) |= C and (Γ,n) ^ I? Hence,
(Δ,m) £ (C-+D).

ΦX 1* = fc* = ft
-2dχ(/ι)-fl

22dχ(k')
m

k' m

Suppose (Δ,m) ^ (C -> D). There is a (Γ,n) in N with (Δ,m) ^ (Γ,n) and
(Γ,n> |= C and (Γ,n> ^ £)• Clearly Δ ^ Γ. By the Induction Hypothesis
C G Γ and D # Γ. Ergo (C -¥ D) # Δ. Thus we have proved Claim 2. D

Theorem 5.1 (Pitts' Uniform Interpolation Theorem). Here is our
version of Pitts ' Uniform Interpolation Theorem.

1. Consider any formula A and any finite set of variables q. Let

v := |{CΈSub(A) I C is a propositional variable or an implication}\

There is a formula 3q.A such that:
a) PV(3q.A) C PV(A) \ q
b) i(3q. A) < Ί.v + 2
c) For all B € £{ with PV(B) n q = 0, we have:

IPC h IPC h 3q.A

. Consider any formula B and any finite set of vaήables q. Let v :=
v$ub(B) There is a formula Vq.£ such that:
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a) PV(Vq.£) C PV(B) \ q
b) i(Vq.£) < 2.ι/ + 1
c) For all A G & with PV(A) Πq = 0, we Λαve:

IPC h A -» 5 4* IPC h ^ -> Vq.fl.

Proo/. (1) Consider A and q. Let p := PV(A) \ q. Take:

3q.A := /\{CE/2..+2(p) I IPC h A -> C}.

Clearly 3q.A satisfies (a) and (b). Moreover, IPC h A -> 3q.A Hence all we
have to prove is that for all B with PV(B) Π q = 0:

IPC h A -+ β => IPC h 3q.A -> 5.

Suppose, to the contrary, that for some B: PV(B) Π q = 0 and IPC \- A-ϊ B
and IPC I/ 3q.A -4 5. Take r := PM(B] \ p. Note that p,q,r are pairwise
disjoint, PV(A) C q U p and PV(B) C pur.

Let m be any p, r-node with m \= 3q.A and m ^ B. Let Y := Y2.ι/+ι,m[p]
and N := N2.l/-fi,m[p] (see Sect. 4.). We claim that: A,Y I/ N. If it did, we
would have: A h Y —> N. And hence by definition: 3q.A,Y h N. Quod non,
since m \= 3q.A,Y and m ^ N. Let k be any q,p-node such that: k \= A,Y
and k ^ N. We find that k ~2.ι/+ι,p m. Apply Lemma 5.1 with Sub(^4) in
the role of X to find a q, p, r-node n with: m ^P)Γ n and ThSub(Λ)(Ό =
Thsub(^)(n). It follows that n \£ B, but n |= A. A contradiction.

(2) Consider B and q. Let p := PV(B) \ q. Take:

Vq.β := V{^€/2.,+ι(p) I IPC h L> ̂  B}.

Clearly Vq.B satisfies (a) and (b). Moreover IPC h Vq.β -> jB. Hence all we
have to prove is that for all A with PV(A) n q = 0:

IPC h A -> S => IPC h Λ -4 Vq.β.

Suppose that, to the contrary, for some A* PV(^4) Πq = 0 and IPC h A -> 5
and IPC \f A -» Vq.£. Take r := PV(A) \ p. Note that p,q,r are pairwise
disjoint, PV(B) C q,p and PV(A) C p,r.

Let m be any p, r-node with m\= A and m ̂  Vq.jB. Let Y := Y2.ι/+ι,m[p]
and N := N2.,,+ι,m[p]. We claim that: Y \f NvB. Note that, by Theorem 4.13,
Y is prime. So if Y h Nv5, then Y h N or Y h B. Since Y \f N, it follows
that Y h B. But then by definition: Y h Vq.B. Quod non, since m f= Y and
m ^ Vq.β. Let A; be any q, p-node such that: k \= Y and fc ̂  NvjB. We find
that k c^2.ι/+ι,P ^i- Apply Lemma 5.1 with Sub(£) in the role of X to find a
q,p, r-node n with: m ̂ p,r n and ThSub(J5)(fc) = ThSub(β)(rc) It follows that
n |= A, but n ̂  β. A contradiction. D
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Note that in (1) of the above theorem we have estimate 2.ι/ + 2 and in (2)
2.z/ 4- 1. With some extra work one can get the marginal improvement to
2.z/ + 1 also for (1). We will not derive the sharper estimate here.

Theorem 5.2 (Semantics of Pitts' Quantifiers). Consider a node m.
Suppose A G C1 . We have:

1. m\= 3q.A <&3nm ~[g] n and n\= A.
2. m (= Vq.A <& for all n with m ~[ςj n, n \= A.

Proof. (1) "V Trivial. "=»" Let p := PV(Λ)\{ςf} and i/ := ι/Sub(A) Suppose
m |= 3q.A, where m is an 7^-node with p C 72,. Let Y := Y2.ι/+ι,m[p] and
N := N2.lχ-f-ι,m[p] As in Theorem 5.1(2), A,Y I/ N. Let k be any #, p-node
such that: fc \= A, Y and A; ̂  N. We find that k ~2.ι/+ι,p TO. Apply Lemma 5.1
to fc and m[Ti \ {</}] with Sub(A) in the role of X, {q} in the role of Q, p in
the role of p, K \ (pu {q}) in the role of 72,, to find a #, p, 72,-node n with:
m ~[q] n and Thsub(^)(fc) = Thsub(A)(n), and, thus, n \= A. The proof of (2)
is similar. D

Theorem 5.1 is not formulated entirely in terms of ^-simulations. The rea-
son is that such a form does not provide a very sharp estimate on uniform
interpolants. But if we do not want to worry about precise complexities a
watered down version can be pleasant to have. By applying Theorem 5.1 to
X := /n(p,q) we find:

Corollary 5.1. For all disjoint q, p and numbers s, there is an N (multi-ex-
ponential in |q,p| + s), such that: for all k € Pmod(q, p), and all m G Pmod
with qn^M = 0 and p C T^n, we have:

k —N,P m =* there is an n G Pmod(q,Pm) with n — s,q,P k and n ~pm m.

We repeat a result from [13]. We illustrate that the increase of implicational
complexity in going to a uniform interpolant is unavoidable. It is an interest-
ing problem to find both better upper and lower bounds.

Theorem 5.3. Every formula of C1 is equivalent to an 1%- formula preceded
by existential quantifiers and to an 1$ -formula preceded by universal quanti-
fiers.

Proof. Suppose A G £l(p). Let q be a set of variables disjoint from p that is
in 1-1 correspondence with the subformulas of the form (B ->• C) of A. Let
the correspondence be q. We define a mapping T as follows:

- T commutes with atoms, conjunction and disjunction
- T(B -> C) := q(Q5 -> C)

Define:

- EQ := Λ{q(» -> C) ̂  (T(B) -> T(C)) | (» -> C) G Sub(2t)}
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Note that EQ is /2. Finally we put:

- A* := Ξq(EQΛTμ)), A$ := Vq(EQ -> T(A))

By elementary reasoning in second order propositional logic we find: h A 4->

>1# and h Λ «-» A$. D

We end this section by verifying semantically a striking principle (present in
Pitts' paper) valid for the Pitts interpretation.

Theorem 5.4. k |= Vp(BvC) => k \= Vp.B or k \= Vp.C.

Proof. We reason by contraposition. Suppose k ^ Vp.B and k \£ Vp.C. It
follows that there are nodes ra and n, such that fc ~[p] m ^= # and k c±rpι
n ^ C. Let M and N be the models of, respectively, m and n. Let P :=
Glue(M[ra],N[n]). Let b be the new root. It is easily seen that k ~[pj 6 and
b μ (flvC) D

6. Uniform Interpolation for K

We first survey the connection between modal propositional formulas and
bounded bisimulations. Since these facts are similar to, but simpler than the
corresponding facts for I PC, we just state the results without the proofs.
Let b(A) be the box-depth of a formula. Bk(p) is the set of formulas in the
variables p with box-depth < k. Bk(p) is finite modulo provable equivalence.
Consider p-nodes k and m. Then: k ~n m -ΦΦ- Th#n(p)(fc) = Thβn(p)(m).
Define: Yn>fc := ΛThBΛ(p)(*0 Clearly, k c±n m & m ]= \n,k & K h Yn,m ̂

Yn,fc-
Before considering uniform interpolation for more complicated modal sys-

tems like S4Grz, we do the relatively easy proof for K. This theorem was first
proved by Silvio Ghilardi, see [2]. Uniform interpolation for K follows from
the amalgamation lemma below.

Lemma 6.1. Consider pairwise disjoint sets of propositional variables Q,
p and n. Let (K,fc0> £ Pmod(Q,p) and (M,m0) G Pmod(p,7£). Suppose
that fc0 -α,P rao Then there is a Q-extension (N,n0) of (M,m0) such that

no ~α ^o

Proof. Let Z be a downwards closed witness of fc0 — α,p ^o We add a 'virtual
top' T to K and stipulate that T satisfies no atoms. Let's call the new model
KΎ. We extend ω°° with a new bottom _L to ω00^. Define Pd(n -h 1) := n,
Pd(0) := Pd(l) := 1, Pd(oo) = oo. Now define the following model N:

- (fc,α,m) XN (kf,a',m') :<Φ k -<κτ k' and α' = Pd(α) and m -<M

- (k, α, m) [= s :<^ k \=κ s or m (=M 5
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We claim:

Claim 1 n0 -?,n mo
Claim 2 n0 ~α,(Q)p) fco

We prove Claim 1. Take as bisimulation β, with (fc,α,ra)βra' :<ΦΦ> m = ra'.
Clearly, ΊΐnBm then Thpj^(n) = Thpjπ(m). Moreover, B trivially has the zig-
property. We check that B has the zag-property. Suppose (fc,α,ra)βra -< ra'.
If α E {0, J_}, we can finish the diagram with (T,_L,ra'>. If α = a' + 1 for
α' 6 u>°°, we have kZam and, hence, there is a k1 such that fc -<κ &' and
k'Zaιm!. So we can finish the diagram with (k',a',mr).

We prove Claim 2. Take as layered bisimulation 5, with (k,a,m)Sak' &
k = kf (for a € ω°°). Clearly, if nSαfc then ThQ,p(n) = ThQ ι p(fc) We check
that S has the zag-property. The zig-property is analogous. Suppose (fc, α +
l,m)5β+ιfc -< k1. Since fcZα+ιm, there exists m! >• m such that k'Zam

f.
Hence <fc;, α,m7) y (Jb,α + 1,m>, and (fc;, α,m')Sak'. D

Theorem 6.1 (Uniform Interpolation). W^e prove uniform interpolation
/orK

ί. Consider any formula A and any finite set of variables q. Let v := b(A).
There is a formula 3q.A such that:
a) PV(3q.A) C PV(A) \ q
b) b(3q.Λ) < i/
c) For α// B £ Cm with PV(B) Πq = 0, tί e Λαve:

K h A ^ β x ^ K h 3q.^l -> 5.

<2. Consider any formula B and any finite set of variables q. Let v := b(-B).
There is a formula Vq.J5 sncΛ tΛαt:
a) PV(Vq.B) C PV(B) \ q
b) b(Vq.β) < i/
c) For all A G £m tiΛΛ PV(A) Π q = 0, lί e Λαve:

K h A - ^ . B ^ K h A - ^ Vq..B.

Proo/. We just prove (1). The proof of (2) is analogous. (Alternatively, we
may take (Vq.β) := (- 3q-ιβ).) Consider A and q. Let p := PV(A) \q. Take:

3q.A := /\{CeIv(p) I K h A ̂  C}.

Clearly 3q.A satisfies (a) and (b). Moreover, K h A —>> 3q.Λ. Hence, all we
have to prove is that for all B with PV(£) Π q = 0:

K h A - ^ B ^ K h 3q.Λ -> B.

Suppose, to the contrary, that for some B: PV(B) Π q = 0 and K h A ~> ̂
and K I/ 3q.A -> B. Take r := PV(β) \ p. Note that p,q,r are pairwise
disjoint, PV(A) C q u p and PV(B) C pur.
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Let ra be any p,r-node with ra |= 3q.A and ra ^ B. Let Y := Yi/,m[p]
and We claim that: A, Y is consistent. If it were not, we would have: A I—>Y.
And, hence, by definition: 3q.A I—Ύ. Quod non, since ra |= 3q.A,Y and
b(->Y) = v. Let k be any q, p-node such that: k \= A,Y. We find that k c^p
ra. Apply Lemma 6.1 to find a q, p, r-node n with: m ~p>Γ n and m —t,,(p,r)

 n

. It follows that n ^ J3, but n |= A A contradiction. D

The proof of the following theorem is fully analogous to the the proof of its
twin for the case of I PC.

Theorem 6.2. Consider a node ra. Suppose A G £m. We have:

1. m\= 3q.A oBnm ~[ςj n and n (= A.
2. m\= Vq.A <& for all n with m ~[ς] n, n \= A.

7. Uniform Interpolation for GL

In this section we prove Uniform Interpolation for GL. It is well known that
GL is sound and complete for upward wellfounded Kripke models and that it
has the finite model property. Since GL-models are irreflexive we use '-<' for
their accessibility relation and 4 X' for the corresponding weak partial order.
4h' will stand for GL-derivability.

Let X be a finite, adequate set of formulas. Adequate means: closed under
subformulas. The GL Henkin model HX for X is constructed in the following
way.

- The nodes are the subsets Δ of X that are X-saturated, i.e. if Δ proves
some finite disjunction of elements of X then some disjunct is in Δ.

- Δ -< Δ1 iff ΠA e Δ => A, ΠA G Δ!

Note that this model may contain non-trivial loops! and, thus is not a GL-
model. (It is easy to remove these loops, but for the present purposes, we need
to keep them.) The height of a model is the maximal depth. The height of
the Henkin model is < 2.\{CζX \ C is boxed}|. To see this, consider Δ0 -<+
ΔI -<+ Δ2 Clearly, going up the set of boxed formulas in the Δi increases.
Suppose we had the same boxed formulas in ΔQ, ΔI and Δ^. Suppose ΠA £
Z\2. Then, ex hypothesi, ΠA G ^lo Hence, A,ΠA € ΔI. We may conclude
that ΔZ -< ΔI. Quod non. So, necessarily, the boxed formulas increase by
at least one in going from ΔQ to A%. It follows that if we have a strictly
ascending chain of length 2.n, then there are at least n boxed subformulas.

As in for I PC and K we start with an amalgamation lemma. Consider
disjoint sets of propositional variables Q, p and 11. Let (K, fc0) € Pmod(Q, p)
and {M,m0} G Pmod(p,7£) be pointed GL-models.

Lemma 7.1. Let X C £m(Q,p) be a finite adequate set. Let:

v := 2.\{C£X I C is boxed}\.
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Suppose that k0 ~2.ι/+ι,P m0. Then there is a Q-extension (N,n0) o/(M,m0)
such that N is a GL-model and Thχ(no) = Thχ(fco).

Proof. Let Z be a downwards closed witness of &o — 2.ι/+ι,p mo Define
Φx from K to the Henkin model H := Hχ as follows: Φχ(k) := ^(fc) :=
{5GX !*(=£}. Define further for k in K: dχ(fc) := dκ(Δ(k)). Note that:

<**(*)<"•
Consider a pair (Am) for Zi in H and m in M. Consider fc',fc,m'. Let

zl' := Φχ(fc') We say that k',k,m' is a witnessing triple for (Am) if:

Z\' « A fc' * fc, m' X m, k'

Define:

- TV := {(Am) I there is a witnessing triple for (Am)}
- n0 :=(2\(λfc),m0)
- (A ro) ^N (Γ,n) :& Δ^wΓ and m XM n
- (A m) ^=N 5 :o ̂  |=H 5 or m (=M s

Note that by assumption A:0^2ι/+ιmo. Moreover: 2.dχ(fco)-f-l < 2.1/4-1. Hence:
fco^2dχ(fe0)-Himo So we can take fco, fco> mo as witnessing triple for ΠQ. Let
A;', fc, m' be a witnessing triple for (A m). Note that for p E p n X: Δ (= p o>
k |= p & m \= p, and hence: (Δ, m) \= p & Δ (= p <Φ m |= p. It is easy to see
that N is a GL-model (even if HX need not be one). We claim:

Claim 1 n0 c±p>^ ra0.
Claim 2 For B G X : (Am) (= J9 Δ.

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (Am)βm. It is evident that
Thp)π((A m)) = Thp)π(m). Moreover, B has the zig-property. We check that
B has the zag-property. Suppose (Δ,πι)Bm -< n. We are looking for a pair
(Γ,n) in N such that Δ X Γ. Let k1, k,m' be a witnessing triple for (Am).
We write Δ1 := Δ(k'). Since fc'£2.dχ(fc')+ιm' -< n, there is a h such that
k1 X hZ2.dx(k')n. We take Γ := 4(/ι). Clearly Δ -< Γ. We need a witnessing
triple fc'*,fc*,m'* for (Γ,n) We distinguish two possibilities. First, Δ w Γ. In
this case we can take: k'* := k', fc* := Λ, m;* := m'.
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n

~* »~*771 =777,

Secondly, Δ 96 Γ. In this case we can take: fc'* := ft, fc* := ft, ra'* := n. To see
this, note that, since k' -< ft, we have: A& A' ^( Γ and, hence, A -<+ Γ. Ergo
dχ(ft) < dχ(k'). It follows that: 2.dχ(h) + 1 < 2.dχ(fc'). So,

m

Finally, clearly,

We prove Claim 2. The proof is by induction on X. The cases of atoms,
conjunction and disjunction are trivial. We treat the only non-trivial case:
the left-to-right case of the box. Consider DC € X and consider the node
(Δ,m) with witnessing triple fc',fc,ra'. Suppose ΠC £ A. Clearly, k ̂  DC,
so there is an h' >- k with h' ^ C. Let h be maximal in K with /ι >- k and
ft £ C. By maximality, we find: h [= DC. Let Γ := Δ(h). Since, DC g Zi
and DC G Γ, we find: A -<+ Γ. Note that it follows that dχ(k') > I . Since,
kZ2,dx(k')r^ and k •< Λ, there is an n ^ m with hZ2.dx(k')-ιn Moreover:
2.dχ(h) + 1 < 2.dχ(fc/) - 1. Ergo: hZ2.dχ(h)+ln. So we can take fc'* := ft,
fc* := ft, m'* := n to witness (Γ, n). Clearly, (Δ, m) -< (Γ, n). By the Induction
Hypothesis: (Γ,n) ^ C7. Hence, (Δ,m) ^ DC.
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Thus we have proved Claim 2. D

We formulate Uniform Interpolation for GL. Its proof is fully analogous to
the one of Uniform Interpolation for K.

Theorem 7.1 (Uniform Interpolation). We state uniform interpolation
/orGL

1. Consider any formula A and any finite set of variables q. Let

v := 2.|{CeSub(Λ) I C is boxed}\.

There is a formula Ξq.A such that:
a) PV(3q.A) C PV(A) \ q
b) b(3q.A) < 2.ί/ -f 1
c) For all B G Cm with PV(jB) Πq = 0, we have:

GL h A -> B & GL h 3q.A -̂  5.

#. Consider any formula B and any finite set of variables q. Let

v := 2.|{CESub(£) I C Z5 boxed}\.

There is a formula Vq.jft such that:
a) PV(Vq.B) C PV(,B) \ q

b) b(Vq.B)<2.ι/ + l
c) For α// A 6 £m with ?M(A) n q = 0, we Λcwe:

GLh Vq.B.

The semantical interpretation of the propositional quantifiers is fully analo-
gous to the case of K.
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8. Uniform Interpolation for S4Grz

S4Grz, a logic called after Andrzej Gregorczyk, is K extended with:

T h ΏA -> A
4 h ΠA -> DDA
Grz h

It is easy to see that T is superfluous. Note also that over KT4 (= S4), Grz
is equivalent to:

Grz' Ώ(Ώ(A -> ΏA) -» A) -> DA

The logic is sound for weak partial orderings such that the associated strict
ordering is upward wellfounded. We will show that the completeness of the
logic in finite partial orderings. Since we deal with reflexive structures in this
section, we will use 'X' for these relations. In case our relation is a weak
partial ordering we write c^' for the associated strict ordering. For weak
partial preorderings we will use X+ for the associated strict version to stress
the fact that also non-trivial loops are removed. 4P will stand for S4Grz-
provability.

Let X be a finite adequate set. We construct a Henkin model Jx as follows.
Let

X+ := X U {(B -> DB), D(B -> DB) \ ΏB G X}.

Clearly, X is again adequate. Define:

- The domain J is the set of X+-saturated sets A.
- Δ * Δ! :& Δ = A' or (for all DCG A DC G Δ' and

for some ΏDeΔ', ΏD £ Δ)
- Δ\=p:&p<Ξ Δ

It is easily seen that Jx is a finite partial order. We show that for all A in X,
Δ \= A & A G Δ. The crucial feature here is that we do not prove this fact for
all A in X+ \ The proof is by induction on A. We consider the only interesting
case. Suppose that A is ΏB and that ΏB g X. We show Δ }£ ΏB. We have
to produce a Δ1 with Δ1 ^ Δ and /!' \£ B.In case B <£ Δ, and, hence, by the
Induction Hypothesis, /i ^ B, we are immediately done. So suppose B E Δ.
Note that Ώ(B -> DJ5) cannot be in Δ, since, if it were, ΏB would be in
Δ. We claim: {DC | DC G Δ} U {D(β -» D£)} I/ β. If it were otherwise, it
would follow by S4-reasoning that: {DC | DC E Δ} h D(Ώ(B -+ QB) -* 5).
Hence by Grz\ {DC | DC G Zi} h ΏB, and, thus Z\ h DB. Quod non.
By the usual methods we can construct an X^-saturated set Δ' such that
{DC I DC G Δ} U {Ώ(B -> ΏB)} C Δ' and B £ Δ1. It follows that Δ ^ Δ'
(with D(B -* DB) in the role of the D of the definition). Since B & Δ1 , we
have, by the Induction Hypothesis, Δ' \£ B.

For our proof of Uniform Interpolation we will use a different Henkin
model EIχ, which is defined like J[χ, dropping the clause involving D, which
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excludes non-trivial loops. The height of HX is estimated by the number of
boxed formulas in X+, which is two times the number of boxed formulas in X.
We start with an amalgamation lemma. Consider disjoint sets of propositional
variables Q, p and Tl. Let (K,fco) € Pmod(Q,p) and (M,m0) € Pmod(p,7£)
be S4Grz-models.

Lemma 8.1. Let X C £m(Q,p) be a finite adequate set. Let:

v:=2.\{CeX\C isboxed}\.

Suppose that fco c±2.H-ι,P

 mo Then there is a Q-extension (N,no) 0/(M,rao)
such that N is α S4Grz-raodeί and Thχ(n0) = Thχ(fc0).

Proof. Let Z be a downwards closed witness of fco — 2.^+1, p mo Define
Φx from K to the Henkin model H := Hχ as follows: Φχ(fc) := Z\(fc) :=
{B€X+ \k\= B}. Define further for fc in K: dχ(fc) := d^(Δ(k)). Note that:

Consider a pair (Δ,m) for Δ in HI and m in M. Consider k',k,mf. Let
A' := Φχ(fc'). We say that fc',fc,m' is a witnessing triple for (2\,m) if:

', kZ2Λχ(k,}m.« 4, fc' X fc, m' r< m,

Define:

- N := {(Δ,m) \ there is a witnessing triple for {/i,m}}
- n0 := {^(fc0),ra0)
- (Δ,πι) XN (Γ,n) :<& (Δ,m) = (Γ,n> or (/i ^H Γ and m XM ^) or

(Δ ^jj Γ and m ̂ M rί)
- (Δ, m) f=N 5 :<^ Z\ (=H s or m |=M 5

Note that by assumption fco^π-i^o Moreover: 2.dχ(fco)-fl < 2.ι/-f 1. Hence:
fco22dx(A:0)+irao- So we can take fco, fco, TΠQ as witnessing triple for no. Let
fc', fc, m' be a witnessing triple for (Δ, m). Note that for p € p Π A": Z\ (= p ̂
fc (= p <Φ m ^= p, and hence: (4, m) ^= p ̂  -4 (= p <ΦΦ> m |= p. It is easy to see
that N is a S4Grz-model (even if HX need not be one). We claim:

Claim 1 n0 ~P,π m0.
Claim 2 For B 6 X : (Δ, m) (= B <& B e Δ.



Uniform Interpolation and Layered Bisimulation 161

Evidently the lemma is immediate from the claims.

We prove Claim 1. Take as bisimulation B with (Δ,m)Bm. It is evident that
Thp)π({,4, m)) = Thp^(ra). Moreover, B has the zig-property. We check that
B has the zag-property. Suppose (Δ,m)Bm ^ n. We are looking for a pair
(Γ,n) in TV such that Δ ^ Γ. In case m = n, we take (Γ,n) := (Δ,m).
Suppose m φ n and, hence, m X n. Let fc',Λ;,m' be a witnessing triple for
(A TO). We write Δ' := Δ(k'). Since k'Z2.dx(k')+ιιml ^ n, there is a /ι such
that k' X hZ^dχ(k,)n. We take Γ := 4(Λ). Clearly Δ -< Γ. We need a
witnessing triple fc'*,fc*,ra'* for (Γ,n) We distinguish two possibilities. First,
Δ « Γ. In this case we can take: k1* := kr, fc* := Λ, m'* := m'.

n

m'* = m'

Secondly, Δ φ Γ. In this case we can take: k'* := /ι, fc* := Λ, m7* := n. To see
this, note that, since k' X Λ, we have: î « ̂ ' X Γ and, hence, since Z\ 96 Γ,
2\ X+ Γ. Ergo dχ(Λ) < dχ(fc'). It follows that: 2.dχ(h) -h 1 < 2.dx(fc/). So,

Φx ,„

771

Finally, clearly,

We prove Claim 2. The proof is by induction on X. The cases of atoms,
conjunction and disjunction are trivial. We treat the only non-trivial case:



162 Albert Visser

the right-to-left case for the box. Consider DC E X and consider the node
(Δ,m) with witnessing triple fc', fc,ra'. Suppose DC $ Δ.

In case C ^ 4, we have, by the Induction Hypothesis, (Am) ^ C and>
hence, (Am) ^ DC.

Suppose C G A It follows that D(C -> DC) is not in Δ, since, otherwise,
DC would be in Δ. Clearly, k ̂  DC, so there is an ti ^ k with Λ' ^ C. Let Λ,
be maximal in K with ft >: k and ft ̂  C. By maximality, we find: h |= D(C ->
DC). Let Γ := 4(fc) Since, D(C -* DC) £ 4 and D(C -4 DC) € Γ, we find:

-<+ Γ. Note that it follows that dχ(k') > 1. Since,
an(^there is an n >: ra with hZ2.dx(k')-ιn Moreover: 2.dχ(/ι) + 1 < 2.dχ(fc;) — 1.

Ergo: hZ2.dx(h)+ιn So we can take fc'* := Λ, fc* := Λ, m7* := n to witness
(Γ,n). Clearly, {/i,m} ^ (Γ,n). By the Induction Hypothesis: (Γ,n) ^ C.
Hence, (2\,m) ^ DC.

m

Thus we have proved Claim 2.

The statement of uniform interpolation and the semantical interpretation of
the propositional quantifiers are fully analogous to the case of GL.

We show that Uniform Interpolation for S4Grz implies Uniform Interpo-
lation for I PC. By itself this is not so important, since we proved Uniform
Interpolation for I PC directly. I feel, however, that the methodology of such
transfers is interesting by itself.

Define Nec(A) := Λ{Π(P -> ΠP) I P £ pv(^)} The Gόdel Translation
(.)* from C1 to Cm is specified as follows.

— (.)* commutes with atoms, Λ and v
- (A-> BY := D(A* -> B*)

Lemma 8.2.
2. S4Grz h

1. IPC h A S4Grz h Nec(A) -
DA =» for some

A*.
S4Grz h Nec(A)

Proo/. (1) and (2) are a well know facts. (1) is due to Gόdel. (2) is probably
first due to Rybakov. We prove (2). The proof is by induction on the length
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of A. Suppose S4Grz h (Nec(A)ΛA) -> DA We rewrite A to conjunctive

normal form treating the boxed formulas as atoms. Schematically, this form
is: /\{\/{ΠB^ΠC,p^q}}. We find, in S4Grz + Neψl):

A » /\{\/{DB, -DC, p, -.<?}}

So we can take A* := /\{(/\{(ΏCy , q} -> V{W,P})}- D

Theorem 8.1. Uniform Interpolation for S4Grz implies Uniform Interpola-
tion for I PC

Proof. Consider A in C1. Let q be some subset of PV(A). Let A be the post-

interpolant w.r.t. q of Nec(A)ΛA* in S4Grz. Note that: S4Grz h (Nec(A)/\A*)

-> ΏA. Hence, by the properties of the post-interpolant: S4Grz h A -4 DA

Thus, we can find an £l-formula A1, such that S4Grz h Nec(A) -> (A f>
A*). We show that A1 is the desired post-interpolant. Note that, S4Grz h
(Nec(A)ΛA*) -» A*. We may conclude: IPC h A -» A.

Suppose IPC h A -ϊ B, where the shared variables of A and B are in

q. It follows that: S4Grz h Nec(A -» B) -+ (A* -̂  B*). Hence, S4Grz h
(Nec(A)ΛA*) -̂  (Nec(β) -» j5*). Thus: S4Grz h A** ^> (Nec(^) -> B*). And
so, S4Grz h (Nec(^ -> 5)Λ^*) ̂  B*. Ergo, IPC h A{ -+ B.

We turn to pre-interpolants. Consider B in £*. Let q be some subset of

PV(β). Let B1 be the pre-interpolant w^.r.t. q of Nec(β) -> B* in S4Grz. Take
5 := D^'. We can find an ^-formula B\ such that S4Grz h Nec(jB) -> (B f+

JS^*). We show that B1 is the desired pre-interpolant. Note that, S4Grz h

(Nec(B)ABf*) -* β*. We may conclude: IPC h Bi -> B.
Suppose IPC h A — > J3, where the shared variables of A and β are in

q. It follows that: S4Grz h Nec(,4 -+ B) ^ (A* -+ B*). Hence, S4Grz h
(Nec(A)ΛA*) -> (Nec(£) -> B*). Thus: S4Grz h (Nec(A)ΛA*) -> Br. And

so, S4Grz h (Nec(A)ΛA*) ->• B (since (Nec(A)ΛA*) is self-necessitating). So,

finally, S4Grz h (Nec(^)Λ^*) -> J5^*. Ergo, IPC h A -+ B\ G

It would be interesting to find a similar argument to prove Uniform Interpola-
tion for S4Grz from Uniform Interpolation for GL. In their paper [4] Ghilardi
and Zawadowski show that 54 does not satisfy uniform interpolation. In fact,

the following formula A(p, </,r),

»> -ιr)

does not have a post-interpolant w.r.t. r.
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