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Summary. The notion of mechanical process has played a crucial role in math-
ematical logic since the early thirties; it has become central in computer science,
artificial intelligence, and cognitive psychology. But the discussion of Church's The-
sis, which identifies the informal concept with a mathematically precise one, has
hardly progressed beyond the pioneering work of Church, Gόdel, Post, and Turing.
Turing addressed directly the question: What are the possible mechanical processes
a human computor can carry out in calculating values of a number-theoretic func-
tion? He claimed that all such processes can be simulated by machines, in modern
terms, by deterministic Turing machines. Turing's considerations for this claim
involved, first, a formulation of boundedness and locality conditions (for linear
symbolic configurations and mechanical operations); second, a proof that computa-
tional processes (satisfying these conditions) can be carried out by Turing machines;
third, the central thesis that all mechanical processes carried out by human com-
putors must satisfy the conditions. In Turing's presentation these three aspects are
intertwined and important steps in the proof are only hinted at. We introduce K-
graph machines and use them to give a detailed mathematical explication of the
first two aspects of Turing's considerations for general configurations, i.e. K-graphs.
This generalization of machines and theorems provides, in our view, a significant
strengthening of Turing's argument for his central thesis.

Introduction

Turing's analysis of effective calculability is a paradigm of a foundational
study that (i) led from an informally understood concept to a mathemat-
ically precise notion, (ii) offered a detailed investigation of the new math-
ematical notion, and (iii) settled an important open question, namely the
Entscheidungsproblem. The special character of Turing's analysis was recog-
nized immediately by Church in his review of Turing's 1936 paper. The review
was published in the first issue of the 1937 volume of the Journal of Symbolic
Logic, and Church contrasted in it Turing's mathematical notion for effective
calculability (via idealized machines) with his own (via λ-definability) and
Gόdel's general recursiveness and asserted: "Of these, the first has the ad-
vantage of making the identification with effectiveness in the ordinary (not
explicitly defined) sense evident immediately "

Godel had noticed in his (1936) an "absoluteness" of the concept of com-
putability, but found only Turing's analysis convincing; he claimed that Tur-
ing's work provides "a precise and unquestionably adequate definition of the

This paper is in its final form and no similar paper has been or is being submitted
elsewhere.
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general concept of formal system" (1964, p. 369). As a formal system is simply
defined to be a mechanical procedure for producing theorems, the adequacy
of the definition rests on Turing's analysis of mechanical procedures. And
with respect to the latter Gόdel remarked (pp. 369-70): "Turing's work gives
an analysis of the concept of 'mechanical procedure' (alias 'algorithm' or
'computation procedure' or 'finite combinatorial procedure'). This concept
is shown [our emphasis] to be equivalent with that of a 'Turing machine'."
Nowhere in Gόdel's writings is there an indication of the nature of Turing's
conceptual analysis or of a proof for the claim that the analyzed concept is
equivalent with that of a Turing machine.

Gόdel's schematic description of Turing's way of proceeding is correct:
in section 9 of (Turing 1936) there is an analysis of effective calculability,
and the analysis is intertwined with a sketch of an argument showing that
mechanical procedures on linear configurations can be performed by very re-
stricted machines, i.e., by deterministic Turing machines over a two-letter
alphabet. Turing intended to give an analysis of mechanical processes on pla-
nar configurations; but such processes are not described, let alone proved to
be reducible to computations on linear objects. This gap in Turing's consid-
erations is the starting-point of our work. We formulate broad boundedness
and locality conditions that emerge from Turing's conceptual analysis, give a
precise mathematical description of planar and even more general computa-
tions, and present a detailed reductive argument. For the descriptive part we
introduce K-graph machines] they are a far-reaching generalization of Post
production systems and thus, via Post's description of Turing machines, also
of Turing machines.

1. Turing's Analysis1

In 1936, the very year in which Turing's paper appeared, Post published
a computation model strikingly similar to Turing's. Our brief discussion of
Post's model is not to emphasize this well-known similarity, but rather to
bring out the strikingly dissimilar methodological attitudes underlying Post's
and Turing's work. Post has a worker operate in a symbol space consisting
of "a two way infinite sequence of spaces or boxes ...".2 The boxes admit two
conditions: they can be unmarked or marked by a single sign, say a vertical
stroke. The worker operates in just one box at a time and can perform a
number of primitive acts: make a vertical stroke [V], erase a vertical stroke

1 This section is based on (Sieg 1994) which was completed in June 1991; for
details of the reconstruction of Turing's analysis and also for the broader
systematic and historical context of our investigations we refer the reader to
that paper.

2 Post remarks that the infinite sequence of boxes is ordinally similar to the series
of integers and can be replaced by a potentially infinite one, expanding the finite
sequence as necessary.
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[13], move to the box immediately to the right [Mr] or to the left [Mi] (of the
box he is in), and determine whether the box he is in is marked or not [13].
In carrying out a "combinatory process" the worker begins in a special box
and then follows directions from a finite, numbered sequence of instructions.
The z-th direction, i between 1 and n, is in one of the following forms: (i)
carry out act V, £", Mr, or M/ and then follow direction j;, (ii) carry out
act 13 and then, depending on whether the answer is positive or negative,
follow direction ft or ft1. (Post has a special stop instruction, but that can be
replaced by the convention to halt, when the number of the next direction is
greater than n.)

Are there intrinsic reasons for choosing this formulation as an explication
of effective calculability, except for its simplicity and Post's expectation that
it will turn out to be equivalent to recursiveness? An answer to this question
is not clear from Post's paper, at the end of which he wrote:

The writer expects the present formulation to turn out to be equiva-
lent to recursiveness in the sense of the Gδdel-Church development.
Its purpose, however, is not only to present a system of a certain logi-
cal potency but also, in its restricted field, of psychological fidelity. In
the latter sense wider and wider formulations are contemplated. On
the other hand, our aim will be to show that all such are logically
reducible to formulation 1. We offer this conclusion at the present
moment as a working hypothesis. And to our mind such is Church's
identification of effective calculability with recursiveness.

Investigating wider and wider formulations and reducing them to Formulation
1 would change for Post this "hypothesis not so much to a definition or
to an axiom but to a natural laυf. It is methodologically remarkable that
Turing proceeded in exactly the opposite way when trying to justify that all
computable numbers are machine computable or, in our way of speaking, that
all effectively calculable functions are Turing computable: He did not extend
a narrow notion reducibly and, in this way, obtain quasi-empirical support,
but rather analyzed the intended broad concept and reduced it to a narrow
one, once and for all. The intended concept was mechanical calculability by
a human being, and in the reductive argument Turing exploited crucially
limitations of the computing agent.

Turing's On computable numbers opens with a description of what is os-
tensibly its subject, namely, "real numbers whose expressions as a decimal
are calculable by finite means". Turing is quick to point out that the problem
of explicating "calculable by finite means" is the same when considering, e.g.,
computable functions of an integral variable. Thus it suffices to address the
question: "What does it mean for a real number to be calculable by finite
means?" But Turing develops first the theory of his machines.3 A Turing

3 Note that the presentation of Turing machinex we give is not Turing's, but
rather the one that evolved from Post's formulation in (1947).
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machine consists of a finite, but potentially infinite tape; the tape is divided
into squares, and each square may carry a symbol from a finite alphabet, say,
the two-letter alphabet consisting of 0 and 1. The machine is able to scan
one square at a time and perform, depending on the content of the observed
square and its own internal state, one of four operations: print 0, print 1,
or shift attention to one of the two immediately adjacent squares. The op-
eration of the machine is given by a finite list of commands in the form of
quadruples qiSkCiQm that express: if the machine is in internal state φ and
finds symbol Sk on the square it is scanning, then it is to carry out operation
d and change its state to #m. The deterministic character of the machine
operation is guaranteed by the requirement that a program must not contain
two different quadruples with the same first two components.

In section 9 Turing argues that the operations of his machines "include all
those which are used in the computation of a number". But he does not try
to establish the claim directly; he rather attempts to answer what he views
as "the real question at issue": "What are the possible processes which can
be carried out [by a computer4] in computing a number?" Turing imagines
a computor writing symbols on paper that is divided into squares "like a
child's arithmetic book". As the two-dimensional character of this computing
space is taken—without any argument—not to be essential, Turing considers
the one-dimensional tape divided into squares as the basic computing space
and formulates one important restriction. The restriction is motivated by
limits of the human sensory apparatus to distinguish at one glance between
symbolic configurations of sufficient complexity and states that only finitely
many distinct symbols can be written on a square. Turing suggests as a
reason that "If we were to allow an infinity of symbols, then there would be
symbols differing to an arbitrarily small extent", and we would not be able to
distinguish at one glance between them. A second and clearly related way of
arguing this point uses a finite number of symbols and strings of such symbols.
E.g., Arabic numerals like 9979 or 9989 are seen by us at one glance to be
different; however, it is not possible for us to determine immediately that
9889995496789998769 is different from 98899954967899998769. This second
avenue suggests that a computor can operate directly only on a finite number
of (linear) configurations.

Now we turn to the question: What determines the steps of the computor,
and what kind of elementary operations can he carry out? The behavior is
uniquely determined at any moment by two factors: (i) the symbolic config-
uration he observes and (ii) his internal state. This uniqueness requirement
may be called the determinacy condition (D); it guarantees that com-
putations are deterministic. Internal states, or as Turing also says "states of
mind", are introduced to have the computer's behavior depend possibly on

4 Following Gandy, we distinguish between a computor (a human carrying out
a mechanical computation) and a computer (a mechanical device employed for
computational purposes); cf. (Gandy 1988), p. 81, in particular fn. 24.
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earlier observations and, thus, to reflect his experience. Since Turing wanted
to isolate operations of the computor that are "so elementary that it is not
easy to imagine them further divided", it is crucial that symbolic configura-
tions that help fix the conditions for a computer's actions are immediately
recognizable. We are thus led to postulate that a computor has to satisfy two
boundedness conditions:

(B.I) there is a fixed bound for the number of symbolic configurations a com-
putor can immediately recognize;

(B.2)5 there is a fixed bound for the number of internal states that need be
taken into account.

For a given computor there are consequently only boundedly many different
combinations of symbolic configurations and internal states. Since his be-
havior is, according to (D), uniquely determined by such combinations and
associated operations, the computor can carry out at most finitely many dif-
ferent operations. These operations are restricted by the following locality
conditions:

(L.I) only elements of observed symbolic configurations can be changed;
(L.2) the distribution of observed squares can be changed, but each of the
new observed squares must be within a bounded distance of an immediately
previously observed square.

Turing emphasized that "the new observed squares must be immediately
recognisable by the [computor]"; that means the observed configurations aris-
ing from changes according to (L.2) must be among the finitely many ones
of (B.I). Clearly, the same must hold for the symbolic configurations result-
ing from changes according to (L.I). Since some steps may involve a change
of internal state, Turing concluded that the most general single operation is
a change either of symbolic configuration and, possibly, internal state or of
observed square and, possibly, internal state. With this restrictive analysis of
the steps a computor can take, the proposition that his computations can be
carried out by a Turing machine is established rather easily.6 Thus we have:

Theorem 1.1 (Turing's Theorem for calculable functions).
Any number theoretic function F that can be calculated by a computor satis-
fying the determinacy condition (D) and the conditions (B) and (L) can be
computed by a Turing machine.

5 Gδdel objected in (1972) to this condition for a notion of human calculability
that might properly extend mechanical calculability; for a computor it seems
quite unobjectionable.

6 Turing constructed machines that mimic the work of computers on linear con-
figurations directly and observed: "The machines just described do not differ
very essentially from computing machines as defined in § 2, and corresponding
to any machine of this type a computing machine can be constructed to com-
pute the same sequence, that is to say the sequence computed by the computer
[in our terminology: computor]." Cf. section 2 below for this reductive claim.
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As the Turing computable functions are recursive, F is recursive. This
argument for F's recursiveness does not appeal to any form of Church's The-
sis; rather, such an appeal is replaced by the assumption that the calculation
of F is done by a computor satisfying the conditions (D), (B), and (L). If
that assumption is to be discharged a substantive thesis is needed. We call
this thesis—that a mechanical computor must satisfy the conditions (D) and
(B), and that the elementary operations he can carry out must be restricted
as conditions (L) require—Turing's Central Thesis.

In the historical and systematic context in which Turing found himself,
he asked exactly the right question: What are the processes a computor can
carry out in calculating a number? The general problematic required an anal-
ysis of the idealized capabilities of a computor, and exactly this feature makes
the analysis epistemologically significant. The separation of conceptual anal-
ysis (leading to the axiomatic conditions) and rigorous proof (establishing
Turing's Theorem) is essential for clarifying on what the correctness of his
central thesis rests; namely, on recognizing that the axiomatic conditions are
true for computers who proceed mechanically. We have to remember that
clearly when engaging in methodological discussions concerning artificial in-
telligence and cognitive science. Even Gόdel got it wrong, when he claimed
that Turing's argument in the 1936 paper was intended to show that "mental
processes cannot go beyond mechanical procedures".

2. Post Productions & Puzzles

GδdePs misunderstanding of the intended scope of the analysis may be due
to Turing's provocative, but only figurative attribution of "states of mind"
to machines; it is surprising nevertheless, as Turing argues at length for the
eliminability of states of mind in section 9 (III) of his paper. He describes
there a modified computor and avoids the introduction of "state of mind",
considering instead "a more physical and definite counterpart of it". The com-
putor is now allowed to work in a desultory manner, possibly doing only one
step of the computation at a sitting: "It is always possible for the [computor]
to break off from his work, to go away and forget all about it, and later to
come back and go on with it." But on breaking off the computor must leave
a "note of instruction" that informs him on how to proceed when returning
to his job; such notes are the "counterparts" of states of mind. Turing in-
corporates notes into "state formulas" (in the language of first order logic)
that describe states of a machine mimicking the computor and formulates
appropriate rules that transform a given state into the next one.

Post used in (1947) a most elegant way of describing Turing machines
purely symbolically via his production systems (on the way to solving, neg-
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atively, the word-problem for semi-groups).7 The configurations of a Turing
machine are given by instantaneous descriptions of the form aqiSkβ, where
α and β are possibly empty strings of symbols in the machine's alphabet;
more precisely, an id contains exactly one state symbol, and to its right there
must be at least one symbol. Such tcP s express that the current tape content
is as*/?, the machine is in state qι, and it scans (a square with symbol) Sk
Quadruples <?iSfcCjgm of the program are represented by rules; for example, if
the operation Q is print 0, the corresponding rule is:

That can be done, obviously, for all the different operations; one just has to
append 0 or SQ to a (β) in case Q is the operation move to the left (right) and
a (β) is the empty string — reflecting the expansion of the only potentially
infinite tape by a blank square. This formulation can be generalized so that
machines operate directly on finite strings of symbols; operations can be
indicated as follows:

a-γqiδβ =ϊ a^q^β.

If in internal state qι a string machine recognizes the string 7$ (i.e., takes in
the sequence at one glance), it replaces that string by 7*ί* and changes its
internal state to #m. Calling ordinary Turing machines letter machines, Tur-
ing's claim reported in note 6 can be formulated as a Reduction Lemma:
Any computation of a string machine can be carried out by a letter machine.

The rule systems describing string machines are semi-Thue systems and,
as the latter, not deterministic, if their programs are just sequences of produc-
tion rules. The usual non-determinism certainly can be excluded by requiring
that, if the antecedents of two rules coincide, so must the consequents. But
that requirement does not remove every possibility of two rules being appli-
cable simultaneously: consider a machine whose program includes in addition
to the above rule also the rule

where δ# is an initial segment of ί, and 7^ is an end segment of 7; then
both rules would be applicable to 737 ί. This kind of non-determinism can be
excluded in a variety of ways, for example, by ordering the rules and always
using the first applicable rule; this approach was taken by Markov in his 1954
Theory of Algorithms.

However, as we emphasized already, Turing had intended to analyze gen-
uine planar computations, not just string machines or letter machines oper-
ating in the plane.8 To formulate and prove a Reduction Lemma for planar

7 Post's way of looking at Turing machines underlies also the presentation in
(Davis 1958); for a more detailed discussion the reader is referred to that clas-
sical text.

8 Such machines are also discussed in Kleene's Introduction to Metamathematics,
pp. 376-381, in an informed and insightful defense of Turing's Thesis. However,
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computations, one has to specify the finite symbolic configurations that can
be operated on and the mechanical operations that can be performed. Turing
recognized the significance of Post's presentation for achieving mathematical
results, but also for the conceptual analysis of calculability: as to the for-
mer, Turing extended in his (1950) Post's and Markov's result concerning
the unsolvability of the word-problem for semi-groups to semi-groups with
cancellation; as to the latter, we look at Turing's semi-popular and most
informative presentation of Solvable and Unsolvable Problems (1953).

Turing starts out with a description of puzzles: square piece puzzles, puz-
zles involving the separation of rigid bodies or the transformation of knots;
i.e., puzzles in two and three dimensions. "Linear" puzzles are described as
Post systems and called substitution puzzles. They are viewed by Turing as
a "normal" or "standard" form of describing puzzles; indeed, a form of the
Church-Turing thesis is formulated as follows:

Given any puzzle we can find a corresponding substitution puzzle
which is equivalent to it in the sense that given a solution of the one
we can easily find a solution of the other. If the original puzzle is
concerned with rows of pieces of a finite number of different kinds,
then the substitutions may be applied as an alternative set of rules
to the pieces of the original puzzle. A transformation can be carried
out by the rules of the original puzzle if and only if it can be carried
out by the substitutions... (1953, p.15)

Turing admits, with some understatement, that this formulation is "some-
what lacking in definiteness" and claims that it will remain so; he character-
izes its status as lying between a theorem and a definition: "In so far as we
know a priori what is a puzzle and what is not, the statement is a theorem.
In so far as we do not know what puzzles are, the statement is a definition
which tells us something about what they are." Of course, Turing continues,
one could define puzzle by a phrase beginning with 'a set of definite rules', or
one could reduce its definition to that of 'computable function' or 'systematic
procedure'. A definition of any of these notions would provide one for puzzles.

Even before we had seen Turing's marvelous 1953 paper, our attempts
of describing mechanical procedures on general symbolic configurations had
made use of the puzzle-metaphor. The informal idea had three distinct com-
ponents: a computor was to operate on finite connected configurations; such
configurations were to contain a unique distinguished element (correspond-
ing to the scanned square); the operations were to substitute neighborhoods
(of a bounded number of different forms) of the distinguished element by
appropriate other neighborhoods resulting in a new configuration, and such
substitutions were to be given by generalized production rules. Naturally,

in Kleene's way of extending configurations and operations, much stronger nor-
malizing conditions are in place; e.g., when considering machines corresponding
to our string machines the strings must be of the same length.



106 Wilfried Sieg and John Byrnes

the question was how to transform this into appropriate mathematical con-
cepts; referring to Turing's statement above, we were unwittingly trying to
remove (as far as possible) the lack of definiteness in the description of gen-
eral puzzles. But in contrast to Turing, we wanted to analyze deterministic
procedures and follow more closely his own analysis given in 1936. For this
purpose we introduced K-graph machines. These machines were inspired, in
part, by Kolmogorov and Uspensky's 1958 analysis of algorithms. K-graph
machines operate, not surprisingly, on K-graphs. These are finite connected
graphs whose vertices are labeled by symbols and contain a uniquely labeled
central vertex. They satisfy also the principle of unique location, i.e., every
path of labels (starting with the label of the central vertex) determines a
unique vertex. K-graph machines substitute distinguished K-subgraphs by
other K-graphs; their programs are finite lists of generalized production rules
specifying such substitutions. As these substitutions are local, we say that
the machines satisfy the principle of local action. The subtle difficulties sur-
rounding the principle of local action, even for the case of string machines,
are discussed in the next section.9

Turing machines, when presented by production systems as above, are
easily seen to be K-graph machines. Conversely, the theorem in section 4
shows that computations of K-graph machines can be carried out by Turing
machines. Given this mathematical analysis, Turing's central thesis is turned
into the thesis that K-graph machines, clearly satisfying the boundedness
and locality conditions, subsume directly the work of computors. Our main
theorem thus reduces mechanical processes carried out by computors to Tur-
ing machine computations. — We want to emphasize very forcefully that our
generalization of Turing's analysis is a direct extension of the latter, both
technically and conceptually. This is in striking contrast to other such gener-
alizations, e.g., those of Friedman and Shepherdson, see (Shepherdson 1988);
Candy's penetrating analysis of machine computability is discussed briefly in
the Concluding Remarks.

3. K- Graph Machines

To state and prove the main theorem we have to review some general concepts
from graph theory and introduce some notions especially appropriate for our
goals. As labeled graphs are going to be considered, we let U be a (potentially
infinite) universe of vertices, C a finite set of labels, or alphabet, and Ib a

9 Thus, our K-graph machines are deterministic graph rewriting systems; there
is a considerable literature in computer science that discusses such systems,
see for example the survey article (Courcelle 1990). The category theoretic way
of presenting rewrite systems is for our purposes, however, not suitable: the
substitution operations have to be graphically concrete and direct, not indirectly
obtainable through pushout diagrams. Tim Herron (1995) used the category
theoretic framework to characterize K-graph machines.
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labeling function from U to C. C-labeled finite graphs G are defined with
reference to U, C, and /δ; thus, they can be given as ordered pairs (V,E),
where V is a finite subset of U and E C {{u, v} \ u, υ £ V}; a pair {u, v} € ί?
is called an edge and may be denoted by uv. u and v are said to be adjacent.
For a vertex υ E V and an edge uv 6 £7, we write also v € G and ιw G G.
The sets of vertices and edges of G are also denoted by VQ and EG. Given
G = (V, E) and G1 = (V, E1), G U G1 = (V U V1, E U E'). We write G1 C G
and say that G' is a subgraph of G if V" C V and E' C E \V. G\G' =
(V \V',E\(V\ V')). Here the symbol 4 \' indicates the restriction of a
relation to a subset of its domain.

A path in G from u\ to un is a sequence uιu% ... un of distinct vertices of
G such that for every pair of consecutive vertices U{ and U{+\ the edge Mt^t+i
is in G. A vertex υ belongs to the path if υ is an element of the sequence; an
edge uv belongs to the path in case u and v are consecutive vertices in the
sequence. The length of a path is defined as the number of edges belonging
to the path; len(u, v) is the length of a shortest path from u to v, if any path
from u to v exists. A component of a graph G is a maximal subgraph G' of
G such that for any two vertices u and v in G', there is a path in G' from u
to v; if G = G' then G is called connected.

The remaining definitions are tailored to our purposes and allow us to
solve succinctly the central issue of representing symbolic configurations in
a most general way—as labeled graphs. The structure of such configurations
is fixed by the underlying, unlabeled vertices. As the specific nature of the
vertices is irrelevant, we call a label-preserving bijection π from U to U a
permutation and use such bijections to specify isomorphisms. Clearly, two
labeled graphs G and G' are isomorphic just in case there is a label and edge
preserving bijection between G and G'; we write G ~ G1. Given a graph
G, a permutation π picks out a unique graph Gπ isomorphic to G, defined
by VG* = {π(u) \ u € VG} and EG* = {Mti),π(v)} \ {u,v} € EG}. If in
addition π is the identity over Vk for some graph K, we write G ~# Gπ.
Finally, to fix the analogue of the scanned square, or rather the handle for
the puzzle pieces, a distinguished label * € C is considered. C*-labeled graphs
are those ^-labeled graphs that contain exactly one vertex v with lb(v) = *;
this vertex is then called the graph's central vertex and is referred to simply
as * when the context is clear.

For an £*-labeled graph G, we let G* be the (unique) component of G
containing *. A sequence α of labels associated with a path from the central
vertex * to some vertex v is called a label-sequence for v] the set of such
sequences is denoted by Lbs(v). If labeled graphs have the property that, for
any vertex ι>, a label sequence from Lbs(v) labels a path to v and not to any
other vertex, then the labeling provides a coordinate system. Notice, however,
that each vertex may have a number of different "coordinates". This leads to
the following definition:
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Definition 3.1. A finite connected C*-labeled graph K is a Kolmogorov-
graph, or K-graph, over £ if (Va)(Vu, υ G K)[a G Lbs(u) Π Lbs(υ) => u = ύ\.

We refer to the above property of graphs as the principle of unique loca-
tion; it guarantees that isomorphisms between K-graphs are uniquely deter-
mined. This principle and its relation to condition (α) in Kolmogorov and
Uspensky's work is discussed in remark 1 below. — K-graphs constitute the
class of finite symbolic configurations on which our machines operate, and we
describe now what elementary operations are allowed on such configurations.
The operations take the form of generalized production rules and are directly
motivated as puzzle-piece substitutions.

Definition 3.2. A graph-rewrite rule, or simply rule, R is an ordered pair
(A,C), where (R's antecedent,) A and (R's consequent^ C are K-graphs. For
a given R we let AR be A and CR be C. A sequence K of rules such that for
every £?,/?£?£ [Aq ~ AR =ϊ AQ U CQ ~ AR U CR] is called a program.

The application of a rule R to a K-graph K substitutes CR for AR in K:
that requires, certainly, that AR is (isomorphic to) a subgraph of K and that
CR can be "inserted into" K \ AR. The crucial work is done by the vertices
which occur in both AR and CR. As an easy example, consider rule R:

and K-graph K:

To apply R to K, we first remove AR from K, except for those vertices which
appear also in CR; this is given by K \ (AR \ CR):
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Inserting CR into K \ (AR \ CR) leads to the graph (K \ (AR \CR))(JCR,
denoted by R[K]:

The above case is special in two respects. First, AR C K. In general, we
would like to apply Λ, if AR is isomorphic to a subgraph of K, and, clearly,
for every K' ~ K, R[Kr] should be isomorphic to R[K]. This can be most
easily accomplished by using a permutation π such that A*R C K. Because of
the key role played by the identity between certain vertices in AR and in CR,
we of course also have to apply π to CR and make a similar replacement.

The second special property of our example is this: none of the "new"
vertices of CR (i.e., vertices which did not occur in AR), occur in K\(AR\CR).
In general, however, K \ A*R may contain vertices which appear also in CR;
these vertices in CR must be replaced as well. This second replacement, say,
to C", has to satisfy two properties: (i) none of the vertices in VA* Π Vcj
may be replaced; (ii) all vertices which occur in C' but not in A*R should not
occur anywhere in K \ A\. (i) may be stated as C1 —A*R CR', (ii) is given by

Definition 3.3. Given a K-graph K and a rule R, R is said to be applicable
to K if for some permutation π, A*R C K. In this case, R[K] = (K\ (A^ \
C')) U C" for some C' ~A^ C\ such that Vc> Π Vκ C VA*R .

If we restrict ourselves to programs, we rule out the kind of non-
determinism that Turing considered for his machines, but it may still be
that a number of different rules can be applied to a given state K. As sug-
gested for the case of string machines in section 2, we avoid this difficulty by
ordering the rules linearly and always using the first (in that ordering) appli-
cable rule. Finally, having defined the configurations on which our machines
operate and the steps they can take, we define the machines themselves.

Definition 3.4. Let C be a finite alphabet with a distinguished element * and
let M = (<S, T}, where S is the set of all K-graphs over C and T is a partial
function from S to S. M is a K-graph Machine over C if and only if there
is a program ΊZ = (ί?o,..., Rn) such that:

For every S E S, if there is an R £ Ti that is applicable to S, then
Γ(S) = (Ri[S])*, where i = min{j \ Rj e K is applicable to S};
otherwise T is undefined for S.
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The elements of S are the states of M, and T is the machine's transition
function. We say that T satisfies the principle of local action. — We can
give an obviously equivalent definition of K-graph machines that brings out
the special principles more directly. Let M = (S^F), where S is a set of
£*-labeled graphs and T is a partial function from S to S\ M is a K-graph
Machine over C if and only if (i) S is the largest set of £*-labeled graphs
that satisfy the principle of unique location, and (ii) T satisfies the principle
of local action.

Remarks

1. The principle of unique location.. In the brief discussion preceding the def-
inition of K-graph machines, we mentioned two sources of non-determinism
present already for letter and string machines (and the standard way of cir-
cumventing them). However, there is one additional source, when graphs,
even labeled ones with a central vertex, are considered as the configurations
on which production rules operate: if the antecedent of a rule can be embed-
ded into a given graph, it usually can be done in a variety of ways; the result
of the rule application will in general depend on the chosen embedding. It
is precisely this kind of indeterminacy that is excluded by the principle of
unique location, as it guarantees that there is a unique embedding, if a K-
graph can be embedded into another K-graph at all. The principle is also
related to a second conceptual issue, namely, immediate recognizability. For
any K-graph machine M and any K-graph whatsoever, we can decide in con-
stant time, whether any rule of ΛΊ's program is applicable. Mathematically,
the principle is exploited for the reduction in section 4. It guarantees that,
for any £*-labeled graph, paths starting at the central vertex are uniquely
characterized by the sequence of symbols labeling their vertices. Thus, using
the lexicographical ordering on strings of labels from £, we can choose for
each vertex a unique address which picks out that vertex in terms only of
labels.

Kolmogorov and Uspensky used their condition (α) for similar purposes.
That condition is formulated in our setting as follows: For every graph 5 E
<S, if u and υ are vertices of 5 both adjacent to some vertex w of 5, then
lb(u) φ lb(v). We call a connected £*-labeled graph satisfying condition (α)
a Kolmogorov complex over C or, briefly, a K-complex. Condition (a) implies
our principle of unique location, but is not implied by it. The first claim is
easily established; for the second claim one sees directly that *—A—A—A—
A is an example of a K-graph that is not a K-complex.

2. Preservation under rule application.. We require that T is a partial func-
tion from S to S. As matters stand, programs and K-graph machines cannot
be "identified"; the reason is this: not every rule, when applied to a K-graph,
yields a K-graph. As a trivial example, consider R = *—A—B => *—C—B
and K = B—C—*—A—B—A. Then R[K] = B—C—*—C—B—A which is
certainly not a K-graph, even though K is a K-graph and R is a rule.
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It is straightforward to modify any given machine program 72, to a program
72,' such that 72, and 72,' yield the same result when 72, transforms a K-graph
into a K-graph, but 1Z! makes the machine diverge on K-graph inputs that
72, transforms into graphs not satisfying the principle of unique location.
Given this modification, 72/ defines a unique partial function from S to S. —
Kolmogorov and Uspensky required a particular structure on rules preserving
condition (α). They use a partial function φ : VA — > Vc to determine those
vertices that, in our definition, are in VA Π Vc As one has to be careful only
about the symbols adjacent to vertices in the image of φ, they imposed in
effect the following condition (β) for a given rule (A,C,φ):

(Vtf € C)[(y = φ(x] kvy£C)=ϊ [lb(v) = * or (3u;)(fi;χ G A & /6(tι;) = lb(υ))]].

Consequently, if a program 72, satisfies (β), then M = (S,F) is a K-graph
machine, where S is the set of all K-graphs on C and F is the unique function
on S defined by 72,.

3. Turing's conditions.. K-graph machines clearly satisfy the determίnacy
condition, but also the boundedness and locality conditions — when those are
suitably interpreted: the number of "immediately recognizable" symbolic con-
figurations is given by the number of distinct antecedents and consequents
of the machine's program; operations are quite properly viewed as modify-
ing observed configurations, and observed labeled vertices lie always within
a fixed "radius" around the central vertex. (The radius can be read off from
the program, e.g., it can be taken to be the maximal length of paths in any
K-graph of the program.) We make some additional remarks about the prin-
ciple of local action, as it might be thought that — even in the case of string
machines — locality is violated! The reason being, that in an "implementa-
tion" of those machines, e.g., on a standard Turing machine, the total tape
content is affected when using a rule that replaces a string by either a longer
or a shorter one. However, this seems to be pertinent only if the tape has a
rigid extrinsic coordinate system as given, for example, by the set of integers
Z. When a different presentation of Turing machines is chosen, as suggested
for example in (Gandy 1980), or when the underlying structure is flexible to
insertions, as in our set-up, the concern disappears.10 It is precisely the use
of an intrinsic coordinate system, guaranteed through the principle of unique
location, that makes for the locality of the replacement operations.

4. Subsumption and Simulation

K-graph machines capture the general starting-point of Turing's analysis in
a most natural way. Consider, for example, encoding the squares in Turing's
"child's arithmetic book" as follows:

10 These two ways of dealing with the issue are two sides of the same coin.
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One can attach numerals to the squares (like writing them in the book),
and directly encode, for example, the elementary school algorithm for column
addition via K-graph operations. A rule from such a machine is shown below.
(The rule collapses two digits and enters a special "carry" configuration so
that succesive rule applications will move the central vertex to the top of the
next column and place a 4Γ there before returning to continue collapsing the
current column.)

It is also immediately evident that Turing machines are K-graph machines:
consider the following formulation of the rule aqiSkβ => αgmO/3 from section
2:
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Such considerations can be given in a similarly direct way for string ma-
chines and their generalizations to higher dimensions, thus in particular for
the generalized Turing machines described in (Kleene 1952). A host of other
models of computations, including the Kolmogorov machines as defined in
(Uspensky and Semenov) or the register machines as introduced by (Shep-
herdson and Sturgis), can be shown to be subsumed under K-graph machines.
Joining these observations with the main result of this section, we have an
absolutely uniform way of reducing computations of a particular model to
Turing machine computations: We have only to verify that the computation
model is subsumed under K-graph machines. So let us turn to the substantive
task of this section, namely, to simulate K-graph machine computations by a
Turing machine, i.e., for an arbitrary K-graph machine M = (S,J~) over the
alphabet £ we construct a Turing machine11 M over the alphabet {0, 1} that
simulates M. The simulation requires (i) that we give linear representations
of K-graphs, and (ii) that we show for every S E <S, if σ = 5, Si, . . . , Sn is a
computation of M, then τ = T0, TΊ, . . . , Tm is a computation of M. Here TO
represents 5, and Tm represents a K-graph isomorphic to 5n; furthermore,
there exists a subsequence T^ , T;2 , . . . , Tin_λ of r such that for 1 < j < n — 1,
Tij represents a K-graph isomorphic to Sj . The conditions for infinite com-
putations are similar.

Before addressing (ii) in the proof of theorem 4.1, we discuss the linear
representation of K-graphs. We assume that £ is linearly ordered and let X
be the lexicographical ordering on finite sequences of symbols from £ induced
by that linear ordering. A second ordering on finite sequences α, β of symbols
is defined by α < β iff a is shorter than β or α and β are of the same length
and a •< β. The address Ad(v) of a vertex v G V is the <-minimal element
of Lbs(v); by connectedness such an address exists, and by the principle of
unique location Ad is injective. We assume that each vertex of U is a natural
number, and define for an arbitrary edge uv € E the location description
LD(uυ) by:

), u, lb(u)) if
λd(u)<λd(v)
Ad(v) < Ad(tι)

When we refer to an edge uv we assume from now on that Ad(u) < Ad(υ).
We define now an ordering on the location descriptions LΌ(E) = {LD(uυ) \

11 In contrast to our earlier discussion, we are going to use a Turing machine whose
tape is extendable only to the right.
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uv € E} for a given K-graph K as follows: LΌ(uιVι) E LD(w2V2) iff
Ad(uι) < Ad(n2) or u\ = t/2 and λd(vι) < Ad(υ2) GR(K), the canonical
graph representation of K, is the E-ordered sequence of location descriptions
fortf.

To obtain a tape representation of this sequence in the alphabet {0,1},
we first assign natural numbers to the symbols in £: 0 is used for the least
element (in the original linear ordering of £), 1 for the next, etc. Every vertex
v £ V is already a natural number, and we assume without loss of generality
that a state 5 with n vertices consists, of {1,..., n}. Finally, natural numbers
are represented in a modified binary form obtained from the standard one by
replacing every 1 by 11 and every 0 by 10; elements of a sequence of encoded
natural numbers are separated by exactly two O's; elements of a sequence of
such sequences are separated by exactly three O's. After these preparatory
considerations, we can establish:

Theorem 4.1. Any K-graph machine M can be simulated by some Turing
machine M.

Proof. The program of the Turing machine M that is to simulate M trans-
forms any state 5 into .F(S'), returns to its initial state, and, if possible,
further transforms the resulting state ^(5); the machine halts when none of
the rules defining T can be applied. (It should be obvious that this yields the
kind of simulation indicated above.) In the following more detailed descrip-
tion, we always use 5 to refer to the graph currently coded on the tape, even
though there are stages when some edges are removed and others are added.

The first step in constructing M's program is to modify the encoding of
ΛΊ's program 7£ with rules ΛQ, ..., Λr_ι.12 For a given rule, the antecedent
A and the consequent C are encoded by GR(A) and GR(C). As we are only
concerned with the isomorphism class represented by each rule, we are free
to encode each rule Ri (0 < i < r) by an isomorphic rule. Let N be the
maximum number of vertices occurring in any rule and replace each rule Ri
by an isomorphic R'{ such that for every vertex v of R^, N i < v < N (i+1). TZ
will indicate now the modified program ΛQ, ..., R'r_ι The tape is to contain
as input 5, all of whose vertices v are replaced however by v + M (where
M = N - r) so that all (vertex-) numbers are greater than M. Obviously,
CR IΊ (5 \ AR) = 0 for any R. This has also the following advantage (as

12 An alternative to this simulation is the following: We can also represent a rule
on the tape simply by writing GR(A) followed by a separator (say, ΌOOO') and
then by GR(C). To represent the program we represent each rule in order,
separating them by, say, ΌOOOO'. Then we can describe a Turing machine U
that simulates any K-graph machine conceptually in exactly the same way in
which a universal Turing machine simulates any other Turing machine M. In
the latter case the input to the machine is a Gόdel number of M and an input
to M. Here, U will take as input the coded program for the K-graph machine
followed by the initial state. Then U will carry out systematically the coded
program.
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will be clear from our further discussion): by looking at a vertex one can
determine immediately whether it occurred in the original state or whether
it was written by a rule; in the latter case one can decide which rule wrote
it.

Now M examines each rule in the given order via a subroutine CHECK-
R that determines whether R can be applied to S. If R is applicable, then
CHECK-R tries to modify 5 to an isomorphic S', such that AR is a subgraph
of S". If R is not applicable, CHECK-R may nevertheless have changed some
vertices on the tape, but the modified graph is isomorphic to 5. Note that this
way of proceeding is essentially "dual" to that in the definition of K-graph
machines: we replace vertices occuring in the original state rather than those
in the rule being applied.

CHECK-R starts with the head leftmost on the tape and proceeds by
moving to the right, searching for appropriate edges one at time. Let min be
the least and max the greatest vertex of R. In the iih step, we are looking
for an edge in 5 which matches the iih edge uv of AR. u is the second vertex
of some edge (already matched to an edge in 5) and occurs consequently
in 5. We search for w in 5 such that the edge uw is in 5 and such that
lb(w) = lb(v). If such a vertex is found, we distinguish two cases: (i) if min
< w < max and w φ υ, then w was written by R and is the image of some
vertex in AR other than v, and the search for the correct vertex has to be
continued; (ii) if w < min or w > max or w = v, then w is the correct vertex,
and M substitutes v for w everywhere on the tape and proceeds to search
for the next matching edge in S.

In sum, if M reaches the end of the tape before finding such a vertex,
M fails for this Λ; if CHECK-R fails for every rule Λ, M halts; if CHECK-
R finds a matching edge for every edge in AR, R is applicable. (Note that
the principle of unique location allows us to avoid backtracking in case the
algorithm fails for a particular vertex.)

If a rule R is applicable, M is going to modify its tape appropriately.
For each rule R there is a subroutine APPLY-R which applies R to the
current state: all edges which contain any vertex from VAR \ VCR are erased
and all those from CR are inserted—leftmost onto the tape (in the order
of their appearance in the canonical encoding GR(Cβ)). The tape contains
now a representation of R[S\, recall that the next state F(S) is defined as
the connected component of R[S] containing the central vertex. However, the
remaining computation will not be interfered with by unconnected edges left
on the tape. Finally, the head is returned to the left end of the tape, and the
state is set to M's initial state. D

We want to determine now, in a rough way, the number of steps M needs
to transform a K-graph S with n vertices into F(S). Assume that the lan-
guage for M contains / symbols, and that ΛΊ's program has r rules of size at
most N (i.e., at most TV vertices occur in A U C). For a given state 5 with n
vertices, the maximal degree of each vertex is / + 1; otherwise, the principle
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of unique location would be violated. Thus at most n(l + l)/2 edges have to
be represented. The largest (vertex-) number to be represented is n, which
has length 2 logn in our modified binary notation. The largest LD has length
of order log(2n + 21). Thus the representation of S is of length O(nlogn).

The renumbering step must traverse the entire tape. Since we wish to
increase each vertex by at least M, we take M' to be the least power of
two greater than or equal to M and add M' to each vertex. This operation
requires shifting all of the cells right of the vertex being updated up to log M'
cells to the right. This requires rewriting up to O(n log n) cells for each vertex.
Since this operation is done to all occurrences (of which there may be up to
/ + 1 many) of each of the n vertices, it is an O(n2logn) operation. (The
rewriting itself can be done in a single pass over the number and requires
logn steps.)

The further rewriting operations required for finding the applicable rule
all involve replacing numbers greater than M' by numbers smaller than M';
thus, no shifting is involved in these operations, since we allow extra O's to
occur between integers. Attempting to match a given edge in a rule to one
on the tape might require looking at the entire tape and is an O(nlogn)
operation; that may have to be done for every edge in every antecedent.

If we succeed in finding an applicable rule, we apply it; i.e., we transform
the tape by erasing all edges from AR and inserting all edges from CR at
the beginning of the tape. This may require shifting all O(nlogn) symbols
by at most the length of the largest GR(Aβ). Hence only O(nlogn) many
steps are required for rule selection and application. But once this has been
accomplished, the entire transformation is complete, so the complexity of the
simulation is O(n2 logn).

Now let us consider simulating a full computation of M. If we let fc =
max{|CΛ| - \AR\ \RεK}, then for any S G 5, \F(S)\ < |5| + fc; here \K\
is the cardinality of the set of vertices of K. Let ft be a natural number such
that hn2 log n is the complexity of the "step-simulation" for M of M we just
discussed. Assume, in a first example, that M runs in constant time, say,
in ra steps. Then the length of the computation of M for input of size n is
bounded by

5 = hn2 logn + h(n + fc)2 log(n + fc) + + h(n + km)2 log(n + fcra).

Clearly,

n2 logn < s < mh(n + fcra)2 log(n 4- fcra) = O(n2 logn)

so s = 0(n2logn).

If M runs in higher order time, however, the step-complexity of M is not
preserved. Assume, for example, that M runs in ranc-many steps, for some
ra and c. Then the complexity of M for input of size n is bounded by

Λn2logn+/ι(n+fc)2log(n+fc)+ •+h(n+kmnc)2 log(n+fcranc) = O(n3clogn)
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This analysis illustrates the quite obvious point that the complexity of
computing a given function depends on the machine used to carry out the
computation. An interesting example is multiplication: it can be computed
in linear time by RAM's and SMM's (Schδnhage), but it is also known that
Turing machines cannot multiply in linear time (Cook and Aanderaa; Pa-
terson e.a.); we do not know, whether K-graph machines can. This question
and related ones raise many interesting issues about complexity, particularly
whether one model allows a more fundamental analysis of the complexity of
algorithms than another.

5. Concluding Remarks

For Turing the ultimate justification for his restrictive conditions lies in the
necessary limitation of human memory, and that can be directly linked to
physical limitations also for machines; cf. (Mundici and Sieg), section 3.
Church in his review of Turing's paper seems to have mistaken Turing's
analysis as an analysis of machine computations. Church's apparent mis-
understanding is common: see, e.g., (Mendelson 1990). So it is worthwhile
to point out that machine computability was analyzed only much later by
Gandy (1980). Gandy followed Turing's three-step-procedure of analysis, ax-
iomatic formulation of general principles, and proof of a reduction theorem,
but for "discrete deterministic mechanical devices", not computors.

Gandy showed that everything computable by a device satisfying his prin-
ciples, a Gandy machine, can already be computed by a Turing machine. To
see clearly the difference between Turing's analysis and Candy's, note that
Gandy machines incorporate parallelism: they compute directly Conway's
game of life and operate, in parallel, on bounded parts of symbolic configu-
rations of possibly unbounded size. The boundedness conditions for Gandy
machines and the principle of local causation are motivated by physical con-
siderations. We have been concerned, in contrast, with an explication and
generalization of Turing's arguments for his thesis, that all mechanical pro-
cesses can be simulated by (Turing) machines. We are coming back to this
starting-point of our considerations through three remarks.

First, Turing analyzed mechanical processes of a human computor. The
reduction of string machines or of K-graph machines to letter machines over a
two-element alphabet does not show that mental processes cannot go beyond
mechanical ones; it only shows that Turing machines can serve as a "nor-
mal form" for machines, because of the simplicity of their description.13 The

13 For this reason Turing machines are most suited for theoretical investigations.
This state of affairs is analogous to that involving logical calculi: natural deduc-
tion calculi reflect quite directly the structure of ordinary arguments, but have a
somewhat involved metamathematical description; in contrast, axiomatic logical
systems are not suited as frameworks for direct formalizations, but—due to their
simple description—are most suitable for metamathematical investigations.
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question, whether (different kinds of) machines are adequate mathematical
models for mental processes, is left completely open. That is an empirical
issue!

Second, the formulation of the boundedness and locality conditions for
mechanical processes and the design of general machine models allow us to
give uniform reductions. A natural generalization of K-graph machines, not
giving up these broad conditions, captures parallel computations of "discrete
deterministic mechanical devices", not computers. A future paper of ours
gives such a generalization, based on the presentation of machines by Gandy
(1980) discussed above.

Third, support for Turing's thesis is best given in two distinct steps: (i)
mechanical processes satisfying boundedness and locality conditions can be
recognized "directly", without coding or other effective transformations, as
computations of a general model; (ii) computations of the general model can
be simulated by Turing machines. The plausibility of Turing's thesis rests
exclusively on the plausibility of the modified central thesis (i); after all, (ii)
is a mathematical fact. Our modification of Turing's central thesis states that
mechanical processes are easily seen to be computations of K-graph machines;
in our view, this is a most plausible claim.
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