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1. Introduction

There are two basic properties of a logical system: consistency and com-
pleteness. These two properties are important for systems used for particular
special purposes (say, in artificial intelligence), as well as for systems proposed
as foundations of the all of mathematics. Therefore, any systematic study of
the foundations of mathematics should address questions of consistency and
completeness. Godel’s theorems provide negative information about both:
any reasonable sufficiently strong theory is unable to demonstrate its own
consistency and any such system is incomplete.

There has been impressive success in proving independence results for set
theory. Cohen’s forcing method and its boolean valued version was applied to
solve the continuum problem and to prove a lot of other sentences to be inde-
pendent of set theory. This may give the impression that logic is doing very
well in studying the independence phenomenon which is only partly true. The
known independent sentences in set theory express statements about infinite
sets. The type of the infiniteness in these independence results is, in a sense,
of higher order than in classical mathematics. For instance, the continuum
hypothesis talks about the cardinality of the set of real numbers, which is
in any case uncountable. While most of classical mathematics is about real
numbers, almost everything there can be encoded using only a countable
number of elements, hence can be expressed as a statement about natural
numbers. As an example, consider a continuous real function. Clearly, such
a function is described by its values on rationals, thus statements about con-
tinuous functions can be written as arithmetical formulas. For arithmetical
formulas, current methods of logic almost completely fail. An exception are
Paris-Harrington type independence results [28]. Still it is true that no prob-
lem from classical mathematics (i.e. number theory, algebra, calculus) was
proved independent from a logical theory before it had actually been solved.
Furthermore, it seems that even the most difficult classical results in number
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theory and finite combinatorics can be proved in Peano arithmetic, a theory
which is much weaker than Zermelo-Fraenkel set theory.

Therefore one of the principal goals of mathematical logic should be de-
velopment of new techniques for proving independence. Naturally we should
start with weak theories and extend our techniques to stronger ones. This is
what I referred to in the title as the bottom-up approach. We can view the
independence result of Paris and Harrington for Peano arithmetic as the first
result in this direction. Later most of the research concentrated on weaker
systems called bounded arithmetic. The reason for studying bounded arith-
metic is not only the fact that it is much weaker. Bounded arithmetic is
interesting mainly because of its connection to computational complexity.
There seems to be a correspondence between various theories from the class
of bounded arithmetic and complexity classes. This correspondence manifests
itself in many ways; e.g. to separate two theories looks to be almost as hard
as to separate the corresponding complexity classes.

It turned out that bounded arithmetic is not the very bottom level from
which one should start. Independence and separation problems for bounded
arithmetic can be further reduced to combinatorial problems about proposi-
tional calculus, namely, questions about the lengths of proofs. Here we come
even closer to computational complexity, as proofs in propositional calculus
are essentially nondeterministic computations. '

Concerning the consistency question there has been practically no progress
whatsoever. Maybe, it is because this is not a mathematical question and we
should discard it for this reason. However the sentences expressing consis-
tency of a theory are a very important tool in proof theory. They can be used
to separate a weak theory from a strong one, but not in the case of bounded
arithmetic, as we shall see below.

There is a lot of activity around bounded arithmetic, the complexity of
propositional calculus and many questions studied in theoretical computer
science are related to it too. The purpose of this paper is to survey some
results which should give an idea to an outsider of what is going on in this
field and explain motivations for the studied problems. We recommend (3, 5,
15, 11, 34] to those who want to learn more about this subject.

2. Basic concepts
2.1

The basic theory used in logic for studying natural numbers is the so called
Robinson’s arithmetic, or Q, which is axiomatized by the following axioms:

S(x) #0, S(z)=S(y) »z =y, z#0 = Jy(z = S(y)),
z+0=gz, w+S(y)=S(z+y)7 z-0=0, mS(y)=:cy+:z,
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r<y=3z(z+z=1y).

These axioms express the inductive properties of the operations of the suc-
cessor .S, addition and multiplication, the last axiom is just a definition of
<. The theory is useless for practical purposes as it does not prove even such
basic statements as is the associativity law for addition.

Another basic system, called Peano arithmetic or PA, consists of Robin-
son’s arithmetic and induction axioms

(9(0) AVz(p(z) = 9(S(x)))) = Yzo(z), (2.1)

for all formulas in the language {0, S, +, -, <}.

A bounded quantifier is a quantifier of the form Vz < 7 or 3z < 7 where
T is a term not containing the variable x. These constructs are, of course,
not present in the usual first order language, so we treat them as abbrevi-
ations. (Alternatively, they can be used as part of the language, if we add
appropriate logical rules.) A formula where all quantifiers are bounded is
called a bounded formula or Ag or Xy. Formulas of the form Vz;...Vz,p,
3xq ... 3xnp, V1...V2,3y1 ... Fymep, I11 ... 32, VY1 . . . Vymp, etc. where ¢
is a bounded formula are called, respectively, ITy, X, IT;, X5 etc. formulas.

In this hierarchy the simplest sentences which are unprovable in arithmeti-
cal theories are IT;. This is because a true X; sentence is already provable
in @ (take the numbers which witness the existential quantifiers and check
the Ao part using the axioms of Q). Also because of their simplicity IT;
sentences are the most interesting ones from the point of view of provability.
Many famous problems can be stated as II; sentences: Fermat’s last theorem,
the four color theorem (both being eventually proved). The famous Riemann
hypothesis can be also stated as a II; sentence see [22, 24], though it is not
S0 easy to prove. Several conjectures about the distribution of primes are IT;
sentences.

The most important problem in theoretical computer science is the ques-
tion if P = NP. The statement P # N P, which most people believe is true,
can be expressed as a II> sentence (this follows from the existence of an NP
complete set). Thus we may hope that we can prove its independence in the
same way as the independence of Paris-Harrington type sentences, but it is
very unlikely. Let n(k) be the least n such that satisfiability of formulas of
length n cannot be computed by a circuit of size n*. A Paris-Harrington type
independence proof would require to prove that n(k), as a function of k, grows
extremely fast. This is the same as to say that the circuit complexity of sat-
isfiability is nf(¥) where f(k) grows extremely slowly. Quite on the contrary,
the general opinion is that f(k) is probably of the order n¢, for some constant
¢, and definitely at least, say, elogn. The statement that satisfiability does
not have circuits of size n€!°8™ is a IT; sentence. The same can be said about
other conjectures in complexity theory: they are not IT; sentences, but we
believe that they will follow from stronger II; sentences.
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Let us note that we are interested only in theories one of whose models is
the standard model which is the set of natural numbers with the usual opera-
tions (subtheories of the true arithmetic, in particular they are w-consistent).
For such a theory T, if we prove that a IT; sentence ¢ is consistent with T,
then ¢ is true. The standard model is isomorphic to an initial segment of any
model of an arithmetical theory, hence any consistent II; sentence is true.
(By an initial segment we mean a nonempty subset which contains with each
number all smaller numbers.)

The fact that so many important problems are I1; sentences is an impor-
tant reason for looking for techniques by which one can prove independence
of such sentences. In fact, as shown above on the example of P = NP?, we
use sentences of higher quantifier complexity only because we are not quite
sure what is the right conjecture. For more information about this subject
we recommend to consult Kreisel’s paper [22].

2.2

It is necessary to have some background in complexity theory in order to ap-
preciate the importance of the bottom-up approach. We shall assume that the
reader knows some basics, in particular knows the definitions of the classes
P and NP. For a logician it is easy to define a hierarchy of classes extending
NP where NP = £7, II7 are complements of the NP classes (also de-
noted by coN P), X% are classes defined by polynomially bounded existential
quantifiers followed by universal polynomially bounded quantifiers bound-
ing variables in a predicate from P etc. The union of these classes is called
the Polynomial Hierarchy and denoted by PH. If we use linearly bounded
computations instead of polynomially bounded ones, we obtain the Linear
Hierarchy. The Linear Hierarchy when restricted to sets of natural numbers
coincides with sets definable by Aq formulas.

3. Independent sentences

In this section we shall explain why we are not satisfied with the current
methods of proving independence results. The main reason is that, except for
Godel’s theorem which gives only some special formulas, no general method
is known for proving independence of II; sentences.

Cohen’s forcing method can be roughly described using model theory as
follows. We start with a model M of ZF and extend it to M' by adding new
sets. When doing that we must follow some rules in order to get a model
of ZF again. The details are not important here, what we need is only the
fact that the ordinal numbers are used as a sort of skeleton for building
the new universe. As a result the ordinal numbers of the new model M’
are the same as the ones of M. Furthermore, the concept of being finite is
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also preserved by the extension. The natural numbers are the finite ordinals
hence, in particular, they are the same in both models. Consequently the
arithmetical sentences which are true in M’ are the same as those in M.
Therefore this method does not give any independent arithmetical sentence.

Modifications of the forcing method have been used in various situations,
so it is not completely excluded that some variant can give arithmetical inde-
pendent sentences. However in order to get something interesting one would
have to come up with a substantial change. To see what kind of problems
it is necessary to overcome let us mention at least one. Suppose M is just a
model of the natural numbers, say a model of Peano arithmetic. Trying to
follow the original idea of forcing we attempt to add new numbers between
the old ones, i.e. for some a € M there will be some new b € M’ b < a.
However there is a number ¢ € M which codes (say using Gédel 3-function)
all the numbers of M below a. This ¢ will have the same property in M’, so
we cannot add such a b!

Let us turn now to Paris-Harrington type independence results. Again we
shall not talk about details and concentrate only on the overall structure of
the argument. Let M be a nonstandard model of PA, say, a countable one.
Instead of enlarging the model we look for an initial part M’ of M which is
also a model of PA. It turns out that M’ is a model of PA if it is closed
with respect to certain functions definable in M. The point of the argument is
that it is possible to characterize, using some natural combinatorial sentences,
where such segments can be found. Various combinatorial characterizations
give various independent combinatorial sentences. The fact that we use initial
segments of a given model is a serious limitation of the method. This method
can prove independence of sentences which are IT> and, moreover, directly or
indirectly refer to fast growing functions. Also it is known that these sentences
are equivalent in PA to the X reflection principle. This is not necessarily
a drawback, as we consider equivalence with respect to a strong theory, but
still it means that the class of such sentences is restricted.

It is obvious that we cannot prove independence of a IT; sentence in this
way: any such sentence is preserved on initial segments. The only way that we
know of to prove independence of a II; sentence is Godel’s theorem. Gédel
showed that a suitable diagonal sentence (“I am not provable in PA”) is
not provable in PA. Then he proved that the sentence is equivalent to a
sentence Conp4 asserting the consistency of PA. The same argument works
for any sufficiently strong theory; with some modification it can be applied
even to Robinson’s Q). The above remark that the Paris-Harrington sentence
is equivalent to the X reflection principle suggests that one might prove
the independence of a concrete combinatorial statement by showing that it
implies the consistency of PA or another theory, but so far there are no such
results. '

By “concrete combinatorial” we mean a sentence expressing some princi-
ple from finite combinatorics or number theory. If one takes into account infi-
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nite principles, then such reductions to consistency statements are quite com-
mon. In this way one proves e.g. that some large cardinal axiom is stronger
than another one.

4. Bounded arithmetic

4.1

By these words we denote a class of arithmetical theories which are axioma-
tized by induction axioms restricted to bounded formulas in various languages
and with various modifications, restrictions, etc. We should stress again that
the reason for restricting to weak theories is not that we accept some philos-
ophy of “feasible mathematics” where only certain constructive reasoning is
allowed. We want to study metamathematical properties of such theories us-
ing any mathematical means, however nonconstructive. The true reason why
we are interested in these systems is that they seem to be more amenable to
logical analysis and for their close relation to complexity theory.

The oldest considered system is IAp which is @ plus induction axioms
(2.1) for A formulas, introduced in [27]. If M is any model of Ay, then
any infinite initial segment closed under multiplication is a model of IAg
too. This implies that if IAy proves that a function f(z) is defined for all
numbers, then the function is bounded by a polynomial in z. In particular it
is not provable in IAq that zl!°82(=+1)] 97 etc. are defined for all numbers.

We can view a number z as encoding a binary string of length = log z. The
strings of quadratic length, i.e. of length (log z)?, can be encoded by numbers
of size ~ xll°82(z+1)] the length (logz)* requires the function zll°g2(=+1)]
iterated twice and so on. Hence the function z!1°82(*+1)] gives us the right
growth rate if we want to extend the lengths of strings polynomially, e.g.
using polynomial time computations. This is the reason for extending I Ag
by an axiom saying that is a total function. This theory is usually denoted
by I14o + Vz3y (y = zl°82(=+1]) or shortly IAg + 2. (The last formula is
just an abbreviation of a rather complicated formula, since we do not have z¥
in our language.) This theory is capable of formalizing properly polynomial
time computations, not only deterministic, but in fact with finitely many
alternations — this is what is needed for machine based definitions of the
Polynomial Hierarchy.

4.2

Having these two theories we can give an example of a basic problem in
bounded arithmetic which seems to be closely connected with a problem in
complexity theory.

Problem 4.1. Is every II; sentence provable in JAg + {2; provable in IAq ?
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The corresponding problem in complexity theory is:

Problem 4.2. Is the Polynomial time hierarchy equal to the Linear time
hierarchy?

The connection between the two problems is: if we can prove in I Ag that
the polynomial time hierarchy equals to the linear time hierarchy, then every
II; sentence provable in IAg + (2, is provable in IAg. Note that this does
not exclude that the answer to the second problem is YES while the answer
to the first one is NO. We conjecture that the answer to both problems is
NO and hope that the first problem is somewhat easier. A negative answer to
Problem 1 would give us at least some supporting evidence that the answer
to Problem 2 is NO, namely that the equality of the two complexity classes
is not provable in I Ag.!

4.3

The natural approach is to try to show that the consistency of I Ag is provable
in I Ag+2;, while by Godel’s theorem it is not provable in I Ag. This approach
is, however, quite hopeless: even the consistency of @ is not provable in /Ag+
£2,. This follows from:

Theorem 4.1. (Wilkie [39]) There is an interpretation of A + 21 in Q.

It follows that IAg+§21 F Conja,+0, = Cong, whence IAg+2, I/ Cong.

Some weaker versions of consistency statements have been proposed, but
the general feeling is that there is some deeper reason why this cannot work.
What we suspect is that such results cannot be proved by diagonalization.
This term refers to a method which was used for the fist time by Cantor
to prove that the cardinality of the power set is larger than the cardinality
of the given set. A similar idea was used in recursion theory and later in
complexity theory to separate some complexity classes. It seems that the
use of self-referential sentences to separate theories in logic is just another
facet of this method. As all attempts to separate pairs of complexity classes
such as P and NP have failed and because of the similarity of self-reference
to diagonalization, there is little hope that we can solve such problems as
Problem 1 using a version of Gddel’s theorem.

4.4

In order to get connections to more interesting problems in complexity theory
than Problem 2, we have to introduce fragments of IAg + (2. The idea

! We cannot speak about classes in I Ag directly, instead we talk about definability
by formulas of certain complexity. Another option is to consider second order
bounded arithmetic.
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is to restrict the induction schema further to subsets of bounded formulas.
From the point of view of logic, a natural hierarchy is obtained by restricting
the number of alternations of bounded quantifiers. Unfortunately, if we use
the usual language of arithmetic, we do not get classes which correspond
to natural Turing machine definable classes. Therefore, the language must
be extended further by some simple functions; in particular |log,(z +1)]
and a function whose growth rate is similar to z!!°82(*+1)] are added as
primitives. Furthermore, when defining the hierarchy of the formulas, the
bounded quantifiers in which the outer function is log, are not counted. The
particular details are not important, we only need that the classes of formulas
X% define exactly the sets in the complexity classes X? and similarly for the
IT classes.
We also have to modify the induction axioms. Instead of (2.1) we take

((0) AVz(p(z) = (9(22) A (S(21)))) = Yzo(T). (4.1)

This is induction on the length of the binary representation of numbers. The
intuitive explanation of why we take this weaker form of induction is that to
verify an instance of ¢(n) we need to unwind the premise only logn times
and logn is the size of the input when we compute with n.

The theory axiomatized by some basic open axioms and the schema (4.1)
is denoted by Sq; it is a conservative extension of IAg + §2;. The fragments
where (4.1) is restricted to X are denoted by Si. So we can think of Si as a
theory for £¥. The theory S} deserves a particular attention as it is a theory
for NP. The definition of these theories is due to Buss [3]; the idea of (4.1)
goes back to Cook [6] where he introduced an equational theory PV.

Now you may ask, what is a theory for P? Well, one can give some sug-
gestions, e.g. PV, but I have to warn you that the correspondence between
the theories and the complexity classes is very loose and should not be taken
literally. For instance, S proves all instances of (4.1) for II? formulas, so
the theories for NP and for coNP coincide. We still think that this is not
evidence for NP = coNP. In a moment we will see that there is also a good
reason to associate Si with P rather than with NP.

5. Relations to computational complexity

There are not only “morphological” similarities between theories and com-
plexity classes, but also several provable relations. We shall mention at least
two basic results.

5.1

The first result concerns the question, how difficult is it to witness the exis-
tential quantifier in V3 sentences provable in a given theory. The paradigm
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is the classical result on the fragment of Peano arithmetic IX; (induction
restricted to X arithmetical formulas) due to Mints and Takeuti. This is the
result that 1Y, F Vz3yyp(z,y), for ¢ a X formula, implies that there exists
a primitive recursive function f such that ¢(n, f(n)) is true for all n.

The most important of such “witnessing” theorems is the following one:

Theorem 5.1. (Buss [3]) Suppose S} + Vz3yp(z,y), for ¢ a Z for-
mula. Then there exists a polynomial time computable function f such that
p(n, f(n)) is true for all n.

This theorem has a natural extension to theories S} and there are several
witnessing theorems for other theories and other classes of formulas. Theo-
rem 5.1 has an easy corollary which can be interpreted as an independence
result.

Corollary 5.1. If it is provable in S} for a class X that X € NPNcoNP,
then X € P, so NPNcoNP # P is not provable in Sj.

It has also been shown that there exists a model of PV in which NP n
coNP # P [15]. We cannot deduce much for complexity theory from this
result, since as soon as we make the theory only slightly stronger, the proof

breaks down. Still it is a nice result and we would like to get more results
like this.

5.2

The second result concerns the problem of the hierarchy of the theories S3. For

all we know they may be the same (the sets of their theorems may coincide).
Problem 5.1. Are there infinitely many ¢ for which S;'H properly extends
Si?

It is well-known that this is equivalent to the statement that S, is not
finitely axiomatized, and to the statement that I Ag+2; is not finitely axiom-
atized; it also implies that I Ag is not finitely axiomatized. The corresponding
problem about complexity classes is:

Problem 5.2. Are there infinitely many ¢ for which I} # II?, ,?

It has been conjectured that the answer to this problem is positive. This
conjecture belongs to one of the strongest considered in complexity theory;
in particular it implies P # NP and NP # coNP. Unlike with Problems 1
and 2, one can prove:

Theorem 5.2. (Krajitek et al. [20]) A positive answer to Problem 5.2 im-
plies a positive answer to Problem 5.1.
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This theorem is proven using a special kind of witnessing theorems for
theories S§. Note that contrary to what one may expect, we need IT?, o 7 x? 2
for proving Si # Si*!. There are several extension and variation of this result.
In particular, we know that Sj = Sit! = Si = S, [4]; the corresponding fact
for the polynomial time hierarchy is trivial.

To prove unconditional separation of S{;“‘l from Si, we have to find con-
crete sentences which are provable in Si*! but not in Sj. We do have some
candidates for such sentences but we have no idea how to prove their unprov-
ability. There is however something which is halfway between this and using
conjectures from complexity theory. We can extend the language by adding
an uninterpreted predicate, say « and consider variants of the theories in
this language. I.e. we do not add any basic axioms about a, but we extend
the induction axioms to all formulas of appropriate complexity containing a.
We denote such an extension of a theory T by T'(a). In several cases we can
solve separation problems for such extensions; in particular we know that
Si(a) # Sit1(a). For those who know basics of complexity theory it is not
that surprising, since there is a similar concept for complexity classes. This is
the so called relativization, which means that we augment Turing machines
with an oracle, which is essentially free access to some possibly complex set.
Then one can prove a lot of separations. The symmetry between theories and
complexity classes is, however, again not complete: using relativizations we
can make classes both unequal and equal (e.g. PA # NP* for some A and
PB = NP8 for another B), while we can only separate theories by adding
the uninterpreted predicate (unless we also add additional axioms).

6. Propositional calculus

We have considered theories and complexity classes. Now we shall talk about
a third kind of system related to the previous two: proof systems for proposi-
tional calculus. Thus we sink to the bottom of the universe of formal systems.

Most of the research into propositional calculus deals with semantical
modifications (extensions of the classical propositional calculus by modalities,
weakenings, such as intuitionistic logic etc). What we are interested in is
something different. We use only the classical propositional calculus and we
study possible ways in which the concept of the proof can be formalized.
Again this is related to complexity theory, if not just a branch of it.

As the set of tautologies is fixed once for ever, we cannot classify the
proof systems by what they prove. Instead we shall distinguish them by what
they prove using short proofs. By “short” we mean, of course, polynomial in
the size of the formula. Furthermore we can (quasi)order the systems by
defining P < @ for two proof systems, if for any tautology 7 its shortest
proof in @ is at most polynomially longer than its shortest proof in P. In all
concrete cases that we have so far encountered, if P < @, then there exists
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a polynomial algorithm which any proof of 7 in P transforms in a proof
(at most polynomially longer) of 7 in Q. Then we say that Q polynomially
simulates P.

The most common proof systems for propositional calculus are the sys-
tems based on finitely many axiom schemas and finitely many rules of the
type of Modus Ponens; quite often Modus Ponens is the only rule of the sys-
tem. The technical term for such systems is Frege system. It has been proved
[7] that all Frege systems have essentially the same power, namely they poly-
nomially simulate each other. (This is very easy to prove if the two systems
use the same connectives.)

To make the system stronger we add a rule that allows us to abbreviate
(long) formulas by a single variable. Formally this means that we can intro-
duce for every formula ¢ the equivalence ¢ = p, where p is a propositional
variable not used in the previous part of the proof nor in the proved formula.
Frege systems with this rule added are called Extended Frege systems. Note
that in this way we may reduce the total size of a proof, but we cannot save
on the number of steps.

To get substantially stronger systems we have to abandon the idea that
the proof consists of propositional formulas.? For instance, the next natural
system after Extended Frege systems is the Quantified propositional calcu-
lus [8]. Such a system is obtained from a Frege system by adding rules for
quantifiers. A proof is a sequence of quantified propositional formulas derived
according to the rules. We may use this system to derive quantified propo-
sitional formulas. If we want to use it as a proof system for propositional
calculus, we think of quantified propositional formulas as auxiliary means to
eventually derive a quantifier free propositional formula.

In general we require only that one can effectively check the proofs of
the system in question. More precisely, there must exist a polynomial time
algorithm to decide for a given sequence if it is a proof in the system. Thus
the proofs need not even be structured into steps as in usual proofs.

To give an example of a very strong proof system for propositional calcu-
lus, define d to be a proof of 7, if d is a proof in ZF of the statement Taut(7)
expressing that 7 is a tautology. To see why this system is strong just realize
that ZF proves that Frege, Extended Frege, Quantified propositional calcu-
lus and lot of others are sound systems. Thus given e.g. an Extended Frege
proof of 7 we only need to check in ZF that it is an Extended Frege proof
of 7 and then immediately we get that 7 is a tautology (provably in ZF).
Hence this proof system polynomially simulates all the above systems.

We can use the same construction for any theory in which the concept
Taut can be reasonably formalized. So we define for a such a theory T the
propositional proof system Pr to be the system where a proof of 7 is a proof
of Taut(r) in T. The Pr is not only an interesting construction, but it could

2 Of course it is always possible to use infinitely many axiom schemas, but then
we have to talk about how these schemas are defined.
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be useful for showing unprovability of certain II; sentences, namely universal
closures of IT? formulas. We denote this class of sentences by VII?.

Let ¢ be a IT? sentence, i.e., ¢ has no free variables. Then we can express ¢
using a propositional formula by replacing log bounded quantifiers by several
disjunctions or conjunctions and coding the variables bounded by universal
bounded quantifiers by propositional variables. Instead of going into details
of this transformation, let us only note that a propositional formula is true
iff it is satisfied for all possible values of the propositional variables. Thus
we implicitly interpret it as if there were universal quantifiers (which we
can actually add in the quantified propositional calculus). The range of this
quantification is exponential in the size of the formula in the same way as it
is in IT} sentences.

Let ¢(x) be a II? formula. Then we get a sequence of propositional for-
mulas 7, from the closed instances p(n), n = 0,1,2,.... Since we encode n in
binary, the length of 7, is polynomial in log n. If Vzp(z) is provable in T, then
we get important information on the lengths of proofs of these propositional
formulas in proof system Pr:

Theorem 6.1. Let T be a sufficiently strong arithmetical theory and ¢(z) be
a IT® formula. Suppose that Vzyp(x) is provable in T. Then the propositional
translations of sentences p(n) have proofs in Pr whose lengths are polynomial
in the lengths of these propositions.

Proof-sketch. Let 1, be the translation of ¢(n). If T is sufficiently strong, then
it proves Vz(o(z) — Taut(r;)). Hence if T proves Vzp(x), then all instances
7, have polynomial size proofs. O

To show that a given II; sentence is not provable, we have to prove a
superpolynomial lower bound on the lengths of proofs for the corresponding
tautologies. But even if we only show that there are some tautologies which
do not have polynomial size proofs in the proof system Pr, we get a very
interesting independence result:

Theorem 6.2. Suppose that the proof system Pr of a sufficiently strong the-
ory T is not polynomially bounded, i.e., there is no polynomial upper bound
on the length of the shortest Pr proofs of the propositional tautologies. Then
T does not prove NP = coNP.

Proof-sketch. Suppose that T' does prove NP = coNP. Then in T the coN P
predicate Taut(z) is equivalent to an NP predicate a(z). To prove some T
in Pr we need to show Taut(7); the proof of this sentence can be longer than
the shortest proof of a(r) only by a constant factor. Since « is NP we only
have to take a polynomial size witness for the truth of a(7) and check it.
This gives a polynomial size proof of . O

A possible approach for proving NP # coNP is to prove gradually for
stronger and stronger propositional proof systems that they are not polyno-
mially bounded hoping that eventually we develop a technique allowing us
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to prove that no propositional proof system is polynomially bounded (which
is equivalent to NP # coN P because of the general definition of the concept
of a propositional proof system). The theorem above shows that this is es-
sentially the same as showing unprovability of NP # coN P for stronger and
stronger theories.

A successful application of this reduction clearly depends very much on
how much hold we can get on the proof system Pr. This system seems to
be very strong even for weak theories. There is another way of associating a
propositional proof system to a theory which produces weaker systems, but
it is not as universal as the construction of Pr. The system is called the as-
sociated proof system of T and it is defined, roughly speaking, by requiring
the simulation of Theorem 6.1 to hold and that T proves its soundness (for
a precise definition see [34]). The latter condition is not satisfied by Pr. As-
sociated propositional proof systems have some nice properties, in particular
Theorem 6.2 holds for them too.

For strong theories it seems hopeless to give a comprehensible combina-
torial description even of the associated proof system. Fortunately, at least
for some systems of bounded arithmetic we get natural associated proof sys-
tems. The most interesting particular case is the theory S} whose associated
propositional proof system is, up to polynomial simulation, an Extended
Frege system [6, 3]. For Si in general we can take fragments of the quan-
tified propositional calculus obtained by an appropriate restriction on the
quantifier complexity of formulas [18].

A large part of the activity is concentrated on proving lower bounds
on the lengths of propositional proofs and we can report steady progress
[1, 12, 13, 21, 31, 32]. Unfortunately the proof systems for which one can
prove that they are not polynomially bounded are still much weaker than
Extended Frege; even proving a superpolynomial lower bound for Frege sys-
tems would be a breakthrough. Thus we do not expect that concrete indepen-
dent II; sentences will be found for strong theories in the near future. Still
we cannot exclude that somebody finds a completely new powerful method
for proving independence. In particular, Gédel’s theorem does not quite fit
into the picture drawn above, where provability is thought of as polynomial
length proofs in the associated propositional proof system. We know that
consistency statements are not provable and can be formalized as VII?, but
we do not have superpolynomial lower bounds on the lengths of proofs of its
propositional translations in the associated proof system.3

8 For Pr of a sufficiently strong theory T we have polynomial size upper bounds
on the lengths of proofs of its propositional translations. Let a sufficiently strong
theory T be given. The translations of Conr are some tautologies 7, express-
ing that “no ¢ < n is a proof of contradiction in 7”. Let o,» be tautologies
expressing that “there is no proof of contradiction in T' of length < m”; the
lengths of of o,, are polynomial in m. If m is the length of n, then o,, — 7» has
a proof polynomial in m, i.e., in the length of 7. In [33] we proved that first
order sentences Cont(m) expressing that there is no proof of contradiction in
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7. Model theory of weak arithmetical theories

The natural numbers are a basic algebraic structure, thus we can also use
the machinery of algebra and model theory. Then it is more convenient to
axiomatize the integers instead of just the positive ones. The basic theory is
the theory of discretely ordered commutative rings. The next stronger system
which has been studied is obtained by adding induction for open formulas; it
is denoted by IOpen. For this theory it is possible to prove independence by
constructing explicitly models. Thus it has been proved that it is consistent
with IOpen that 23 +y3 = 23 has a nontrivial solution and that /2 is rational
[36]. It is possible to get in such a way independence for slightly stronger
theories (e.g. postulating that the ring is integrally closed in its fraction field,
which, in particular, implies that v/2 is irrational [23]), but there seems to be
a serious obstacle to do it for theories which contain IAg and S3. It is well-
known that these theories do not have nonstandard recursive models, but it
is even worse: any nonstandard model contains an’initial segment which is a
nonstandard model of PA. Thus, in spite of using weak theories we get the
whole complexity of nonstandard models of PA [25]. Even if this research
does not lead directly to independence results for stronger theories, there are
interesting problems in this area from the point of view of both logic and
number theory [9, 26, 38].

Instead of constructing models directly one can try to modify a given
nonstandard model. We mentioned in Section 3. that we can extend a model
of PA only by adding elements which are larger than all the old elements.
That argument is not valid for models of bounded arithmetic, there it is
possible to add small elements (if the model is “short”). Several partial results
have been obtained in this way [1, 19, 35]. Another possibility is to choose a
submodel. In this way one can prove Theorem 5.1 [40] (for an exposition see
[11][Chap. V, Sec. 4]). For the most recent applications of model theory in
bounded arithmetic see [16, 37]

8. Conclusions

The reader may be a little disappointed now, because we promised to talk on
foundations of mathematics, but instead most of the time we talked about
computational complexity. That is not a mistake. Any reasonable definition
of a formal system presupposes the concept of computability. We have to use
some formalism, as pure reliance on intuition cannot be considered a foun-
dation. When working with weak theories, natural connections with com-
putational complexity are almost ubiquitous. Our feeling is then that we

T of length < m have proofs in T of length polynomial in m. However, if T is
sufficiently strong, then it proves Conr(m) = Taut(om) using polynomial size
proofs. Thus also T'aut(m.) have polynomial size proofs in T', which means that
7n have polynomial size proofs in Pr.



A bottom-up approach to foundations of mathematics 95

cannot solve problems of foundations of mathematics without solving or at
least understanding more deeply problems in complexity theory. But maybe
also in order to solve fundamental problems in complexity theory we need to
understand more about the foundations of mathematics.
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