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Summary. From 1931 until late in his life (at least 1970) Gόdel called for the
pursuit of new axioms for mathematics to settle both undecided number-theoretical
propositions (of the form obtained in his incompleteness results) and undecided set-
theoretical propositions (in particular CH). As to the nature of these, Gόdel made a
variety of suggestions, but most frequently he emphasized the route of introducing
ever higher axioms of infinity. In particular, he speculated (in his 1946 Princeton
remarks) that there might be a uniform (though non-decidable) rationale for the
choice of the latter. Despite the intense exploration of the "higher infinite" in the
last 30-odd years, no single rationale of that character has emerged. Moreover, CH
still remains undecided by such axioms, though they have been demonstrated to
have many other interesting set-theoretical consequences.

In this paper, I present a new very general notion of the "unfolding" closure of
schematically axiomatized formal systems S which provides a uniform systematic
means of expanding in an essential way both the language and axioms (and hence
theorems) of such systems S. Reporting joint work with T. Strahm, a characteriza-
tion is given in more familiar terms in the case that S is a basic system of non-finitist
arithmetic. When reflective closure is applied to suitable systems of set theory, one
is able to derive large cardinal axioms as theorems. It is an open question how these
may be characterized in terms of current notions in that subject.

1. Why new axioms?

Gόdel's published statements over the years (from 1931 to 1972) pointing
to the need for new axioms to settle both undecided number-theoretic and
set-theoretic propositions are rather well known. They are most easily cited
by reference to the first two volumes of the edition of his Collected Works.1 A
number of less familiar statements of a similar character from his unpublished
essays and lectures are now available in the third volume of that edition.2

* Invited opening lecture, Gόdel '96 conference, Brno, 25-29 August 1996. This
paper was prepared while the author was a fellow at the Center for Advanced
Study in the Behavioral Sciences, Stanford, CA, whose facilities and support
are greatly appreciated.

1 Cf. in Gόdel [1986] the items dated: 1931(p.l8l, ftn.48a), 1934(p.367),
1936(p.397), and in Gόdel [1990] those dated: 1940(p.9Ί, ftn.20[added 1965]),
1946(p.l51), ^7(pp.l81-183), ^P^(pp.260-261 and 268-270), and 1972a, Note
2 (pp.305-306).

2 Cf. in Gόdel [1995] the items dated: *1931?(p.35), *1993o (p.48), *JS5J(pp.306-
307), *1961/?(p.ZSb) and *J070α,δ,c(pp.420-425).
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Given the ready accessibility of these sources, there is n o need for extensive
quotation, though several representative passages are singled out below for
special attention.

With one possible exception (to be noted in the next section), the single
constant that recurs throughout these statements is that the new axioms to
be considered are in all cases of a set-theoretic nature. More specifically, to
begin with, axioms of higher types, extended into the transfinite, are said
to be needed even to settle undecided arithmetical propositions.3 The first
and most succinct statement of this is to be found in the singular footnote
48a of the 1931 incompleteness paper, in which Gόdel states that "...the true
reason for the incompleteness inherent in all formal systems of mathematics
is that the formation of ever higher types can be continued into the transfi-
nite... [since] the undecidable propositions constructed here become decidable
whenever appropriate higher types are added". In an unpublished lecture
from that same period Gόdel says that analysis is higher in this sense than
number theory and set theory is higher than analysis: "...there are number-
theoretic problems that cannot be solved with number-theoretic, but only
with analytic or, respectively, set-theoretic methods" (Gόdel [1995], p.35). A
couple of years later, in his (unpublished) 1933 lecture at a meeting of the
Mathematical Association of America in Cambridge, Massachusetts, Gόdel
said that for the systems S to which his incompleteness theorems apply "...ex-
actly the next higher type not contained in S is necessary to prove this arith-
metical proposition...[and moreover] there are arithmetic propositions which
cannot be proved even by analysis but only by methods involving extremely
large infinite cardinals and similar things" (Gόdel [1995], p.48). This asser-
tion of the necessity of axioms of higher type — a.k.a. axioms of infinity in
higher set theory — to settle undecided arithmetic (Π^) propositions, is re-
peated all the way to the final of the references cited here in footnotes 1 and
2 (namely to 1972).

It is only with his famous 1947 article on Cantor's continuum problem
that Gόdel also pointed to the need for new set-theoretic axioms to settle
specifically set-theoretic problems, in particular that of the Continuum Hy-
pothesis CH. Of course at that time one only knew through his own work
the (relative) consistency of AC and CH with ZF, though Gόdel conjectured
the falsity of CH and hence its independence from ZFC. Moreover, it was
the question of determining the truth value of CH that was to preoccupy
him almost exclusively among all set-theoretic problems — except for those
which might be ancillary to its solution — for the rest of his life. And rightly
so: the continuum problem — to locate 2*° in the scale of the alephs whose
existence is forced on us by the well-ordering theorem — is the very first chal-

The kind of proposition in question is sometimes referred to by Gδdel as being of
"Goldbach type" i.e. in Πι form, and sometimes as one concerning solutions of
Diophantine equations, of the form (P)D — 0, where P is a quantifier expression
with variables ranging over the natural numbers; cf. more specifically, the lecture
notes *193? in Gδdel [1995].
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lenging problem of Cantorian set theory, and settling it might be considered
to bolster its conceptual coherence. In his 1947 paper, for the decision of CH
by new axioms, Gόdel mentioned first of all, axioms of infinity:

The simplest of these ... assert the existence of inaccessible numbers
(and of numbers inaccessible in the stronger sense) > KQ. The latter
axiom, roughly speaking, means nothing else but that the totality of
sets obtainable by exclusive use of the processes of formation of sets
expressed in the other axioms forms again a set (and, therefore, a
new basis for a further application of these processes). Other axioms
of infinity have been formulated by P. Mahlo. [Very little is known
about this section of set theory; but at any rate]4 these axioms show
clearly, not only that the axiomatic system of set theory as known
today is incomplete, but also that it can be supplemented without
arbitrariness by new axioms which are only the natural continuation
of those set up so far. (Gόdel [1990], p.182)

However, Gόdel goes on to say, quite presciently, that "[a]s for the continuum
problem, there is little hope of solving it by means of those axioms of infinity
which can be set up on the basis of principles known today...", because his
proof of the consistency of CH via the constructible sets model goes through
without change when such statements are adjoined as new axioms (indeed
there is no hope in this direction if one expects to prove CH false):

But probably [in the face of this] there exist other [axioms] based on
hitherto unknown principles ... which a more profound understanding
of the concepts underlying logic and mathematics would enable us
to recognize as implied by these concepts, (ibid.)

Possible candidates for these were forthcoming through the work of Scott
[1961] in which it was shown that the existence of measurable cardinals (MC)
implies the negation of the axiom of constructibility, and the later work of
Hanf [1964] and of Keisler and Tarski [1964] which showed that measurable
cardinals and even weakly compact cardinals must be very much larger than
anything obtained by closure conditions on cardinals of the sort leading to
hierarchies of inaccessibles. But as we now know through the extensive subse-
quent work on large cardinals as well as other strong set-theoretic principles
such as forms of determinacy, none of those considered at all plausible to date
settles CH one way or the other (cf. Martin [1976], Kanamori [1994]). Gόdel
himself offered only one candidate besides these, in his unpublished 1970
notes containing his "square axioms" concerning so-called scales of functions
on the Nn's. The first of these notes (*1970a in Gόdel [1995]) purports to
prove that the cardinality of the continuum is ^2 while the second (*1970b,
op.cit.) purports to prove that it is NI. However, there are essential gaps in

4 The section enclosed in brackets was deleted from the 1964 reprinting of the
1947 article (cf. Gδdel [1990], p. 260).



6 Solomon Feferman

both proofs and in any case the axioms considered are far from evident (cf.
the introductory note by R.M. Solovay to *1970a,b,c in Gόdel [1995], pp.
405-420).

GδdeΓs final fall-back position in his 1947 article is to look for axioms
which are "so abundant in their verifiable consequences...that quite irrespec-
tive of their intrinsic necessity they would have to be assumed in the same
sense as any well-established physical theory" (Gόdel [1990], p. 183). It would
take us too far afield to look into the question whether there are any plausible
candidates for these. Moreover, there is no space here to consider the argu-
ments given by others in pursuit of the program for new axioms; especially
worthy of attention are Maddy [1988, 1988a], Kanamori [1994] and Jensen
[1995] among others.

My concern in the rest of this paper is to concentrate on the consideration
of axioms which are supposed to be "exactly as evident" as those already
accepted. On the face of it this excludes, among others, axioms for "very
large" cardinals (compact, measurable, etc.), axioms of determinacy, axioms
of randomness, and axioms whose only grounds for accepting them lies in
their "fruitfulness" or in their simply having properties analogous to those
of NO- Even with this restriction, as we shall see, there is much room for
reconsideration of GόdeΓs program.

2. Where should one look for new axioms?

While the passage to higher types in successive stages, in one form or another,
is sufficient to overcome incompleteness with respect to number-theoretic
propositions because of the increase in consistency strength at each such
stage, it by no means follows that this is the only way of adding new axioms
in a principled way for that purpose. Indeed, here a quotation from GδdeΓs
remarks in 1946 before the Princeton Bicentennial Conference is very apropos:

Let us consider, e.g., the concept of demonstrability. It is well known
that, in whichever way you make it precise by means of a formalism,
the contemplation of this very formalism gives rise to new axioms
which are exactly as evident and justified as those with which you
started, and this process of extension can be iterated into the trans-
finite. So there cannot exist any formalism which would embrace all
these steps; but this does not exclude that all these steps (or at least
all of them which give something new for the domain of propositions
in which you are interested) could be described and collected together
in some non-constructive way. (Godel [1990], p.151)

It is this passage that I had in mind above as the one possible exception
to GδdeΓs reiterated call for new set-theoretic axioms to settle undecided
number-theoretic propositions. It is true that he goes on immediately to say
that "[i]n set theory, e.g., the successive extensions can most conveniently be
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represented by stronger and stronger axioms of infinity". But note that here
he is referring to set theory as an example of a formalism to which the general
idea of expansion by "new axioms exactly as evident and justified as those
with which you started" may be applied as a special case. That idea, in the
case of formal systems S in the language of arithmetic comes down instead to
one form or another of (proof-theoretic) reflection principle, that is a formal
scheme to the effect that whatever is provable in S is correct. In its weakest
form (assuming the syntax of S effectively and explicitly given), this is the
collection of statements

(Rfns) Prσυs(#(A))^A

for A a closed formula in the language of S, called the local reflection
principle? This is readily generalized to arbitrary formulas A uniformly in
the free variables of A as parameters, in which case it is called the uniform
reflection principle RFNs The axioms Rfns, and more generally, RFNs may
indeed be considered "exactly as evident and justified" as those with which
one started. Moreover, as shown by Turing [1939], extension by such axioms
may be effectively iterated into the transfinite, in the sense that one can as-
sociate with each constructive ordinal notation α € O a formal system Sα

such that the step from any one such system to its successor is described by
adjunction of the reflection principle in question, and where all previous ad-
junctions are simply accumulated at limit s by the formation of their union.
These kinds of systematic extensions of a given formal system were called or-
dinal logics by Turing; when I took them up later in 1962,1 rechristened them
(transfinite) recursive progressions of axiomatic theories (cf. Feferman [1962,
1988]). While Turing obtained a completeness result for Π® statements via
the transfinite iteration in this sense of the local reflection principle, and I ob-
tained one for all true arithmetic statements via the iteration of the uniform
reflection principle, both completeness results were problematic because they
depended crucially on the judicious choice of notations in O, the selection of
which was no more "evident and justified" in advance than the statements
to be proved.

What was missing in this first attempt to spell out the general idea ex-
pressed by Gόdel in the above quotation was an explanation of which ordi-
nals — in the constructive sense — ought to be accepted in the iteration
procedure. The first modification made to that end (Kreisel [1958], Feferman
[1964]) was to restrict to autonomous progressions of theories, where one ad-
vances to a notation α £ O only if it has been proved in a system 85, for some
b which precedes α, that the ordering specifying α is indeed a well-ordering.
It was with this kind of procedure in mind that Kreisel called in his paper
[1970] for the study of all principles of proof and ordinals which are implicit
in given concepts. However, one may question whether it is appropriate at

5 Note that the consistency statement for S is an immediate consequence of the
local reflection principle for S.
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all to speak of the concept of ordinal, in whatever way restricted, as being
implicit in the concepts of, say, arithmetic. I thus began to pursue a modifica-
tion of that program in Feferman [1979], where I pr oposed a characterization
of that part of mathematical thought which is implicit in our conception of
the natural numbers, without any prima-facie use of the notions of ordinal or
well-ordering. This turned out to yield a system proof-theoretically equivalent
to that proposed as a characterization of predicativity in Feferman [1964] and
Schutte [1965]. Then in my paper [1991], I proposed more generally, a notion
of reflective closure of arbitrary schematically axiomatized theories, which
gave the same result (proof-theoretically) as the preceding when applied to
Peano Arithmetic as initial system. That made use of a partial self-applicative
notion of truth, treated axiomatically. The purpose of the present article is
to report a new general notion of reflective closure of a quite different form,
which I believe is more convincing as an explanation of everything that one
ought to accept if one has accepted given concepts and principles. In order not
to confuse it with the earlier proposal, I shall call this notion that of the un-
folding of any given schematically formalized system. This will be illustrated
here in the case of non-finitist arithmetic as well as the case of set theory.
Exact characterizations in more familiar terms have been obtained for the
case of non-finitist arithmetic in collaboration with Thomas Strahm; these
will be described in Section 4 below. However, there is no space here to give
any proofs.

3. How is the unfolding of a system defined?

As we shall see, it is of the essence of the notion of unfolding that we are
dealing with schematically presented formal systems. In the usual concep-
tion, formal schemata for axioms and rules of inference employ free predicate
variables P, Q, . . . of various numbers of arguments n > 0. An appropriate
substitution for P(x\ , . . . , xn) in such a scheme is a formula A(x\ , . . . xn . . .)
which may have additional free variables. (Thus if P is 0-ary, any formula may
be substituted for it.) Familiar examples of axiom schemata in the preposi-
tional and predicate calculi are

-•P -+ (P -* Q) and (Vx)P(x) -> P(t) .

Further, in non-finitist arithmetic, we have the Induction Axiom Scheme

(IA) P(0) Λ (Vx)[P(x) -> P(x') ] -> (Vx)P(x) ,

while in set theory we have the Separation and Replacement Schemes

(Sep) (36)(Vz)[z G b f* x 6 a Λ P(x) ], and

(Repl) (Vrr € α)(3!y)P(z,y) -> (36)(Vy)[y 6 b *+ (3x e α)P(x,y)] .
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Familiar examples of schematic rules of inference are, first of all, in the prepo-
sitional and predicate calculi,

P,P^Q^Q and [P -> Q(χ)} => [P -> (Vrr)Q(z) ] (for x not free in P),

while the scheme for the Induction Rule in finitist arithmetic is given by

(IR) P(0),P(x)-+P(x')=>P(x).

It is less usual to think of schemata for axioms and rules given by free function
variables /, #,.. . But actually, it is more natural to formulate the Replace-
ment Axiom Scheme in functional form as follows:

(Reply (Vx 6 α)(3y)[/(x) = y] -+ (36)(Vy)[y G b <-» (3x € α)/(x) = y] .

Note that here, and for added compelling reasons below, our function vari-
ables are treated as ranging over partial functions.

The informal philosophy behind the use of schemata here is their open-
endedness. That is, they are not conceived of as applying to a specific language
whose stock of basic symbols is fixed in advance, but rather as applicable to
any language which one comes to recognize as embodying meaningful basic
notions. Put in other terms, implicit in the acceptance of given schemata
is the acceptance of any meaningful substitution instances. But which these
instances are need not be determined in advance. Thus, for example, if one
accepts the axioms and rules of inference of the classical propositional calculus
given in schematic form, one will accept all substitution instances of these
schemata in any language which one comes to employ. The same holds for
the schemata of the sort given above for arithmetic and set theory. In this
spirit, we do not conceive of the function, resp. predicate variables as having
a fixed intended range and it is for this reason that th ey are treated as free
variables. Of course, if one takes it to be meaningful to talk about the totality
of partial functions, resp. predicates, of a given domain of objects, then it
would be reasonable to bind them too by quantification. In the examples of
unfolding given here, it is only in set theory that the issue of whether and to
what extent to allow quantification over function variables is unsettled.

Now our question is this: given a schematic system S, which operations
and predicates — and which principles concerning them — ought to be ac-
cepted if one has accepted S? The answer for operations is straightforward:
any operation from and to individuals is accepted in the unfolding of S which
is determined (in successive steps) explicitly or implicitly from the basic op-
erations of S. Moreover, the principles which are added concerning these
operations are just those which are derived from the way they are introduced.
Ordinarily, we would confine ourselves to the total operations obtained in this
way, i.e. those which have been proved to be defined for all values of their
arguments, but it should not be excluded that their introduction might de-
pend in an essential way on prior partial operations, e.g. those introduced by
recursive definitions of a general form.
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We reformulate the question concerning predicates in operational terms
as well, i.e.: which operations on and to predicates — and which principles
concerning them — ought to be accepted if one has accepted S? For this, it is
necessary to tell at the outset which logical operations on predicates are taken
for granted in S. For example, in the case of non-finitist classical arithmetic
these would be (say) the operations -», Λ and V, while in the case of finitist
arithmetic, we would use just -» and Λ. It proves simplest to treat predicates as
propositional functions; thus -« and Λ are operations on propositions, while V
is an operation on functions from individuals to propositions. Now we can add
to the operations from individuals to individuals in the unfolding of S also all
those operations from individuals and/or propositions to propositions which
are determined explicitly or implicitly (in successive steps) fro m the basic
logical operations ofS. Once more, the principles concerning these operations
which are included in the expansive closure of S are just those which are
derived from the way they are introduced. Finally, we include in the expansive
closure of S all the predicates which are generated from the basic predicates
of S by these operations', the principles which are taken concerning them are
just those that fall out from the principles for the operations just indicated.

This notion of unfolding of a system is spelled out in completely precise
terms in the next section for the case of non-finitist arithmetic. But the
following two points ought to be noted concerning the general conception
described here. First of all, one should not think of the unfolding of a system
S as delimiting the range of applicability of the schemata embodied in S. For
example, the principle of induction is applicable in every context in which
the basic structure of the natural numbers is recognized to be present, even if
that context involves concepts and principles not implicit in our basic system
for that structure. In particular, it is applicable to impredicative reasoning
with sets, even though (as will be shown in the next section) the unfolding
closure of arithmetic is limited to predicative reasoning. Secondly, we may
expect the language and theorems of the unfolding of (an effectively given
system) S to be effectively enumerable, but we should not expect to be a ble
to decide which operations introduced by implicit (e.g. recursive fixed-point)
definitions are well defined for all arguments, even though it may be just
those with which we wish to be concerned in the end. This echoes GodeΓs
picture of the process of obtaining new axioms which are "just as evident
and justified" as those with which we started (quoted in Section 2 above),
for which we cannot say in advance exactly what those will be, though we
can describe fully the means by which they are to be obtained.

4. The expansive closure of non-flnitist arithmetic:
what's obtained

Here the starting schematic system NFA (Non-Finitist Arithmetic) has lan-
guage given by the constant 0, individual variables rr, y, z,. . . , the operations
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Sc and Pd for successor and predecessor, a free unary predicate variable P
and the logical operations -ι, Λ and V.

Assuming classical logic, Λ, -)> and 3 are defined as usual.6 We write t'
for Sc(t) in the following. The axioms of NFA are:

Ax 1. x1 φ 0
Ax 2. Pd(x') = x
Ax 3. P(0) Λ (Vα;)[P(x) -> P(x') ] -> (Vx)P(x).

Ax 3 is of course our scheme (IA) of induction. Before defining the full unfold-
ing ZY(NFA) of this system, it is helpful to explain a subsystem Wo(NFA) which
might be called the operational unfolding of NFA, i.e. where we do not con-
sider which predicates are to be obtained. Basically, the idea is to introduce
new operations via a form of generalized recursion theory (g.r.t.) considered
axiomatically. The specific g.r.t. referred to is that developed in Moschovakis
[1989] and in a different-appearing but equivalent form in Feferman [1991a]
and [1996]; both feature explicit definition (ED) and least fixed point recur-
sion (LFP) and are applicable to arbitrary structures with given functions
or functionals of type level < 2 over a given basic domain (or domains). The
basic structure to consider in the case of arithmetic is (N, Sc, Pd, 0), where
N is the set of natural numbers. To treat this axiomatically, we simply have
to enlarge our language to include the terms for the (in general) partial func-
tions and functionals generated by closure under the schemata for this g.r.t.,
and add their defining equations as axioms. So we have terms of three types
to consider: individual terms, partial function terms and partial functional
terms. The types of these are described as follows, where, to allow for later
extension to the case of ZY(NFA), we posit a set Typo of types of level 0; here
we will only need it to contain the type i of individuals, but below it will be
expanded to include the type i of propositions:

Typ 1. i G Typo, where i is the type of individuals. In the following /c, v
range over Typo and Γ, resp. R range over types of finite sequences of
individuals, resp. of objects of Typ0.

Typ 2. τ,σ range over the types of partial functions of the form ί—ί i/, and
f ranges over the types of finite sequences of such.

Typ 3. (f, £ —ί z/) is used as types of partial functionals.

Note that objects of partial function type take only individuals as argu-
ments; this is to insure that propositional functions, to be considered below,
are just such functions. On the other hand, we may have partial functionals
of type described under Typ 3 in which the sequence f is empty, and these
reduce to partial functions of any objects of basic type in Typ$.

All our notions and results carry over directly to NFA treated in intuitionistic
logic; the only difference in that case is that we take the full list of logical
operations, -», Λ, V, ->, V, and 3 as basic.
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The terms r,s,£,u, ... of the various types under Typ 1 - Typ 3 are
generated as follows, where we use r : p to indicate that the term r is of type

P-

Tin 1. For each K £ Typo, we have infinitely many variables x,y, z, . . . of
type /c.

Tm 2. 0 : i.
Tm 3. 5c(ί) : i and Pd(£) : 6 for t : i.
Tm 4. For each r we have infinitely many partial function variables /,#,/!,...

of type r.
Tm 5. CΌnd(s, £, u, υ) : (f , /c, £, 6 ̂  i/) for 5, £ : (f, £ — £ i/) and u,v : i.
Tm 6. s(f,ΰ) : v for 5 : (f,/^!/), f : f, ΰ : R.
Tm 7. λ/,z.£ : (f,/^!/) for / : f,z : κ,t : v.
Tm 8. LFP (Xf.x.t) : (ί^ϊv) for / : l^v,x \ϊ, t\v.

We now specialize this system of types and terms to just what is needed
for Wo(NFA), by taking Typ0 = {ι}. The formulas A,B,C, ... of Ife(NFA)
are then generated as follows:

Fm 1. The atomic formulas are 5 = £, 5 |, and P(s) for s, £ : i.
Fm 2. If A, B are formulas then so also are -»A, A Λ J?, and Va; A

As indicated above, formulas A V #, A -> jB, and 3xA are defined as usual
in classical logic. We write 5 ~ £ for [5 J, V £ |->> s = ί]. Below we write
t [J,x], resp. A [/,£] for a term, resp. formula, with designated sequences
of free variables /,£; it is not excluded that ί, resp. A may contain other
free variables when using this notation. Since we are dealing with possibly
undefined (individual) terms £, the underlying system of logic to be used
is the logic of partial terms (LPT) introduced by Beeson [1985], pp. 97-99,
where t \, is read as: t is defined. Briefly, the changes to be made from usual
predicate logic are, first, that the axiom for V-instantiation is modified to

VxA(x) Λ t ±-> A(t) .

In addition, it is assumed that Vx(x |), i.e. only compound terms may fail to
be defined (or put otherwise, non-existent individuals are not countenanced
in LPT). It is further assumed that if a compound term is defined then all its
subterms are defined ("strictness" axioms). Finally, one assumes that if 5 = t
holds then both 5, t are defined and if P(s) holds then s is defined. Note that
(s I) <B> 3x(s = x), so definedness need not be taken as a basic symbol.

The axioms of ZY0(NFA) follow the obvious intended meaning of the new
compound terms introduced by the clauses Tm 5-8:

Ax 4. (Cond(s,t,u,u))(f,x) ~ s ( f , x ) Λ[M Φ v ->> (Cond(s,t,u,υ))(f,x) ~

*(/,*)] -
Ax 5. (λ/, *.*[/, z])(ί,ΰ) c± s[t,u] .
Ax 6. For φ = LFP(λ/,x.*[/,x]), we have:

(i) φ(x)~t[φ,x]
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(ii) Vx{f(x) * t[f,x] } -> Vx{φ(x) 4,-> φ(x) = f ( x ) } .

Finally, the predicate substitution rule for WΌ(NFA) is:

(Subst) A[P] =* A[B/P]

where in the conclusion of this rule, B is any formula with a designated free
variable z, B[x], and we substitute B[t] for each occurrence of P(t) in A.
This completes the description of Wo(NFA).

In the following we shall write

{if y = 0 then s[f, x] else *[/, x] } for (Cσnd(λf, x.s, A/, x.t, y, 0) )(/, x ) ,

in order to meet the strictness axioms of LPT; this piece of notation has the
property that the compound term is defined when y = 0 if s is defined, even
if t is not defined, while it is defined when y Φ 0 and t is defined if s is not
defined.

We shall use capital letters F for closed terms of function type such that
NFA proves \/x(F(x)±), i.e. for which F is proved to be total. Suppose given
such terms G, H of arguments (x) and (#,?/, z), resp. Then we can obtain an
F with

F(x,0) - G(x)

F(x,y') = H(x,y,F(x,y))

provable in WΌ(NFA). This is done by taking

φ = LFP[λ/, x, y.{if y = 0 then G(x) else H(x, Pd(y], f ( x , Pd(y) ) } ] .

It is then proved by induction on y that φ(y) |; this is by an application of the
substitution rule to the schematic induction axiom IA (Ax 3) together with
part (i) of the LFP axiom (Ax 6). Then we can take F to be the term φ. It
follows that WQ (NFA) serves to define all primitive recursive functions, and so
by IA and the substitution rule, we see that Wo(NFA) contains the system of
Peano Arithmetic PA in its usual first order (non-schematic) form. I believe
this argument formalizes the informal argument (usually not even consciously
expressed) which leads us to accept PA starting with the bare-bones system
NFA.

Conversely, Wb(NFA) is interpretable in PA, by interpreting the function
variables as ranging over (indices of) partial recursive functions, and then
the function(al) terms are interpreted as (indices of) partial recursive func-
tion(al)s. It follows that we have closure under the LFP scheme. Finally, one
shows that if A[P] is provable in Wo (NFA) and B is any formula, and if A* , 5*
are their respective translations, then A*[B*/P] is provable in PA. Thus we
conclude:

Theorem 1. U0(NFA) is proof theoretically equivalent to PA and conserva-
tively extends PA.
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Now to explain the full expansive closure of NFA we treat (as already
mentioned) predicates as propositional functions, more or less following Aczel
with his notion of Prege structures (Aczel [1980]). For this purpose we add
a new basic type π, the type of propositions, and explain propositional func-
tions as total functions / of type ί^f π. To fill out the language and axioms
of W0 (NFA) we thus begin by taking Typ0 = { ί , π}. As before, /c, v range over
Typo,τ,σ over types of the form l^v (and thus are either types of partial
functions from individuals to individuals or partial functions from individuals
to propositions), and (f,£— £ι/) ranges over the types of partial functionals
(of partial function, individual and propositional arguments, to individuals
or propositions). Now the closure conditions on terms are expanded t o in-
clude the logical operations on and to propositions. These are given by the
additional symbols Eq, Pr, Neg, Conj and Un with the following clauses:

Tm 9. Eq(s,t) : π for s,t : i.
Tm 10. Pr(s) : π for s : i.
Tm 11. Neg(s) : π for s : π.
Tm 12. Conj(s,t) : π for s,t : π.
Tm 13. Un(s) : π for s :

The intended meaning of these symbols is elucidated by Ax 7-11 below.
The formulas A, B, C, . . . of W(NFA) are generated as follows, where T(x)

is an additional predicate which expresses that x is a true proposition:
Fm 1.

(a) s = t, s 4, and P(s) are atomic for s, t : i.
(b) s = t, s 4, and T(s) are atomic for s, t : π.

Fm 2. If A, B are formulas, so also are -Ά, A Λ B, VxA.
The axioms of ZY(NFA) are now as follows (in addition to Ax 1-6 above),

where we reserve x, y, . . . as variables of type i and α, b, . . . as variables of
type π:

Ax 7. Eq(x,y) ± /\(T(Eq(x,y) ) ̂  x = y].
Ax 8. Pr(x) I Λ[Γ(Pr(z) ) <-> P(x) ].
Ax 9. Neg(a) 4. Λ[T(Neg(a) ) ̂  -VΓ(α) ].
Ax 10. Cσnj(a, b) ± Λ[T(Conj(a, b) ) ̂  Γ(α) Λ T(6) ].
Ax 11. (Vx)(fx 4) -+ Un(f) | Λ[T(tfn(/) ) ** OW(/(z) )], for / : t^π.

Because propositional terms in general implicitly depend on the predicate
parameter P, we must restrict the rule ,4[P] ̂  A[B/P] to formulas A which
do not contain any such terms. We write Predn(t) for (\/x)(t(x) |) when
t : 1^5 π and I is of length n. Now the usual way of thinking of a sequence
of n-ary predicates is as a function / of type ^(Γ^>π) such that for each
x, f ( x ) I and Predn(f(x) ). However, we do not have these types in our set-
up (although that is easily modified to include them). Instead, a sequence
of n-ary predicates is treated as being represented by a g of type i, ΐ^π
such that for each x,y we have g(x,y) J,, in other words so that for each
x, Predn(\y g(x,y)). Such g can, at the same time, be considered as an
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(n + l)-ary predicate and in that guise g is simply the join of the sequence it
represents: J(g) = g.

Now the main result about proof-theoretic strength of ZY(NFA) is the
following theorem, obtained in collaboration with Thomas Strahm.

Theorem 2. U(NFA) is proof-theoretically equivalent to the system of ram-
ified analysis up to but not including ΓQ, and conservatively extends that
system.

The system of ramified analysis up to and including level β is denoted
RA0, and the union of these for β < a is denoted RA<α. For α = ω - a this is
proof-theoretically equivalent to the iteration of (Π® — CA) through all levels
β < α. Using KreiseΓs proposed characterization of predicative analysis in
terms of the autonomous progression of ramified systems, the least impredica-
tive ordinal was determined to be Γ0 in Feferman [1964] and, independently,
Schutte [1965]. Theorem 2 thus re-characterizes predicativity as what ought
to be accepted concerning operations and predicates if one has accepted the
basic notions and principles o/NFA, including the logical operations -«,Λ and
V applied to variables for the natural numbers. The proof of this theorem
is rather involved and full details will be presented elsewhere; the following
merely gives an indication of ho w to embed RA<r0 in W(NFA), by means of
the methods of Feferman [1979], sec.3.3. Basically, one shows for each initial
segment -<α of the standard primitive recursive well-ordering of order type
ΓQ how to establish in W(NFA) the principle of transfinite induction up to α
applied to arbitrary formulas A, in symbols, TI(-<α,A). For this it suffices
to prove TI(-<α,P) and then apply the substitution rule. Now with the full
scheme at hand, one can define the jump (Π®) hierarchy relative to P along
^α by LFP recursion and prove that it defines a predicate by induction on
this ordering. Note that the definition of this hierarchy makes use of arith-
metical steps at successor stages, guaranteed by the axioms Ax 7-11, and
of join at limit stages, guaranteed by the use of the J operator as explained
above. As is shown in the reference loc.cit., by use of this hierarchy relative to
P up to α , one can prove TI(-<7, P) for 7 = i^a\0) in the Veblen hierarchy
of critical functions. Define 70 = 0,7n+1 = κίΊn\ϋ)\ then ΓQ = limn 7n, so by
this means we can embed RAα in W(NFA) for each a < ΓQ. The proof that
ZY(NFA) is no stronger than RA<r0 requires some interesting new arguments
from infinitary proof theory. However, it is worth noting that in this proof,
partial functions of type Γ—ί i are still interpreted as partial recursive func-
tions. Indeed the same holds for functions of type ϊ^π when propositions
are treated intensionally.

Remarks

1. Implicit definability of functions. Another way of introducing partial
functions given by implicit defining conditions is if we associate with
each partial / : Γ,ι^$i a g : Γπίi with
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(ID) Vά, y , *[/(*, y) ̂  0 Λ /(x, 0) = 0 -* y = z]
y) = 0 -* /(x, f l(x) ) = 0].

Adding (ID) as an axiom to W0(NFA) and ZY(NFA) does not affect
Theorems 1 and 2. It is plausible to include (ID) in the unfolding process
applied to any system with a distinguished constant 0.

2. Predicate types in place of the type of propositions. We can treat
predicates directly, instead of in terms of prepositional functions, by in-
troducing a basic type of n-ary predicates πn for each n > 1. Then the
atomic formulas to be used in the U process for this symbolism are
of the form s = t for s,t : πn,s | for s : πn and (ίi, . . . ,ίn) € s for
5 : πn and tj : i (j = 1, . . . ,n). The axioms provide for suitable op-
erations corresponding to atomic predicates and for the effect of Neg
and Conj on each πn and Un on πn+ι to πn for each n. In addition,
we include the Join operator J for each n, which when applied to a
sequence of n-ary predicates, i.e. a total / : i -+ πn, produces the join
predicate J(/) : πn+ι. In the language, so modified, the rule of substi-
tution A[P] =Φ- A[B/P] is restricted to A which do not contain terms
of predicate type. Then Theorem 2 h olds as before. An advantage of
the predicate type over the propositional type approach is that we can
separate out the role of the Join operator from that of the logical op-
erations while, as we saw, J is forced on us in the propositional type
approach. Strahm has shown that if J is omitted, then the resulting
system ZY~(NFA) is proof-theoretically equivalent to RA<ω.

3. Quantifying function variables. It was argued in Section 3 that for
the general notion of unfolding, (partial) function variables in their
schematic role ought not to be quantified. However, when we come to
set theory and examine informal arguments that lead us to accept its
basic principles and their immediate extensions, it is plausible to al-
low some degree or other of function quantification. Proof-theoretical
strength there is sensitive to the decision as to whether to allow such
quantification, and, if so, to what extent, as will be seen in the next sec-
tion. Interestingly, it happens that in the case of NFA, even if we allow
full function quantification in the language of UQ (NFA), resp. W(NFA),
with suitable restrictions on the hypothesis A[P] of the substitution
rule as above, we do not alter proof-theoretic strength, i.e. Theorems
1 and 2 continue to hold as stated.

4. The unfolding of finitist arithmetic. Clearly the starting point for
the study of this notion would be a quantifier-free system FA based
on Axs 1 and 2 and, in place of Ax 3, the induction rule

Beyond this, there are various notions of unfolding to be considered,
related to various informal and formal explanations of finitism in the
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literature, due especially to Hubert, Kreisel and Tait. Research on these
notions is in progress.

5. The unfolding of set theory

This section is largely programmatic and, given the limitations of space,
necessarily sketchy. On the face of it, set theory offers a prime candidate for
the study of what is implicit in given notions and principles by means of
the unfolding procedure, both for ZF as a schematic theory and for GodeΓs
program for new axioms. We begin with the former.

In the spirit of the functional formulation of the UQ and U procedures, we
take the basic language of set theory to have individual variables α, b, c, x, y, z,
. . . , variables /, #, h, . . . for partial functions, the constants 0 and ω, the oper-
ation symbols {, }, |J, p, and E (the characteristic function of the G relation)
and the relation symbols = and G. In addition we have functional S,R and
A whose meaning will be explained in a moment. The axioms of the system
ST are, besides Extensionality, the expected ones for 0,α;, {, },(J, p, and E,
and the following four function and predicate schemata:

(S) Vx G a[f(x) I] -> S(/,α) | Λ Vx[x G S(/,α) <-> x G α Λ f ( x ) = 0]

(R) Vx G a[f(x) ±] -> R(/,α) | Λ V y [ y G R(/,α) t* 3x G a ( f ( x ) = y)}

/(G) Vx[ (Vy G x)P(y) -> P(x) ] -> Vx(P(x) )

(A) Vx[/(x) 4] -> A(/) I Λ[A(/) = 0 ̂  Vx(f(x) = 0)] .

Thus S gives Separation, R gives Replacement, /(G) is the positive (induc-
tive) schematic form of the Axiom of Foundation, and A serves to represent
every definable class by means of a characteristic function. This last allows
(S) and (R) to take the place of the expected schemata:

(Sep) 36Vz[z G b <-> x G α Λ P(χ) ], and

(Repl) (Vx G a)3\yP(x,y) -> 3Wy[y G 6 <-> (3x G α)P(x,y)] .

The point of doing it by the above function schemata instead is that we can
treat a wide variety of set theories uniformly, with the only changes being the
deletion or addition (with appropriate axioms) of various individual, function
and functional constants. For example, if we omit ω, p, and A, we obtain a
functional schematic form AST of Admissible Set Theory. To be more precise
KP (taken with ^-Replacement instead of /^-Collection) is contained in
WQ (AST), and the latter is interpretable in the constructible sets of the former

by taking the function variables to range over the Σ[ ' partial functions. It
would be of interest to determine the strength of ZY(AST).
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Quite a few useful general principles and functional constructions can be
derived in K0(λST) and W(AST), which then carry over to (the respective
unfolding) of any set theory S extending AST. In particular, we can derive
principles of induction for various classes C with an ordering <c in the form:

/(<σ) Vz G C[iy(y <c x -> P(y) ) -> P(x)] -» Vz G C [ P ( x ) ] .

Here <c might be much "longer" than the ordinals, for which we have /(<)
by the axiom /(G). Taking Ω as a symbol for the class of ordinals, we can
define, for example, the lexicographic ordering <& on pairs of ordinals by
{£»»?) <ί?2 (<*>β) < - » £ < α V ξ = α Λ τ ? < / ? , and prove !(<&) in Wo (AST).
Prom this and the LFP construction we can derive a principle of recursion
for hierarchies of functions Xa,β.fa(β) by means of any given functional
G which determines each fa in terms of (fξ)ζ<a> More generally, I expect
that we can establish I(<p) in Wo(AST) for each p < ε^+i and similarly
for each p < ΓΩ+I in W(AST), where the ordering up to Γβ+i is defined in
AST on a suitable class of "notations" as in Feferman [1968]. We would then
obtain related principles of recursion and construction of hierarchies as for
<β2 above. Note that the form of this ordering is independent of which set
theory S we are in, but the interpretation in a standard model of S depends
on what ordinal Ω turns out to be. What stronger S serve to do is supply a
greater variety of functionals G for generating hierarchies associated with <p

when I(<p) is provable.
Suppose S is an extension of our initial system ST to which we have

added AC and the existence of arbitrarily large inaccessible cardinals. Then
the preceding allows us to actually "name" specific large inaccessibles in the
unfolding systems of S. In that sense, it already gives us some large cardinal
axioms. But if we are to generate, e.g., hierarchies of Mahlo cardinals, we
need to add to ST a new scheme which says in effect that whatever holds in
the universe of sets already holds in arbitrarily large transitive sets, or what
one would call a scheme of Downwards Reflection. This takes the following
form:

(D-Ref ) P -> 36[α G 6 Λ Trans(b) Λ

If this scheme is denoted A[P] and B is a statement which involves both
quantified individual variables and (possibly) quantified function variables,
when forming B^ in A[B/P] we relativize the former variables to b as usual,
and the latter variables to partial functions from 6 to b. Write Strans(b) for
Vx G bVy[y C x -> y G b]. We can infer

(D-Ref)' P -> 3b[a G b Λ Strans(b) Λ pW]

by substituting P Λ Vz3y[p(s) = y] for P in (D-Ref). Thus with the sub-
stitution rule A[P] => A[B/P] taken to apply to any statement B in the
unfolding language of ST in which function variables may be quantified un-
restrictedly, we obtain a form of Bernays' downward second-order reflection
principle (Bernays [1961], following on Levy [I960]). And as Bernays showed
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op.cit., the existence of hierarchies of Mahlo cardinals then follows from this
principle. Briefly, one begins by substituting for P in (D-Ref ) the statement
that expresses that the universe is closed under power set and replacement,
i.e.

= y] Λ VuV#[ Vα; G u 3y(g(x) = y) ]

) = v Λ Vy(y € v <-» 3z e ti(p(x) = y)]

Then the conclusion of this instance of D-Ref guarantees the existence of ar-
bitrarily large inaccessible cardinals. It follows that any normal function on Ω
has arbitrarily large inaccessible fixed-points. By substituting that statement
for P in (D-Ref) we obtain the existence of arbitrarily large Mahlo cardinals
— and so on.

Formulas involving (partial) function quantification are classified into the
Πn hierarchies as usual. The existence of Mahlo hierarchies follows from (D-
Ref) by successively substituting suitable Π\ statements for P. But if one
is to obtain stronger large cardinal statements, e.g. the existence of weakly
compact cardinals, it is necessary to make substitutions by more complicated
formulas. For, as shown in the work of Hanf and Scott [1961], a cardinal K
is weakly compact iff it is n\ indescribable. The latter says that (D-Ref)
holds in Vκ for all Π\ statements, and saying that is Π\ . In general, we
obtain the existence of arbitrarily large Π\ indescribables by suitably more
complicated instances of (D-Ref). And that is all one can expect to follow
from (D-Ref) in our languages using only function variables of type level 1
over the universe. And passing to higher types — however one were to argue
for that — for substitution instances in (D-Ref), at most allows one to obtain
the existence of Π™ indescribables for all m,n. But one certainly cannot
obtain in this way the existence of measurable cardinals nor even some of its
familiar consequences such as the existence of 0# (or even of some still weaker
consequences from infinitary combinatorics, such as explained in Kanamori
[1994] p.109).

However, as I see it, there is already a flat difference between the reasoning
which leads us to the hierarchies of Mahlo cardinals, and that which leads,
to begin with, to weakly compact cardinals. Here a quotation from Tarski is
apropos:

... the belief in the existence of inaccessible cardinals > ω (and even
of arbitrarily large cardinals of this kind) seems to be a natural con-
sequence of basic intuitions underlying the "naive" set theory and
referring to what can be called "Cantor's absolute". On the contrary,
we see at this moment no cogent intuitive reasons which could induce
us to believe in the existence of cardinals > ω that are not strongly
incompact, or which at least would make it very plausible that the
hypothesis stating the existence of such cardinals is consistent with
familiar axiom systems of set theory. As was pointed out at the end
of Section 1, we do not know of any "constructively characterized"
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cardinal > ω of which we cannot prove that it is strongly incompact
and for which therefore the problems discussed remain open. (Tarski
[1962], p.134).

Gόdel, commenting on this in a footnote (20) added in 1965 to his 1940
monograph (after referring to the work of Levy [1960] and Bernays [1961]
leading to "all of Mahlo's axioms") said:

Propositions which, if true, are extremely strong axioms of infinity
of an entirely new kind have been formulated and investigated as to
their consequences and mutual implications in Tarski [1962], Keisler
and Tarski [1964] and the papers cited there. In contradistinction to
Mahlo's axioms the truth (or consistency) of these axioms does not
immediately follow from "the basic intuitions underlying abstract
[sic] set theory" (Tarski [1962], p. 134), nor can it, as of now, be
derived from them. However, the new axioms are supported by rather
strong arguments from analogy ... (Gδdel [1990] p. 97, italics mine).

What makes the separation of Mahlo from weakly compact cardinals reason-
able is that when we substitute for P in (D-Ref) a Π\ statement B, we may
read B as asserting a closure condition in the ordinary sense on V under
given function(al)s. But this reading is not plausibly extended to statements
of higher function-quantifier complexity. Prom what Gδdel says in the preced-
ing quotation, it seems he would agree with this argument for demarcation.7

My personal attitude concerning the question of "actual" existence of var-
ious kinds of large cardinals, whether smaller or larger, is that it is all pie
in the sky. This may make one wonder why I have even bothered with the
present section. Well, the starting point was to see what one can say about
which large cardinal statements are implicit in the basic notions and prin-
ciples of set theory, if one accepts them, as Gόdel and many other logicians
certainly do, and to try to apply the unfolding procedure to begin to say
something precise about that.8 While that hypothetical acceptance does not
apply to me, there are other potential values of great interest to me, which I
hope will result from further pursuit of the present framework. The analogues
to various large cardinal statements in admissible set theory are well-known.

7 Tait [1990], p.76, ftn. 6, is puzzled by this view of GδdeΓs. But he says there
that the existence of weakly compact cardinals follows from Π\ reflection, which
is mistaken, as we have seen.

8 And if one is among the set theorists who believe there are reasons for accept-
ing much larger cardinals than follow from ZV(ST), it should be of interest to
make explicit what are the basic notions and principles that lead one to such
conclusions, rather than depend on arguments from analogy or fruitfulness.
In this respect, a suggestion of Gδdel in his 1946 Princeton remarks is most
provocative: "It is cert ainly impossible to give a combinational and decidable
characterization of what an axiom of infinity is; but there might exist, e.g.,
a characterization of the following sort: An axiom of infinity is a proposition
which has a certain (decidable) formal structure and which in addition is true."
(Gδdel [1990], p. 151)
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The work earlier in this section with AST suggests to me that there should be
a way of stating these as part of a common generalization via the unfolding
of S+(D-Ref) for SI>AST, and not merely an analogue. Still further, there
has been a surprising use of recursive ordinal notation systems employing
"names" for very large cardinals in current proof-theoretic ordinal an alyses
of formal systems (cf. e.g. Rathjen [1995]). What I would really hope comes
out of this is a generalization which encompasses these as well, and helps
explain how it is that they come to be employed at all for these purposes.
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