
0. Introduction

0.1 Finite Models, Logic and Complexity

Finite model theory deals with the model theory of finite structures. As a
branch of model theory it is concerned with the analysis of structural prop-
erties in terms of logics. The attention to finite structures is not so much
a restriction in scope as a shift in perspective. The main parts of classical
model theory (the model theory related to first-order logic) as well as of ab-
stract model theory (the comparative model theory of other logics) almost
exclusively concern infinite structures; finite models are disregarded as triv-
ial in some respects and as intractable in others. In fact, the most successful
tools of classical model theory fail badly in restriction to finite structures.
The compactness theorem in particular, which is one of the corner stones of
classical model theory, does not hold in the realm of finite structures. Several
examples of other important theorems from classical model theory that are
no longer true in the finite case are discussed in [Gur84].

There are on the other hand specific new issues to be considered in the
finite. These issues mainly account for the growing interest in finite model
theory and promote its development into a theory in its own right. One of the
specific issues in a model theory of finite structures is complexity. Properties
and transformations of finite structures can be considered under algebraic and
combinatorial aspects, under the aspect of logical definability, and also under
the aspect of computational complexity. Issues of computational complexity
form one of the main links also between finite model theory and theoretical
computer science.

In this introduction I merely intend to indicate selectively some main
ideas and lines of research that motivate the present investigations. There
are a number of surveys that also cover various other aspects of finite model
theory — see for instance [Fag90, Gur84, Gur88, Imm87a, Imm89]. A general
reference is the new textbook on finite model theory by Ebbinghaus and Flum
[EF95].

0.1.1 Logics for Complexity Classes

The study of the relationship between logical definability and computational
complexity of structural properties is an essential branch of finite model the-



2 0. Introduction

ory. This topic is most pronounced in the search for semantic matches be-
tween levels of computational complexity and logics. The search for logics for
complexity classes, also suggestively described as capturing complexity classes
[Imm87b] or tailoring logic for complexity [Gur84], has lead to an active re-
search programme in finite model theory.

Consider any of the standard classes in computational complexity as a
class of problems for finite structures, say for finite graphs. The class of all
properties of finite graphs that can be recognized by PTIME algorithms is a
typical example. A logical characterization of PTIME on finite graphs would
have to provide a logic for PTIME on graphs in the sense that exactly all
PTIME properties of finite graphs are definable by sentences of this logic. For
the present purposes we work with a slightly informal notion of a logic for
PTIME. The exact definition underlying our treatment is due to Gurevich
[Gur88]. A more detailed discussion will be provided with Definition 1.7 in
the next chapter. It is also shown in [Gur88] that the restriction to graphs
rather than finite structures of arbitrary type is inessential for the present
issue.

Definition 0.1 (Sketch). A logic C is a logic for PTIME if exactly those
properties of finite graphs that are PTIME recognizable are C-definable.
Minimal requirements on candidate logics to be imposed are the following:
C has recursive syntax and recursive semantics that associates with each C-
sentence a PTIME algorithm for checking its truth in finite models.

It is a central open problem in the field whether there is a logic for PTIME.

Relationships between computational complexity classes and definability
in logical systems are interesting for a number of reasons:

(a) The potential for theoretical transfer between different fields. Techniques
from complexity theory may be brought to bear on logical and model
theoretic issues and vice versa. To give an example, several of the out-
standing open problems of complexity theory like the PTIME = NPTIME?
or PTIME = PSPACE? questions have found appealing non-trivial model
theoretic reformulations in terms of semantic equivalences of particular
logical systems over finite structures (compare [AV91, DLW95, Daw95b]).
Short of solving the original problems this offers new perspectives, and
investigations of related logical issues may at least lead to a better under-
standing of these problems.

(b) Logical analysis of the required kind may yield deeper insights into the
fundamental notion of complexity. Definability in logical systems can be
viewed as a kind of complexity in itself. Whereas computational com-
plexity controls the computational resources required in the solution of
a problem, definability considerations control the logical or descriptive
resources required in the specification of the problem: hence the term
descriptive complexity as used in [Imm89]. The relationship between the



0.1 Finite Models, Logic and Complexity 3

structure imposed by these completely different resources thus becomes
part of a broader view of complexity theory.

(c) Exact matches between computational complexity classes and logics pro-
vide an appealing notion of semantic completeness for model theoretic
considerations. A logic for PTIME say would be a logic that is complete
for the world of PTIME computability over structures — or for compu-
tationally feasible problems, if PTIME computability is identified with
efficient solvability or feasibility. The classical classes of computational
complexity have emerged as natural levels of computational power, certi-
fied by robustness criteria and the existence of natural complete problems.
Matching logics constitute naturally distinguished levels of expressiveness.

(d) In this connection there is also a strong theoretical interest from computer
science. Problems related to structures like graphs (and more generally ar-
bitrary relational structures corresponding to instantiations of relational
databases) are ubiquitous in computer science applications and in par-
ticular in the theory of databases. A natural logic for PTIME would be
a theoretically ideal database language for exactly all feasible queries:
anything that can be specified in this language is guaranteed to have an
efficient algorithmic solution; by semantic completeness for PTIME such
a logic constitutes a universal language for all efficient tasks. And indeed
this context is one of the original sources for the problem of capturing
PTIME, as formulated by Chandra and Harel in [CH82].

The following are some of the well known results concerning complete matches
between distinguished levels of computational complexity and logical systems.

Regular languages and monadic second-order logic: words over any finite al-
phabet can in a canonical way be identified with linearly ordered struc-
tures over an otherwise monadic vocabulary (one unary predicate for each
letter to mark its occurrences in the word). Monadic second-order logic
^lίn f°Γ tne resulting word models defines exactly the regular languages,
i.e. those languages that are recognized by finite automata. This is a clas-
sical result of Bύchi [BiicGO], Elgot [ElgGl] and Trakhtenbrot [TraGl] that
fits into the present framework as a precursor to the recent development
of finite model theory (compare the treatment in [EF95]).

NPTIME and existential second-order logic: Fagin's theorem [Fag74] is the
first result of this branch of finite model theory proper. It equates non-
deterministic polynomial time recognizability with definability in exis-
tential second-order logic Σ\.

PTIME and fixed-point logic with order: in restriction to linearly ordered fi-
nite structures PTIME has been characterized logically by Immerman
[Imm86] and Vardi [Var82] through the very natural extension of first-
order logic to fixed-point logic FP by means of an operator for monotone
relational induction.

So there are the following semantic equivalences:



4 0. Introduction

Finite Automata = £^n (for word models)

NPTIME = Σ\

PTIME = FP (in the presence of linear order)

It is remarkable that all major complexity classes, in particular LOGSPACE,
NLOGSPACE, PTIME and PSPACE, are captured by very natural extensions of
first-order logic in the presence of order. The fundamental question whether
similar matches can be found in the general case of not necessarily ordered
structures is open. In particular the question whether there is a logic for
PTIME, as raised by Chandra and Harel in [CH82], is a notorious open prob-
lem in finite model theory. In fact there is no capturing result at all for any
standard complexity class below NPTIME that applies to the general case.
Fagin's theorem NPTIME = Σ\ essentially remains the only general result
on a strict match between a complexity class and a logic on finite structures.
This phenomenon will be further discussed below.

0.1.2 Semantically Defined Classes

Consider the class of all PTIME recognizable graph properties — for the
moment denote it graph-PτiME. It serves as a typical example of a complexity
class on finite structures.

Why is it difficult to find a logic for graph-PτiME?

Recall that ordinary PTIME is the class of all problems that can be solved by
polynomially time bounded Turing machines. A priori Turing machines work
with words or strings as inputs. As far as recognition (i.e. decision) problems
are concerned a problem is a set of words over some alphabet. Words over
this alphabet are rejected or accepted, according to membership in the set,
in time polynomial in their length.

In particular a Turing machine does not work with abstract graphs as
inputs but rather with encodings of these. The standard encoding scheme for
finite graphs uses adjacency matrices for the input representation. The ad-
jacency matrix of a graph whose vertices are labelled v\,..., υn is the n x n
boolean matrix with entries α^ = 0 or 1 according to whether (v»,Vj) is
an edge. But obviously different adjacency matrices may encode the same,
more precisely isomorphic, graphs. Any rearrangement of the vertices in a
different order induces an equivalent representation that is different from the
given one unless the rearrangement happens to be an automorphism of the
abstract graph. Any graph algorithm, i.e. any algorithm that recognizes a
graph property, must therefore satisfy a non-trivial semantic invariance con-
dition: a graph algorithm must produce the same result on any two inputs
that represent isomorphic abstract graphs. In other words it may not reject
one graph and accept an isomorphic copy of that same graph. We adopt
the terminology of complexity theory as presented in [Pap94] to distinguish



0.1 Finite Models, Logic and Complexity 5

semantic presentations and syntactic presentations of complexity classes, or
semantic and syntactic classes according to their presentation. Semantic pre-
sentations are given in terms of semantic constraints on algorithms. Owing
to the invariance condition, graph-PτiME is clearly a semantically presented
class. A syntactic presentation of a complexity class in contrast consists of a
recursive or at least recursively enumerable set of algorithms of the required
complexity, that contains at least one realization for every problem in the
given class.1 We shall mostly speak of recursive presentations in this sense.

For an example of a class that is not a priori syntactically defined but
nevertheless admits a simple recursive presentation consider PTIME in the
ordinary sense as a class of problems for words over finite alphabets. It is
clearly presentable by the set of algorithms that limit their computation
time by means of a step counter that is initialized in each computation to a
polynomial in the input size. This presentation is suggestively referred to as
through polynomially clocked machines.

Semantic invariance conditions like the one for graph-PTlME are non-
recursive conditions on algorithms. In fact the set of all (syntactic descrip-
tions of) graph algorithms is not even recursively enumerable (as an index
set). It can furthermore be shown that the same applies to any of its intersec-
tions with standard complexity classes. In particular the ad-hoc presentation
of graph-PTlME through the set of all PTIME graph algorithms does not pro-
vide a recursively enumerable presentation.

A logic C for PTIME in the sense of Definition 0.1 above, however, would
induce the following recursive presentation for graph-PTlME. Let 5 be the
recursive semantic mapping that associates a PTIME algorithm with each sen-
tence of C (in the language of graphs). Obviously image(S) consists of PTIME
graph algorithms. By semantic completeness of C for PTIME on graphs, any
PTIME graph property is realized by some member of image(S). The recur-
sively enumerable subset image(S) C {.4 | A a PTIME graph algorithm }
therefore provides a recursive presentation for graph-PTlME. In the termi-
nology of complexity theory, image(5) is a syntactic presentation of the se-
mantically defined class graph-PTlME. In fact it can be shown that there is a
logic for PTIME (in the sufficiently general sense of Definition 0.1) if and only
if graph-PTlME admits a syntactic, i.e. recursive or recursively enumerable,
presentation.

For properties of linearly ordered structures — properties of linearly or-
dered graphs say — these problems do not arise because there are canonical
encodings for ordered structures. For ordered graphs we may use the adja-
cency matrix based on the natural labelling of the vertices as v\,..., υn in
increasing order. This observation is easily turned into a recursive presenta-
tion for the class of all PTIME properties of ordered finite graphs.

1 The difference between recursive and recursively enumerable syntax is not impor-
tant in this kind of question. If A\, Aa, ... is a recursive enumeration of syntactic
descriptions of algorithms, then the syntax (Λi, 1), (Λ.2,2), ... is recursive.



6 0. Introduction

This crucial difference between the ordered and the unordered case is
at the root of the apparent mismatch with respect to capturing complexity
classes in the case of ordered structures or in the general case of not nec-
essarily ordered structures. For the standard complexity classes it is almost
trivial to see that the induced classes over ordered structures are presentable
as syntactic classes and therefore can be captured by logics. The point of
the corresponding capturing results indeed rather is that moreover they are
captured by very natural logical systems.

As mentioned above, no complexity class below NPTIME has been cap-
tured or shown to be recursively presentable in the general case. NPTIME here
marks a threshold because in NPTIME and above, the invariance problem can
be side-stepped as follows. Consider the class graph-NPτiME of all NPTIME
graph properties. From a graph property Q € graph-NPτiME we may pass to
its ordered version <2<,tne class °f all ordered graphs that possess the given
property:

Q< — {(G, <) I G G <9, < a linear ordering of the vertices }.

Q< is NPTIME recognizable, essentially through the algorithm for Q itself.
But a plain graph G belongs to Q if and only if any expansion (G, <) by
a linear ordering of its vertices belongs to Q< (and also if and only if all
such expansions belong to Q<). It follows that graph-NPTlME is presentable
through the class of all NPTIME algorithms that first guess a linear ordering
and then evaluate an NPTIME property of ordered graphs on the result.
From this observation we obtain a recursive presentation for graph-NPTlME
in a standard manner. It is worth noting that this trick is also directly used
in Fagin's proof that graph-NPTlME coincides with the class of all graph
properties that are definable in existential second-order logic. The existential
quantification over linear orderings < that is implicit in the passage from Q<

to Q is explicitly available in existential second-order logic.

Note that capturing results for complexity classes in the general case of
not necessarily ordered structures are not merely of theoretical interest. The
challenge is well motivated by the potential applications in database theory.
Natural abstract databases often are not ordered. Their realizations at the
machine level may involve an implicit linear ordering for representational
purposes (naively: a numbering of memory cells). Even though an ordering is
present then, it is not considered part of the intended data. A sound database
query in this case corresponds to a property of unordered relational struc-
tures. In the query specification it is desirable to hide this ordering. Logically,
one would have to have a query language corresponding to a logic for PTIME
on unordered structures in order to achieve semantic completeness within
PTIME and simultaneously to guarantee soundness — soundness in the sense
of independence of a linear ordering that is an artifact of the realization.



0.2 Natural Levels of Expressiveness 7

0.1.3 Which Logics Are Natural?

Consider possible solutions, positive or negative, to the problem whether
there is logic for PTIME. The above definition with its very liberal conditions
on candidate logics is theoretically appealing because of its connection with
recursive presentability. A negative solution in the sense of this definition
would be a strong result to the effect that no reasonable logic at all can
possibly capture PTIME. A positive result, however, might still leave much to
be desired owing to the liberal notion of a logic. In other words, a recursive
presentation of graph-PτiME might intuitively be far from constituting a
natural logical system. As with the known positive results in the ordered
case or for NPTIME much may depend on the style of the logic obtained.

The logics to be considered are extensions of first-order logic, as first-order
sentences can be evaluated in LOGSPACE. The systematic study of extensions
of first-order logic belongs to the domain of abstract model theory. It is
worth to pursue this systematic study with particular focus on logics for finite
structures. A systematic study of this kind is a possible approach to problems
like that concerning the existence of a logic for PTIME. In particular if one
conjectures that the problem of a logic for PTIME has a negative solution,
then results that state the impossibility of capturing PTIME by logics that
satisfy certain stronger criteria can be interesting approximations.

To some extent the formal framework available in abstract model theory is
not necessarily well adapted to the finite case. Complexity considerations and
considerations that concern logics under a procedural aspect are not a priori
accommodated. The standard formalism in abstract model theory is that of
Lindstrόm extensions or of extensions by generalized quantifiers (Lindstrδm
quantifiers); compare the overview in [Ebb85]. Roughly, each such quantifier
incorporates one single new structural property and the resulting extension is
a minimal one to make this new property available under some natural closure
conditions. While this formalism is universally applicable for many purposes
— any extension of first-order logic that satisfies some corresponding closure
properties is equivalent with a Lindstrδm extension — it may be argued that
it is not always optimally adapted to the demands of finite model theory.
It seems that a framework for extensions of logics for finite structures that
is sufficiently fine grained to reflect algorithmic constraints is still lacking.
This issue is connected with the above-mentioned lack of criteria for the
'naturalness' of a logic for finite structures.

0.2 Natural Levels of Expressiveness

First-order logic is not well adapted to the programme of logics for com-
plexity classes. While any individual finite structure is characterized up to
isomorphism by a single sentence of first-order logic, natural properties that
are of very low complexity are not first-order definable. For instance neither



8 0. Introduction

connectedness nor regularity are first-order properties of finite graphs. In fact
these examples are typical of the two most apparent defects in the expres-
sive power of first-order logic: first-order logic does not provide expressive
means to capture any relational process that requires true recursion (like the
generation of the transitive closure of the edge predicate required for connect-
edness), and first-order logic has no means to express non-trivial cardinality
properties (like the equality of the numbers of direct neighbours required for
regularity). In short, first-order logic lacks recursion and counting.

0.2.1 Fixed-Point Logics and Their Counting Extensions

The first defect is taken care of in the extension to fixed-point logics. The
adjunction of fixed-point operators leads to logics that capture certain levels
of relational recursion. Least or inductive fixed-point logic FP in particular
is a very natural logic that has been studied extensively. Inductively defined
and increasing relational processes are captured by FP. The generation of the
transitive closure is a simple but typical example for the expressive power of
FP above that of first-order logic. An important point is that the increasing
nature of these relational processes guarantees termination in a stationary
value within polynomially many steps. A further extension in terms of rela-
tional recursion for arbitrary rather than increasing processes (that therefore
may or may not terminate in a stationary value) is partial fixed-point logic
PFP. The interest in FP is justified because by the theorem of Immerman
and Vardi it captures PTIME for ordered structures. Similarly, PFP captures
PSPACE in the presence of order [Var82, AV89]. In particular, in the presence
of order, FP and PFP automatically remedy the second shortcoming of first-
order logic: on ordered structures FP and PFP also capture all counting and
PTIME, respectively PSPACE, cardinality properties of definable predicates.
In the absence of order, however, this is not at all true. In the extreme case
of pure sets (graphs without edges) it is easy to see that relational recursion
and all of FP and PFP collapse to first-order. Simple cardinality properties
of the size of sets like evenness of the number of vertices are not definable
in FP or PFP. Moreover, all the simple examples of properties that are not
FP-definable but may be recognized in PTIME involve such cardinality prop-
erties.

One of the themes underlying our present investigations is the attempt
to treat these two most apparent shortcomings of first-order logic over finite
structures — recursion and counting — on an equal footing and to consider
the extensions FP and PFP to a framework that incorporates counting.

We thus obtain fixed-point logic with counting FP+C and partial fixed-
point logic with counting PFP+C. Roughly speaking we deal with two-sorted
variants of the given finite structures, augmented by a second ordered arith-
metical sort. A link between the sorts is induced by counting terms that
associate cardinality values with formulae that define sets. The usual fixed-



0.2 Natural Levels of Expressiveness 9

point operations can now be applied in this framework to combine relational
recursion with the processing of cardinalities.

The conception of fixed-point logic with counting is due to Immerman
[Imm87a]. It has not been studied in its own right or even rigorously formal-
ized in the work of Immerman though. The fact that counting is the most
obvious defect in FP as compared with PTIME had led Immerman to conjec-
ture that an appropriate extension of FP to FP+C should even be a logic for
PTIME in the general case. This conjecture was disproved in a strong sense
by Cai, Fίirer and Immerman [CFI89]. The sophisticated nature of their ex-
ample for the separation of FP+C from PTIME indicates on the other hand
that FP+C may still be regarded as an interesting level of expressiveness
within PTIME that captures many PTIME properties that naturally arise for
instance in graph theory. This view has since been corroborated by model
theoretic as well as complexity oriented results in [G093, Ott96a] and we
shall see much of this in the sequel. The claim for the naturalness of FP+C
mainly rests on the following:

• The expressive power of FP+C can be understood very well in terms of
certain FP+C-definable structural invariants. An analogous phenomenon
was first discovered and exploited in the analysis of FP itself in the work
of Abiteboul and Vianu [AV91] and lead to their beautiful result that FP
collapses to PFP if and only if PSPACE = PTIME. This approach could
successfully be extended to FP+C and PFP+C. In some respects the link
between the expressive power of FP+C and PFP+C and the associated
invariants is even neater than for FP and PFP themselves. The result-
ing characterization of the expressive power of FP+C and its relation to
PFP+C show that even though FP+C falls short of PTIME it extends to
the general case some of the computational and model theoretic features
that apply to FP only in the ordered case.

• FP+C and PFP+C are very robust with respect to the actual formalization
of the counting extension. There are a number of equivalent characteriza-
tions of the expressive power of FP+C, both in terms of logical systems
that turn out to be equivalent with FP+C and in computational terms.

Intuitively these show that FP+C constitutes a natural level of expressiveness
that at the same time corresponds to some natural level in complexity — even
though it is clear that this level is strictly contained in standard PTIME.

0.2.2 The Framework of Infinitary Logic

A different but related approach to the investigation of logics with respect to
complexity classes focuses on the a priori logical framework given by certain
fragments of infinitary logic. Consider firstly full-fledged infinitary logic LOOUM
the logic generated by the usual first-order rules for the formation of formulae
together with infinite disjunctions and conjunctions over arbitrary sets of



10 0. Introduction

formulae. Now any finite graph is characterized up to isomorphism by a first-
order sentence. It follows that every property of finite graphs is definable in
Looω by a countable disjunction over first-order sentences that characterize
all positive instances of this property. Looω is a universal logic for finite
structures — and overshoots all sensible levels of expressiveness.

Particular fragments of infinitary logic, however, have emerged as very
useful tools in finite model theory. These are defined in terms of restrictions
on the number of variables that may occur (bound or free). These restrictions
are well adapted to the study of relational recursion since the processes con-
sidered in relational recursion always involve a fixed bound on the maximal
arity of auxiliary relations. Thus pure relational recursion is fully contained
within Z/rou;> tne fragment of LO^ that consists of all formulae that use a fi-
nite number of variable symbols each. In particular fixed-point logic FP and
partial fixed-point logic PFP are properly embedded in L(^oω. It is important
to note that the completely non-uniform constructors of infinite disjunctions
and conjunctions allow to define non-recursive properties of finite structures
as well. L^, too, is completely at odds with complexity on finite structures.
Here this may be seen as an advantage. If we consider problems related to log-
ics for complexity in restriction to the framework of L(^oω then it is important
that this restriction in itself does not trivialize the issues. Since L^oω allows to
define properties of arbitrary complexity, the class of all those PTIME proper-
ties of finite graphs, that at the same time are L^-definable, is a non-trivial
subclass of graph-PτiME for our purposes. Furthermore the restriction to
bounded arity auxiliary relations can be considered as a natural restriction
also in terms of the computational complexity of relational problems.

The points made about the inclusion of counting in connection with FP
versus FP-f C also apply to the framework of L^ω. Evenness of the number
of vertices or regularity of graphs are not L^-definable. The reason is that
although each individual expression of the from 3~mxφ(x) asserting the ex-
istence of exactly m elements that satisfy φ is in first-order logic, the number
of variables required in its formalization grows unboundedly with m. L^ω

compensates completely all defects of first-order that concern relational re-
cursion but fails for the defects related to counting. It is natural therefore
to study also the fragment C^ω of infinitary logic with only finitely many
variables in each formula but allowing all counting quantifiers 3=m instead of
the usual existential quantifier. These were also first considered in the work
of Immerman on the counting extension of FP. FP+C and PFP+C are com-
prised in C^ω just as FP and PFP are in L^ω. We denote the constituent
sublogics with a fixed finite bound k on the number of variables C^ω and
L*^ so that C^ω = Ufc C^ω and L^ω = \Jk L^ω. The infinitary logics C^ω

and L^ω and their constituents C^ω and L^ω will be used extensively as
frameworks in our exposition. On the one hand they are used in the analysis
of mostly still open restricted problems on capturing complexity classes. On



0.2 Natural Levels of Expressiveness 11

the other hand they provide the setting for the comparative analysis of the
expressive powers of FP+C, PFP+C, FP and PFP.

The main asset of the fragments C^ω and L^ω is in fact a methodologi-
cal point. Both possess very elegant and tractable Ehrenfeucht-Fraϊsse style
characterizations in terms of games. Such games that capture the expres-
sive power of a logic are an important tool in classical model theory. The
classical Ehrenfeucht-Fraϊsse theorem relates first-order equivalence of two
structures to the existence of a strategy in a game played on these struc-
tures. See [EFT94] for a textbook treatment of this technique in the classical
context. Variants of these games have been found and employed for various
other logics besides first-order. It is remarkable that such games are among
the few tools from classical or abstract model theory that are fully available
in restriction to finite structures without any alteration. See also [EF95].

A large part of the present work is devoted to the detailed analysis of
corresponding games for the C^ω and L^. The games are due to Barwise
[Bar77] and Immerman [Imm82], and Immerman and Lander [IL90] respec-
tively. The analysis of the games leads to the abstraction of concise PTIME
computable structural invariants that characterize finite relational structures
exactly up to equivalence in C^ω or L^ω. As mentioned above such invari-
ants were first considered by Abiteboul and Vianu in [AV91] in the context
of a computational model for relational recursion and applied to the study
of fixed-point logics. A formalization in terms of the underlying fragments
of infinitary logic has been presented in Dawar's dissertation [Daw93] and in
[DLW95] for the L^ω and in [G093, Ott96a] for the C^ω. The relationship
between the expressive power of FP-hC and the invariants for the C^ω is
also one of the main topics here. We shall investigate this relationship in
comparison with FP and the invariants for the L^ω as well.

0.2.3 The Role of Order and Canonization

Consider once more the problem of logics for complexity classes. As out-
lined above the essential difficulty in capturing classes below NPTIME in the
absence of order can be attributed to the ambiguity in the input representa-
tion — it is this ambiguity that imposes the problematic semantic invariance
condition on graph algorithms.

Canonization addresses the problem of providing well defined and unique
representatives up to a given equivalence relation. Consider canonization up
to isomorphism for finite graphs. Suppose there were a PTIME functor defined
on the class of all finite graphs that maps each graph of size n to an isomor-
phic representative over the standard universe {0,... , n — 1} in such a way
that any two isomorphic graphs get mapped to the same representative. Such
a mapping would constitute what is called PTIME canonization up to isomor-
phism or PTIME normalization. It is not known whether finite graphs admit
PTIME normalization. It is clear that PTIME normalization would induce a
PTIME algorithm for graph isomorphism; whether the graph isomorphism



12 0. Introduction

problem itself is in PTIME is not known. Note that the entire problem of
capturing PTIME is solved trivially if there should be PTIME normalization.
Any algorithm applied to the standard encoding of a normalized version of
the input graph becomes a graph algorithm. PTIME normalization would in
fact reduce the capturing of PTIME in the general case to the ordered case.

Some of our investigations concern the variant of this approach in re-
striction to the framework of the C^ω and L^, respectively. We consider
canonization up to equivalence in these logics rather than up to isomorphism.
There is a direct connection between PTIME canonization for these rougher
equivalences and the capturing of the PTIME fragments of these fragments
of infinitary logic. Linking these considerations with the above-mentioned
PTIME invariants for the C^ω we find appealing sufficient criteria that FP+C
indeed captures PTIME in restriction to all of C^ω. It remains a challeng-
ing open problem whether these conditions are fulfilled. A reduction proce-
dure furthermore shows that the general cases hinge on the three-dimensional
cases, i.e. on canonization up to equivalence in the three-variable fragments

Of LOGO;.

A main result that will be treated in full detail in the last chapter concerns
the two-variable case [Ott95a, Ott95b]. For L\oω and C^ω we exhibit a strong
form of PTIME canonization and thus obtain non-trivial capturing results.
The classes of all PTIME properties that are C^ω- or L^3θω-definable are
indeed recursively presentable and may be captured naturally in terms of the
complete invariants for C^ω or L^, respectively.

0.3 Guide to the Exposition

We summarize the investigations and results that are presented here in order
to provide an outlook that may also help to make the overall organization of
the material transparent.

• Chapter 1 reviews and introduces basic terminology, summarizes some
facts and simple results related in particular to the fragments of infinitary
logic and fixed-point logics. Typical examples illustrate the expressive power
of these basic logics.

• Chapter 2 provides an introduction to the games for the bounded variable
fragments of infinitary logic with and without counting quantifiers. Proofs of
the corresponding Ehrenfeucht-Praϊsse type theorems are given. The analysis
of these games is carried further to support the definition of the associated
invariants in Chapter 3.

• Chapter 3 is devoted to the definition and discussion of the invariants
associated with the games. We review those known applications to fixed-
point logic without counting that will later be paralleled by, and contrasted
with, the corresponding picture for fixed-point logic with counting.



0.3 Guide to the Exposition 13

• Chapter 4 is about fixed-point logic with counting. The formal definitions
of FP+C and PFP-hC are provided here. Some material is collected to cor-
roborate the view of fixed-point logic with counting as a distinguished level
of expressiveness within PTIME. The central results rest on applications of
the invariants for the C^>oω.

• Chapter 5 considers the formalism of Lindstrόm quantifiers and exten-
sions of fixed-point logic in restriction to cardinality properties. A structural
padding technique is developed which among other applications shows that
the extension of fixed-point logic by all cardinality Lindstrδm quantifiers is
still to weak to comprise the full power of proper fixed-point logic with count-
ing.

• Chapter 6 provides the general treatment of the connection between can-
onization up to equivalence in the bounded variable fragments of infinitary
logic and recursive presentations of the related fragments of PTIME.

• Chapter 7 finally is concerned with the positive results related to the two-
variable fragments. In particular there are detailed proofs that the PTIME
fragments of both Li^Qω and C^ω can be captured.

Throughout the entire text I have attempted to give an almost self-
contained exposition. In the first four chapters in particular numerous ex-
amples are given and comments and background material provided towards
a thorough introduction to the leading concepts, along with the technical
development. The last three chapters on the other hand are more specifically
devoted to individual results and correspondingly are of a more technical
nature.

The main ideas that concern fixed-point logics and the bounded vari-
able fragments of infinitary logic without counting quantifiers are reviewed
and developed along with the corresponding notions for the counting case.
This seems justified because the results in the case without counting may be
obtained through obvious specializations. And also because the comparison
between the two scenarios is a major source of motivation for our investiga-
tions.

This two-tiered treatment is also intended to make the main results con-
cerning either individual case individually accessible as far as possible. This
is true in particular of those new results that concern the case without count-
ing, mainly in Chapters 6 and 7. The only chapters that are devoted to the
counting case proper are Chapters 4 and, to some extent, 5.

The main dependencies between chapters are the following. Chapters 2-4
each build on their predecessors. Chapters 5, 6 and 7 are to a large extent



14 0. Introduction

independent of each other. For those developments of Chapters 6 and 7, that
concern the case without counting, all major prerequisites can be found in
Chapters 1-3.

I should also point out that several sections of Chapter 1 (in particular
1.5-1.7) become essential only for the understanding of specific further devel-
opments. Chapter 1 may therefore be read selectively and called upon again
where necessary.

In the beginning of each chapter there is a brief summary of its contents.
Where appropriate I have appended to the individual chapters short sections
that discuss summarily the main sources of ideas and results reported or
clarify connections with other work.




