
7. DEGREES OF INTERPRETABILITY

Suppose PAH T. We shall use A, B, etc. for extensions of T. (Thus, T, A, B, etc. are

essentially reflexive.) The relation < of interpretability is reflexive and transitive.

Thus, the relation = of mutual interpretability (restricted to extensions of T) is an

equivalence relation; its equivalence classes will be called degrees (of interpretability)

and will be written a, b, c, etc. Dτ is the set of degrees of extensions of T. A is of

degree a if Ae a and d(A) is the degree of A. The relation < among degrees is the

relation induced by the relation < among theories: d(A) < d(B) iff A < B. Dτ = (Dτ,<),

the partially ordered set of degrees defined in this way, will be studied in some

detail in this chapter.

§1. Algebraic properties. In this § we restrict ourselves to purely algebraic proper-

ties of D p. First we define the theory Aτ and the operations >l and T on theories as

follows.

AT = T + {ConA)k:keN},

AiB = T + {ConA i k v ConB | k: ke N},

ATB = T + {ConA i k Λ ConB | k: ke N}.

From Lemma 6.2 and Theorem 6.6, we get the following:

Lemma 1. (a) A < B iff ATH B. Thus, Aτ = A and A < B iff ATH Bτ.

(b)A<B,Cif f A<BlC,

( c ) A , B < C i f f A ί B < C

The following lemma is little more than a restatement of Lemma 4.4.

Lemma 2. If θ is Πj and Ah θ, there is a k such that PAh ConA (k -> θ.

Instead of AlB it is sometimes convenient to use the theory AvB defined by

AvB = {φ v ψ: φe A & ψe B}.

Th(AvB) = Th(A) n Th(B). Evidently, AiB H AvB and, by Lemma 2, AvB HΠlAlB.

But then, by Theorem 6.6, that AvB < A^B and so AvB = AiB. It follows that for
every sentence φ, (A + φ)l(A + -«φ) < A.

From Lemma 2 and Lemma 6.1 we get:

Lemma 3. For every E^ sentence π, T + π < A?B iff A?Bh π iff there are Γ^ sentences
φ, ψ such that Ah φ, Bh ψ, and T + φ Λ ψh π.

For Ae a and Beb, let a n b = d(AlB) and a u b = d(AΪB). By Lemma 1, n and u
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are well-defined, a n b is the g.l.b. of a and b and a u b is l.u.b. of a and b. Thus,
we have proved part of the following:

Theorem 1. Dτ is a distributive lattice.

To prove distributivity we need the following lemma whose proof is left to the
reader.

Lemma 4. (a) For every k, there is an m such that

PAh Con(AvB) i m -> ConA, k v ConB, k.

(b) For every k, there is an m such that

PAh ConA, m v ConB, m -> Con(AvB), k.

Proof of Theorem 1. Let D = Aτv(BΪC) and E = (AvB)T(AvC). To prove that Dτ is

distributive, it is, by Lemma 1, sufficient to show that D Hh E.

Let k be arbitrary. By Lemma 4 (a), there is an m such that

PAh Con(AvB) i m -> ConA, k v ConB, k,

PAh Con(AvC) i m -> ConA, k v Conc, k.

But then

Eh ConA i k v (ConB, k Λ Conc, k).

It follows that DH E. The proof that Dh E is similar.

Dτ has a minimal element Oτ = d(T) and a maximal element lτ, the common

degree of all inconsistent theories.

In our next result we answer a number of standard questions concerning Dτ; in

particular, it follows that D-p is dense.

Theorem 2. Suppose a < b < lτ, d0 ̂  a, and b ̂  d1. There are then degrees c0, q

such that a < q < b, d0 ̂  q ̂  d^, i = 0,1, CQ n c1 = a, and CQ u c1 = b.

We derive this from:

Lemma 5. Suppose X is r.e. and monoconsistent with PA. Let θ be any true Π^ sen-

tence. There are then Π^ sentences Θ0, &ι such that

(i) P A h θ o v θ i ,

(ii) PAh Θ0 Λ 0! -> θ,

(iii) θ/eX, i,j = 0,l.

Proof. We may assume that if φeX and PAh φ —> ψ, then ψeX. Let θ := Vxγ(x),

where γ(x) is PR. Let R(k,m) be a primitive recursive relation such that X =

{k: ΞmR(k,m)} and let p(x,y) be a PR binumeration of R(k,m). Finally, let Θ0 and θj

be such that

(1) PAhθ0 ̂  Vy((p(θ0,y)
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(2) PAhθ! <-> Vz(p(θ1/Z) -» 3y<z(p(θ0,y) v
Then (i) and (ii) follow directly (cf. Lemma 1.3).

Suppose θ0eX or 01eX and let m be the least number such that R(θ0/m) or

Rίθ^m). If Rίθ^m), then Θ1e X. Also, by (2), and since θ is true, PAh -iθ^ a contra-

diction. It follows that not Rίθ^m) and, therefore, R(θ0/m). But then 00eX and, by

(1), PAh ->Θ0, again a contradiction. Thus, Θ0£X and Θ1^X.

Finally, if -*&£ X, then, by (i), θ^e X. It follows that - θ0e X and -.θ^ X.

Proof of Theorem 2. Let Aea, Beb, D^ed^ By Orey's compactness theorem

(Theorem 6.5) there are sentences ψ, χ such that Bh ψ, ψ ^ A, D0h χ, χ ^ A. By

Theorem 6.6, there is a Π1 sentence π such that Bh π, Ah π, and Djh π. Let

X0 = {φ: Ah φ v π}, X: = (φ: ψ < A + -iφ},

X2 = {φ: χ < A + -.φ}, X3 = {φ: Dxh φ v π}.

Let X = X0 u \ι u X2 u X3. Then X is r.e. (cf. Lemma 6.5). It is also easy to verify

that X is monoconsistent with PA. By Lemma 5, there are then Π1 sentences Θ0, &ι

such that
(1) PAh Θ0 v θx,

(2) PAh Θ0 Λ θα -» ConB,

(3) Θ^X, i,j = 0,l.
Let eA = d(A+θi), i = 0, 1. Then a < e^ b ί eir since -*&& Xχ d0 ̂  e{, since -O^ X2.
Let q = e^ n b. Then q < b and d0 ̂  Cj. If Cj < a, then, since θj is Πj, Ah θj v π, con-

tradicting the fact that θ^ X0. Thus, Cj ^ a and so a < q. Similarly, q ^ dlr since

0^X3. By (1), c0 n G! = a. By (2), Theorem 6.4, and Lemma 3, e0 u C L > b, whence,

by distributivity, c0 u QI = b n (e0 u e^ = b.
From Lemma 5 we can also derive the following:

Corollary 1. T is not Σ^-sound iff there are degrees a0, a^ < ly such that a0 u a± =

lτ (and a0 n a1 = Oτ).

Proof. Suppose T is Σ1-sound. Let a, b < lτ, Ae a, BG b. Then A?B is consistent and

so a u b < lτ. Next, suppose T is not Σ1-sound. There is then a true Πj sentence θ

such that Th --Θ. Let θ^ be as in Lemma 5 with X = Th(T). Let a{ = d(T+θi). Then a^

< lτ, by Lemma 5 (iii), and a0 n a^ = Oτ, by Lemma 5 (i). Finally, by Lemma 3,

(T + Θ0)T(T + θx)h θ. Since Th -.θ, it follows that (T + Θ0)T(T + θα) is inconsistent
and so a0 u a^ = lτ.

By Corollary 1, if PAH S and S is Σ^sound but T is not, then Ds and Dτ are not

isomorphic. But suppose S and T are both Σ1-sound. It is an open problem if this

implies that Ds and Dτ are isomorphic.

Given that there are c0, q > a such that c0 π q = a, we may ask if any b such

that a < b < lτ caps to a in the sense that there is a c> a such that b n c = a. (Dually,

b cups to a if there is a c < a such that b u c = a.) In our next result this question and

its dual are answered in the negative. We write a «n b to mean that a < b and b

does not cap to a. Dually, a <<̂  b means that a < b and a does not cup to b.
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Theorem 3. (a) Suppose Oτ < a ̂  c. There is a b such that Oτ < b «^ a and b ̂  c.

(b) Suppose c ̂  ) a < lτ. There is a b such that a «^ b < lτ and c ̂  b.

Proof, (a) Let Ae a and CE c. There is a Γ^ sentence θ such that Ah θ and CH θ. Let

X = Th(C + - θ). X is r.e. and (mono)consistent with T + -iθ. By Theorem 5.2, there

is a Π L sentence ψg X such that ψ is Σ1-conservative over T + -iθ. Let B = T + ψ v θ

and b = d(B). Then Oτ < b ^ c and b < a. Suppose b u d = a. Let De d. Then, by

Lemma 6.2, there is an m such that T + ψ + ConD(mh θ and so T+-»θ+ψh

-«ConD i m. Since ψ is Σ1-conservative over T + -iθ, it follows that T+ -i θ h - ConD ( m

and so Dh θ. Thus, d > b and sod = b u d = a. *

The proof of the following lemma from Lemma 6.2, Theorem 6.6, and Lemma 2
is straightforward.

Lemma 6. The following conditions are equivalent:

(i) AlB<C

(ii) A < C + ->ConB ( k for every k.

(iii) A < C -i- -iθ for every Uι sentence θ such that Bh θ.

Let σ be any Σ1 sentence. By Corollary 6.3, the degree d(A+σ) is uniquely deter-

mined by σ and d(A). Thus, we may denote the former by d(A) + σ. A degree of the

form a + σ will be called a Σγ-extension of a. If X is an r.e. set of Σ^ sentences, then,

by Theorem 6.11 (b), d(A+X) is a Σ^^-extension of d(A).

Lemma 7. The following conditions are equivalent:

(i) a «^ b.

(ii) a < b and for every Σ^^-extension c of a, if b < c, then c = lγ.

Proof. Suppose (i) holds. Let Aea and Beb. Let σ be Σα and such that b < a + σ.

Then B>l(A + ->σ) < (A + σ)i(A + -<σ) < A. Hence, by assumption, A + -XT < A,

whence Ah ->σ and so a + σ = lτ. Thus, (ii) holds.

Next suppose (ii) holds. Let c be such that b n c = a. Let Aea, Beb, Cec. Let θ

be any Π1 sentence provable in C. It suffices to show that Ah θ. By Lemma 6,

B < A + -«θ. But then, by assumption, Ah θ, as desired.

Lemma 8. If π is Π^ A < B + π, and -iπ is E^-conservative over A, then d(A) «n

d(B + π).

Proof. Suppose B + π < A + σ. Then, by Lemma 6.1, A + σh π, whence A + -<πh -«σ

and so Ah -<σ, in other words, A + σ is inconsistent. Now use Lemma 7.

Proof of Theorem 3 (b). Let Ae a, Ce c. By Theorem 6.5, there is a sentence ψ such

that Ch ψ ̂  A. Let X = (φ: ψ < A + - φ}. Then, by Theorem 5.2, there is a Σl sentence

χ£ X such that χ is Γ^-conservative over A. Let B = A + -iχ and b = d(B). Then c ̂
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b < lχ. Finally, by Lemma 8, a <<γ>,b.

From Theorem 6.4 and Lemma 8, and Theorem 5.1, we get the following (com-

pare Theorem 6.2):

Corollary 2. d(A) «^ d(T+ConA).

Theorem 3 (a) leads to the problem if for any a < lτ, there is a b such that a «̂ , b

< lτ. (The dual of this is false: if Oτ < b < a and not Oτ <^ a, then not b «^ a.) We

now show that the answer is negative.

a is a cupping degree if a < lτ and a cups to every b such that a < b < lτ. Let

CONT = {a < lτ: a = d(T+Cor4) for some PR binumeration τ(x) of T}.

By Corollary 2.4, CONT * 0.

Theorem 4. Every member of CONT is a cupping degree.

Proof. Suppose a = d(T+Conτ) < 1T, where τ(x) is a PR binumeration of T. Let b be

any degree such that a < b < 1T. Let Beb. We want to define a degree d such that d

Jί a and au d>b. The obvious way to try is to let d = d(T+θ), where

θ := Vu(PrfB(_L,u) -> Ξz<uPrfτ(l,z)).

But it seems difficult to prove, and may not even be true, that d 2 a so we have to

proceed in a somewhat different way.

Let φ be such that

PAh φ <^ Vz(Prfτ(φ,z) -* Ξu<zPrfB(J_,u)),

and let

ψ := Vu(PrfB(J_,u) -> 3z<uPrfτ(φ,z)).

Then

(1) T* φ,
(2) PAh φ v ψ,

(3) PAh φ Λ ψ -» ConB.

Clearly, PAh -iφ — > Prτ(φ). Since -«φ is Σl7 we also have, by provable Σ1-complete-

ness, PAh -ιφ -» Prτ(-ιφ). Thus,

(4) PAh Coriτ -> φ.

Let d = d(T+ψ). Then, since ψ and Cor^ are nlr it follows from (3), (4), Lemma 3,

and Theorem 6.4 that a u d > b. Suppose a < d. Then T + ψh Conτ. But then, by (2)

and (4), Th φ, contradicting (1). Thus, a ^ d. Let c = d n b. Then c < b. Finally,

a u c = (a u d) n (a u b) = b. Thus, a is cupping.

Theorem 14', below, is an improvement of Theorem 4.

A set G of degrees is cofinαl in DT if for every degree a < lτ, there is a degree

be G such that a < b < lτ.

Lemma 9. CONT is cofinal in Dτ.
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Proof. Suppose b < lτ. By Corollary 2.4, even if T is not Σj-sound, there is a PR

binumeration β(x) of a theory of degree b such that T + Conβ is consistent. By

Theorem 6.4, b < d(T+Conβ). By Theorem 2.8 (b), there is a PR binumeration τ(x) of

T such that Th Con,. ̂  Conβ. Let a = dCΓ+ConJ. Then b < ae CONT.

Let P be a property of degrees. We shall say that there are arbitrarily large

degrees having property P if the set of degrees having P is cofinal in Dτ. Every suf-

ficiently large degree has P if for every degree a < lτ, there is a b such that a < b <

lτ and every degree c such that b < c < lτ has P.

If a is cupping and a < b, b is cupping. Thus, from Theorem 4 and Lemma 9 we

get:

Corollary 3. Every sufficiently large degree is a cupping degree.

By Corollary 1, if T is Σ j-sound, no degree, except Oj and 1 j, has a complement

whereas if T is not Σ1-sound, some do. Also, of course, if Oχ «^ a < lτ, then a has

no complement. But, even if a has no complement, it may still have a pseudocom-

plement (p.c). For example, if Oτ «^ a, Oτ is the p.c. of a. By Lemma 6, if π is Πj,

then d(T+->π) is the p.c. of d(T+π). On the other hand we have the following:

Theorem 5. There is a degree which has no p.c.

The proof of this (and more) will be given in § 3 (Theorem 17).

In addition to the usual (finitary) distributive laws, Dj also satisfies the follow-

ing infinitary distributive laws. Let G be a set of degrees. LJG (OG) is then the

l.u.b. (g.l.b.) of G, if it exists.

Theorem 6. (a) If UG exists, then UG n b = U{a n b: aeG}.

(b) If ΠG exists, then ΠG u b = Π{a u b: aG G}.

By Theorem 6 (a), if a has no p.c., then {b: b n a = Oτ} has no l.u.b. In Lemma 23,

below, we give a nontrivial example of a set G which has no g.l.b.

To prove Theorem 6 (b) we need the following:

Lemma 10. The following conditions are equivalent:

(i) AίB>C

(ii) For all (Σ ̂  sentences χ and all m, if Aτ + -«Conc \ m HΣjT + χ, then Bh -«χ.

Proof. Suppose (i) holds. Let χ and m be such that Aτ + -iCon^ |mHχ T + χ. There

is a k such that Aτ + ConB | kh Conc ( m. It follows that T + χh - ConB | k, whence Bh

-iχ. Thus, (ii) holds.

To prove that (ii) implies (i), suppose (i) fails, i.e. AtB Jί C. There is then an m

such that for every k, Aτ + ConB ( ̂  Conc | m. But then, by Theorem 4.3, there is a
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ΣI sentence χ such that Aτ + -Cone | m~\^ + χ and T + χV- - ConB | k for every k.

Since - χ is Ulf it follows, by Lemma 2, that BI/ - χ. Thus, (ii) is false, as desired.

Proof of Theorem 6. (a) Let c = LJG. Clearly c n b is an upper bound of {a n b:

aeG}. Suppose d is any upper bound of {a n b: aeG}. It is then sufficient to show

that c n b < d. Let Be b, Ce c, De d. Then AlB < D for every A such that d(A)G G.

But then, by Lemma 6, A < D + ->ConB | k for every such A and every k. It follows

that for every k, C < D + -«ConB ( k for every k, whence, by Lemma 6, CiB < D and

so c n b < d. Φ

(b) Let c = ΓΊG. Clearly c u b is a lower bound of {a u b: ae G}. Suppose d is any

lower bound of {a u b: aeG}. It is then sufficient to show that d < c u b. Again let

Beb etc. Then D < A?B for every A such that d(A)e G. But then, by Lemma 10, for

every such A, every m and every Σ1 sentence χ, if Bτ + -«ConD (m^T + χ, then Ah

-ιχ. It follows that for every m and every Σ^ sentence χ, if Bτ + ->ConQ |mHj\T + χ,

then Ch -ιχ. Hence, again by Lemma 10, D < CίB and so d < c u b.

Suppose a < b. Let [a,b] be the interval {c: a < c < b}. (We also write [a,b) for

{c: a < c < b} etc.) A natural (global) question concerning Dτ is if all intervals [a,b],

where a < b < lτ, are isomorphic (in the obvious sense). The answer is negative.

If c < d, let [d,c] = ([c,d], >). Another natural question is, under what conditions

[a,b] is isomorphic to [d,c], where a < b and c < d.

Theorem 7. (a) There are degrees a, be (0 ,̂1 )̂ such that the intervals [O^a] and

[Oj,b] are not isomorphic.
(b) Suppose a < b and c < d. Then [a,b] is not isomorphic to [d,c].

Theorem 7 (a) follows at once from our next two lemmas.

The interval [a0,a1], where a0 < al7 is said to satisfy the reduction principle if for

any bg, b^e [a0,aι], if bg u b^ = alr there are q < bj, i = 0,1, such that CQ n c^ = ap

and c0 u QI = a1. A degree a is r.p. if [Oτ,a] satisfies the reduction principle.

Lemma 11. If a = d(T+θ), where θ is Πl7 then a is r.p.

Proof. Let b0, bl be such that b0 u b1 = a. There are then Π1 sentences ψ0, ψi such

that dίT+ψi) < bi and T + ψ0 Λ ψαh θ. By Lemma 5.5, there are ̂  sentences Θ0, θα

such that Th Θ0 v Θl7 Th ψj -» Θi7 i = 0,1, Th Θ0 Λ θα -> ψ0 Λ ψx. Let q = d(T+θi), i =

0,1. Then q < bj, c0 n QI = Oτ, and, by Lemma 3, c0 u QI = b0 u b^ = a.

Lemma 12. There is a degree a < lτ which is not r.p.

Proof. Let π be a U^ sentence undecidable in T. In case T is not Σ1-sound we also

need to assume that π is Σ1-conservative over T (cf. Theorem 5.2). We now effec-

tively define r.e. sets Xk of ̂  sentences such that

(1) T + Xk + π1 is consistent, i = 0,1,
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(2) Xk £ Xk+1,

(3) T + Xk + πV Xk+1/

(4) T + Xk + - π < T + Xk+1.

Let X0 = 0. Then (1) holds for k = 0. Now suppose (1) holds for k = n. By (the proof

of) Lemma 2.1, we can effectively find a Π^ sentence ψn such that

(5) T + Xn + κ[ + -i\)4 is consistent, i = 0,1.

Let Tn =df T + Xn + -.π + ψn. It follows that

(6) there is no Πx sentence θ such that Tnh θ and T + θh - π.

For suppose T + θh -iπ. Then T + πh ->θ and so Th -»θ, whence, by (5), Tnl/ θ.

Let Xn+1 = Th(Tn) n Πα. Let k = n+1. Then (1) is satisfied for i = 1 and, by (6), (1)

is satisfied for i = 0. Moreover (2) and (4) hold for k = n. Finally, T + Xn+il~ ψn and

so, by (5), (3) holds for k = n.

Let a0 = d(T+LJ{Xk:ke N}), a^ = d(T+π), and a = a0 u aα. Since a0 < lχ and π is

Σ1-conservative over T, we have a < 1 j. We now show that a is not r.p. Let b0 and

bι be such that bg ̂  ag, b^ < a^, bg n bj = Op, and bp u b^ > a^. It is then sufficient to

show that b0 u b1 j! a0.

Let θi/k be Π1 sentences such that bj = d(T+{θ^k:ke N}), i = 0,1. We may assume

that T + θi k+ιh θj k for i = 0,1 and all k. By Lemma 3, there is then an m such that
T + Θ0,m Λ Q1#J~ π d(T+θO,m) ^ bO - aO Thus' bY (2)' there is an n such that T +
Θ0/m < T + Xn. Since b0 n bα = Oτ, for every k, T + Θ0/k v π < T + Θ0/k v (Θ0/m Λ Θ1/m)

< T + Θ0/m. It follows that T + Θ0/k v π < T + Xn, whence T + Θ0/k < T + Xn + -iπ

(cf. Corollary 6.3) and so, by (4), T + Θ0/k < T + Xn+ι But this holds for all k, whence

b0 < d(T+Xn+1). Next, by (3), b0 u ̂  < b0 u al < d(T+Xn+1+π) 5ί a0. It follows that

bg u b^ ^ a0 and so the proof is complete.

Proof of Theorem 7 (b). Let Ae a and let π be a Πj sentence such that Al^ π. Then

[a,d(Aτ+π)] satisfies the reduction principle (see the proof of Lemma 11). It follows

that in [a,b] there is a degree e > a such that [a,e] satisfies the reduction principle.

Thus, it is sufficient to show that the dual of the reduction principle is false in [c,d]

whenever c < d.

Let Ce c and De d, and let π be such that O π and Dhπ. Then, by Theorem 5.5

(b) with X = Th(CT + - π), there are Σl sentences σt such that Cτ+ ^σ{ = Cτ + aM,

i = 0,1, and Cτ + -ισ0 Λ ̂  \f π. Let q = d(CT+Gi) = d(CT+-'G1_i). Then c0 n cx = c

and c0 u c1 ̂  d. Let dj = q n d. Then d0 n dj = c and d0 u dj < d. Suppose now dj

< ej < d, i = 0,1, and e0 n eα = c. We have to show that e0 u e-^ < d. Let E0e e0. q n

e0 = cι n d n e0 = dx n e0 < eα n e0 = c. It follows that (Cτ + ->σ0)lE0 < Cτ. But then,

by Lemma 6, for every Γ^ sentence θ, if E0h θ, then Cτ + - σ0 < Cτ + -«θ, whence

Cτ+σ0l- θ. It follows that e0 < CQ and so e0 = d0. Similarly, e^ = d^ Hence e0 u eι =

d0 u d^ < d and the proof is complete.

Theorem 7 (a) leads to the problem of determining the exact number of noniso-

morphic intervals of Dτ. This problem remains open.

We have actually proved more than is stated in Theorem 7. Let L = {<, n, u, 0,1}

be the language of the theory of lattices with a bottom and a top element.
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Formulated in L, the reduction principle is an V5 sentence. Hence, by the proof of

Theorem 7 (a), there are degrees a, be (Oτ,lτ) and an V5 sentence of L which holds

in [Oτ,a] but not in [Oτ/b]. (This is, so far, the only known way of proving that two

intervals of Dτ are nontrivially nonisomorphic.) Similarly, the proof of Theorem 7

(b) shows that if a < b and c < d, there is an ΞVΞ sentence which is true in [a,b] and

false in [d,c].

§2. A classification of degrees. When there is no risk of confusion we shall use φ

and X in place of T + φ and T + X. Thus, d(φ) is d(T+φ), X < φ means that T + X <

T + φ, φ = ψ that T + φ = T + ψ, etc. We also write a «b to mean that a «^b. A «B

means that d(A) « d(B). σ, σ0, etc. will be used to denote ΣI sentences and π, π0,

etc. to denote Γ^ sentences.

A degree a is Φ if there is a Φ sentence φ such that a = d(φ). By the proof of

Theorem 6.11 (a), it is clear that every degree is Π2 and Σ2. This can be somewhat

improved:

Theorem 8. Every degree is Δ2.

Proof. Let a be any degree. There is a primitive recursive set X of Γ^ sentences such
that a = d(X). Let ξ(x) be a PR binumeration of X and let φ be such that

PAh φ <-> VzdΠJίqvz) -> (ξ(z) -» TrΠl(z))).
Then φ is Π2 and T + φ is a Π^-conservative extension of T + X (cf. the proof of

Theorem 5.4 (a)). It follows that a = d(φ). Using Lemma 5.1 (i) and Lemma 1.3 (v)

(applied to - φ), we get:

PAh φ <-> Vz(ξ(z) -> TrΠl(z)) v az(-,[Π1](φ/z) A Vu<z(ξ(u) -> TrΠl(u))).

Thus, φ is Δ2

By Theorem 8, in terms of the arithmetical hierarchy, the only interesting (prop-

er) subsets of Dτ are the sets of B! degrees, Σ1 degrees, Γ^ degrees, and degrees

which are both ΣI and Πj. (If T is not Σ1-sound, there are also Δ^ degrees other than

Oτ and lτ; see e.g. the proof of Corollary 1.) The object of the rest of this § is sim-

ply to show that these sets are different and that there is a non-B} degree. More

detailed information about the ΣI and the Π} degrees will be given in the next §.

Our next lemma is a restatement of Theorem 6.11 (b).

Lemma 13. If X is an r.e. set of ΣI sentences, then d(X) is Σ1.

The following lemma is occasionally useful.

Lemma 14. There exist a (primitive) recursive sequence <σk>k<ω and a sentence σ
such that (i) T + σk+1h σk, for all k, (ii) σk < σk+1, for all k, (iii) σ = {σk: keN}.
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This follows at once from (the proof of) Lemma 2.1 (applied to the sets {φ: Q + φ <
T + σk}; σ0 := 0 = 0) and Lemma 13.

Theorem 9. (a) There is a ΠJL degree which isn't Σ1.

(b) There is a Σl degree which isn't Π^

(c) There is a degree other than Oτ and lτ which is both Σα and Πj.

(d) There is a B! degree which is neither ΣI nor Γ .̂

(e) There is a degree which isn't B1.

Proof, (a) Let π be such that - π is Π1-conservative over T and TI/ - π. Then, by

Lemma 8, Oτ « d(π) and so, by Lemma 7, d(π) is not Σj. *

(b) Let <σk>jc<ω and σ be as in Lemma 14. Suppose d(σ) is Π1 and let π be such

that σ Ξ π. Then π = (σk: ke N} and so, by Lemma 14 (i), there is an m such that

T + σmh π. But then (σk: ke N} < σm, contradicting Lemma 14 (ii). Thus, d(σ) isn't

Πα. »

(d) The easiest way to prove this is to define π as in the proof of (a) and then σ

as in the proof of (b), except that T is replaced by T + π. Then d(πΛσ) is neither ΣI

nor Π1. Details are left to the reader. +

Theorem 9 (c) will be derived from the following lemma, which will also be
used later.

Lemma 15. There are Πj sentences θj, i = 0,1, such that

(i) W θi,
(ii) T h θ o v θ i ,

(iii) Th Θ0 Λ θx -^ Conτ,
(iv) T + Conτh ^Prτ(θi),

(v) T + Conτh θt,

(vi) θiEE-θ^.

Proof. Let Θi7 i = 0,1, be such that

PAhθi <-> Vz(Prfτ(θi,z) -> 5u<z+iPrfτ(θ1_i,u)).

A standard argument proves (i). Formalizing this argument we get (iv). (ii) and (iii)

are immediate, (v) follows from (iv). By (ii),

(1) PAh Prτ(-θi)

Also,
(2) PAh-.θα.i

By Theorem 6.8, θi A Prτ(-ιθi) < θi- By (1), it follows that Q{ Λ Prjίθ^) < θ^ and so,

by (2), -iθ^j < θi. But then, by (ii), θt = ̂ _{/ i.e. (v) holds.

Proof of Theorem 9 (c). Let θt be as in Lemma 15. Let a = d(θ0). Then a is Γ^ and,

by Lemma 15 (vi), a is Σj. By Lemma 15 (i), a > Oτ. Finally, by Lemma 15 (i) and (ii),

a < lτ. Φ
To prove Theorem 9 (e) we need the following:
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Lemma 16. Suppose X is r.e. and for every k, X I k « X. Then if φ is BI and X < φ,

then X «φ. Thus, a fortiori d(X) is not B1.

Proof, φ can be written in the form (π0 Λ σ0) v...v (πn Λ σn). It is easily checked that

for any degrees a, b, c, if a «b and a «c, then a « b n c. Thus, it is sufficient to

show that if X < π Λ σ, then X « π Λ σ. Let χ be a Σ1 sentence such that π Λ σ < X +

χ. Then, by Lemma 7, it suffices to show that T + Xh -iχ. By assumption, there is a

k such that T + X I k + χh π. Hence T + π Λ σ H T + Xlk + ( χ Λ σ ) and so X < X I k +

(χ Λ σ). But then, since X I k « X, by Lemma 7, T + Xh -.(χ Λ σ). But X < π Λ σ. It fol-

lows that T + π Λ σh -iχ, whence T + X + χh -iχ and so T + Xh -.χ, as was to be

shown.

Proof of Theorem 9 (e). By (the proof of) Theorem 5.2, we can effectively construct

sentences 7^ such that -iT^ is Π1-conservative over but not provable in T + {πk:

k < n}. Let X = {πk: ke N}. Then, by Lemma 8, X I k «X for all k. So, by Lemma 16,

d(X)isnotB1.

§3. ΣI and Πα degrees. This § is devoted to a discussion of the ΣI and E^ degrees

and the relations between them.

The l.u.b. of two Hi degrees is Γ^ and the g.l.b. of two Π1 (Σ{) degrees is Γ^ (Σ1).

Let us say that a is high if a » Oτ, low otherwise. Thus, by Lemma 7, a is low iff
there is a ΣI degree b such that a < b < lτ. By Lemma 8, if -~*π is Π1-conservative

over T, d(π) is high. By Corollary 2, every member of CONT is high.

The following lemma is sometimes useful.

Lemma 17. Suppose a is high. Then for any b, [a n b,b) contains no ΣI degree; in

fact, if c is Σx and a n b < c, then b < c.

Proof. Let Aea, Beb, and c = d(σ). Suppose A^B < T + σ. Then, by Lemma 6, A <

T + σ Λ -«ConB i k for every k. Since a is high, it follows that T + σh ConB | ̂  for every

k, and so B < T + σ.

Theorem 10. (a) The set of Γ^ degrees is cofinal in Dτ.

(b) The set of Σ1 degrees is not cofinal in Dτ; in fact, for every degree a > Oτ, there

is a degree b < a such that [b,a) contains no Σ^ degree.

(c) There is a low Π1 degree which is not Σj.

Proof, (a) Since all members of CONT are Πl7 this follows from Lemma 9. Φ

(b) By Theorem 3 (b), there is a high degree c such a ^ c. Let b = c n a. Then, by

Lemma 17, b is as desired. Φ

(c) Let a be any low Yl^ degree > Oτ. By Theorem 3 (b), there is a high Γ^ degree
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c 5? a. Let b = a n c. Then b is low and and Π1. Finally, by Lemma 17, b is not Σj.

Using Theorem 2 we can now prove the following corollary.

Corollary 4. (a) Suppose a is not na and ae (b,c). There are then degrees b', c7 such

that ae (b',c') c (b,c) and [b',c'] contains no E^ degree.

(b) Suppose a is not ΣI and ae (b,c). There are then degrees b', c' such that

ae (b',c') c (b,c) and [b',c'] contains no Σ^ degree.

Proof, (a) By Theorem 2, there are degrees b0, bx such that b < b{ < a, i = 0,1, and

b0 u bl = a. Either [b0,a] or [blra] contains no Γ^ degree. If not, then a would be the

l.u.b. of two HI degrees and therefore Πj. Suppose [bixa] contains no Γ^ degree and

let b' = bi By Theorem 2, there are degrees c0, q such that a < q < c, i = 0,1, and
C0 n cl = a Either [b',c0] or [b',̂ ] contains no Hi degree. For suppose d^e [b',q] and
dj is Π1/ i = 0,1. Then d0 n dxe [b',a] and d0 n d1 is Πl7 a contradiction. Suppose

[b',Cj] contains no U^ degree and let c' = c. Then b7 and c' are as desired. 4

(b) By a slight modification of the proof of Theorem 10 (b), which we leave to

the reader, there is a degree b' such that b < b' < a and [b',a] contains no ΣI degree.

The rest of the proof is the same as the proof of (a).

Theorem 10 (b) leads to the question if there are arbitrarily small Σ^ degrees. By

our next result, the answer is affirmative; later we shall prove a stronger result

(Theorem 15).

Theorem 11. If Oτ < a, then there is a ΣI and Γ^ degree be (Oτ,a).

To prove this we need a lemma on partial conservativity.

Lemma 18. Let X be an r.e. set. There is then a PR formula η(y,x,z) such that for all

k and θ,
(i) if ke X, then T + θh -.Ξzη(θ,k,z),

(ii) if kgX, then 5zη(θ,k,z) is Γ^-conservative over T + θ.

The proof of Lemma 18 is similar to the proof of Lemma 5.3 (for Γ = Γ^) and is left

to the reader.
Proof of Theorem 11. Let Vuδ(u), where δ(u) is PR, be a Πj sentence such that

Oτ < d(Vuδ(u)) < a. By Lemma 18, there is a PR formula γ(x,z) such that

(1) if Th φ, then Th -3zγ(φ,z),

(2) if Tl^ φ, then 3zγ(φ,z) is Π1-conservative over T + φ.

Let θ be such that

(3) PAh θ <H> Vu(-δ(u) -> 3z<uγ(θ,z)),

and let
σ := 3z(γ(θ,z) Λ Vu<zδ(u)).

Then
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(4) PAh σ <-> 3zγ(θ,z) Λ θ,
(5) PA + θ + -π3zγ(θ,z)h Vuδ(u).

It follows that

(6) ΊV θ.
For suppose not. Then, by (1), Th - Ξzγ(θ,z) and so, by (5), Th Vuδ(u), contrary to

the choice of δ(u).
By (3), θ < Vuδ(u) and so d(θ) < a. By (6), Oτ < d(θ). Finally, by (4), (6), (2), σ = θ.

Thus, b = d(σ) is as claimed.

It is natural to ask if Dτ is " generated" by some "small" set of degrees, for exam-

ple, the set of ΣI degrees. We prove two negative results, Theorems 12 and 13, and

one partial positive result, Theorem 14 (and 14')

Let Eτ be the set of l.u.b.s of (finite) sets of Σl degrees. Note that Eτ is closed

under n. By Lemma 15, CONT C Eτ.

Theorem 12. There is a Πj degree not in Eτ.

This is an immediate consequence of the following two lemmas.

Lemma 19. If ae Eτ, there is a smallest Σ^ degree > a.

Proof. Suppose a = d(σg) u...u d(σn). Then d(σ0Λ...Λσn) is the smallest Σ^ degree >

d(σ0) u. .u d(σn). This can be seen as follows. Suppose d(σ0) u...u d(σn) < d(σ). Let
π be such that T + σ0 A...Λ σnh π. Then T + σ0l- σj Λ...Λ σn -> π. Now, σj Λ...Λ σn — »

π is a HI sentence. It follows that T + σh σj Λ...Λ σn — » π. But then T + σjh σ Λ σ2

Λ...Λ σn — > π and so T + σh σ2 Λ...Λ σn — > π. Continuing in this way we eventually

get T + σh π, as desired.

Lemma 20. There is a Γ^ degree a for which there is no smallest ΣI degree > a.

Proof. Let <σk>k<ω and σ be as in Lemma 14. Let a = d(-ισ). Then a is Π^ Now let

χ be any Σ^ sentence such that a < d(χ). Then T + χh-iσ and so T + σh-.χ. It follows
that there is a k such that T + σ^h-iχ and so

(1) T + χh-,σk.

Since σ^ < σ, there is a sentence π such that T + σh π and T + σ^l/ π. It follows that

(2) T + -iπh-iσ,
(3) T + -,πl*-ισk.

But then, by (2), a < d(-ιπ) and, by (1) and (3), χ i -.π. Thus, d(χ) is not the small-
est Σ1 degree > a.

A strengthening of Lemma 20 will be proved later (Lemma 23).

Let Fτ be the set of l.u.b.s of (finite) sets of Σl and Γ^ degrees. By Theorem 12,
FTSET.
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Theorem 13. Fτ Φ Dτ.

We need the following definition: A <« B iff A < B and for every set X of Σ^ sen-

tences, if BHΠ A + X, then A + X is inconsistent. (Here X need not be r.e.) We write

a <«b to mean that A <« B where Ae a and Be b. (If A Ξ A' and B = B7, then A <«

B iff A'<« B'.) By Lemma 7, A <« B implies A « B. As will become clear, the con-

verse of this is not true. But if a is Π1 and high, then Oτ <« a.

Lemma 21. Suppose ae Fτ and for all π, if d(π) < a, then d(π) « a. Then Oτ <« a.

Proof. By assumption there are π, σ0/...,σn such that a = d(π) u d(σ0) u...u d(σn).

Also d(π) « a. Let Ae a. Then

(1) T + at < A for i < n.

Moreover, π «π Λ σ0 A...Λ σn and so, by Lemma 7, T+ πh -.σ0 v...v -ισn. But Ah π

and so

(2) Ah-,σ0v...v-,σn.

Let X be any set of Σj sentences such that

(3) AHΠlT + X.

Then, by (2), T + Xh -ισ0 v...v -ισn, whence there is a kg such that T + σ0h -iΛX I ko

v —<Jι v...v —ισn, and so, by (1) and (3), T + Xh —\GI v...v -ισn. Continuing in this

way we eventually obtain the conclusion that T + X is inconsistent.

Proof of Theorem 13. We effectively construct sentences ψ0, ψj,... such that if An =

T + (ψk: k < n} and A = T + {ψk: ke N}, then

(1) An«An+1,

(2) notT<«A.

Let a = d(A). Then for all π, if d(π) < a, there is an n such that d(π) < d(An). Also

d(An) « d(An+1) < a and so d(π) « a. Thus, by (2) and Lemma 21, ag Fτ.

There is an r.e. relation S(n,k,p,q) such that

(not T + ψ «T + ψ + φ) iff 5pVqS(ψ,φ,p,q).

By Lemma 3.2 (b), there are a E^ formula σ(x,y,z,u) and a Σ^ formula G'(x,y,z,u)

such that

(3) if S(n,k,p,q), then Th σ'(n,k,p,q),

(4) Th σ'ίn.k^q) -» σ(n,k,p,q),

(5) T + Y is consistent where Y = {-ισ(n,k,p,q): not S(n,k,p,q)}.

Let AO = T. Suppose An has been defined and set θn := A{ψk: k < n}. Then

(6) not An« An + φ iff apVqS(θn,φ,p,q).

By (3) and Lemma 5.2, there is a Σx formula pn(x,y) such that

(7) Anh ρn(φ,p) -> σ'(θn,φ,p,q),

(8) if VqS(θn,φ,p,q), then pn(φ,p) is Π1-conservative over An.

By Theorem 5.4 (b), there is a formula ηn(x) such that

(9) An + ηn(φ) is a Π1-conservative extension of An + {-ιpn(φ,p): pe N}.

Finally, let ψn be such that
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(10) Thψn^ηn(ψn).

The formulas ρn(x,y), ηn(x) and the sentences ψn can be found effectively in n.

To prove (1) assume it is false. Then, by (6), there is a p such that VqS(θn/ψn,p,q).

But then, by (8), pn(ψn/p) is Π1-conservative over An. By (9) and (10), An+1h

-»pn(ψn,p). But, by Lemma 8, this implies that An « An+1, a contradiction. This

proves (1).

Next we prove (2). Let Y be as in (5). Then T + Y is consistent. To prove that

AHΠlT + Y we first show that

(11)
Suppose An+1 + Yh π. Then there is a k such that

(12) A n + 1 h-,ΛYIkvπ.

By (1) and (6), for each p there is a qp such that

(13) not S(θn,ψn/p,qp).

By (12), (9), and (10),

An + Hpn(ΨrvP): P^NJh -,ΛY I k v π.
By (13), (4), (7), An + Yh - pn(ψn,p) for every p. It follows that An + Yh π. This

proves (11).

Since (11) holds for all n, it follows that AHΠlT + Y. This proves (2) and so the

proof is complete.

Let Gτ be the set of degrees obtained from the Σ1 and the Γ^ degrees by closing

under n and u. It is an open problem if Gy Φ Dτ.

The degree mentioned in Lemma 20 cannot be arbitrarily large: if a is high, there

is a smallest ΣI degree > a, namely 1 j. Similarly, the degree a defined in the proof

of Theorem 13 cannot be arbitrarily large; it is not >» Oτ. This is explained, at least

partially, by the following surprising:

Theorem 14. (a) Every sufficiently large degree is the l.u.b. of a ΣI degree and a Π1

degree.

(b) Every sufficiently large degree is the l.u.b. of two ΣI degrees.

Proof. We may assume that d(Conτ) < lτ. By Lemma 9, it is sufficient to consider

degrees a such that d(Conτ) < a < lτ. Let πn := Vuδn(u), where δn(u) is PR, be Γ^

sentences such that a = d({πn:nEN}). We may assume that for all n,

(1) Thπ0-»Conτ,

(2) Thπ^^π,.

(a) We define Γ^ sentences φn and ψn in the following way:

(3) Th φn <-> Vz(Prfτ( V{φk:k<n},z) -> Ξu<z-δn+1(u)),

ψn := Vu(-δn+1(u) -» az<uPrfτ(V{φk:k<n},z)).

It follows that

(4) Th φn v ψn,

(5) T + φn Λ ψn h -nPrτ( V{φk:k<n}) Λ πn+1,

(6) T + πn+1hψn,
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(7) T + -φnh Prτ(V{φk:k<n}),

(8) -V{φ k:k<n}<πn.

(V{φk: k < 0} := 1.) (4), (5), (6) are standard.

Since ->φn is Σlx we have T + -"(pnl- Prτ(-«φn). Also, by (3),

T + -φnh Prτ(V{φk:k<n}).

But then (7) follows.

By Theorem 6.4, (8) follows from

(9) T + πnh -Prτ(V{φk:k<n}).

By (1), (9) holds for n = 0. Suppose (9) holds for n = m. To show that it holds for n

= m+1, we argue in T as follows: "Suppose πm+1. Then, by (6), ψm. Also, by (2) and

the inductive assumption, ->Prτ(V{φk:k<m}) and so, by (7), φm. Finally, by (5),

-ϊPrτ(V{φk:k<m+l}), as desired." Thus, (9) holds for n = m+1. This proves (9) and

so we have proved (8).

Next we show that for all n,

(10) T + Λ{ψk: k < n} + Conτh φn.

We first show that

(11) T + Conτh φ0,

(12) T + ψn + φnh φn+1.

(11) follows from (7) with n = 0. (12) follows from (5) and (7).

Now (10) follows from (11) and (12).

Let a0 = d({-χpk:keN}), a1 = d(Conτ), a2 = d({φk:keN}). Then, by Lemma 13, a0

is Σ L. a1 is Πi By (8) and Orey's compactness theorem, a0 < a and, by hypothesis,

ax < a. But then a0 u a^ < a. By (4) and (5), a0 u a2 > a. By (4) and (10), a0 u a^ > a2.

It follows that a0 u a^ > a and so a0 u a± = a, as desired. Φ

(b) Let θi, i = 0,1, be as in Lemma 15. We define Γ^ sentences φn and ψn in the

following way:

(13) Th φn <-» Vz(Prfτ(θ0W{φk:k<n},z) -> Ξu<z-δn+1(u)),

ψn := Vu(-δn+1(u) -> az<uPrfτ(θ0vV{φk:k<n},z)).

It follows that
(14) Thφ n vψ n ,

(15) T + φn Λ ψnh -Prτ(θ0vV{φk:k<n}) Λ πn+1,

(16) T + πn+1hψn,

(17) T + -φnh Prτ(θ0W{φk:k<n}),

(18) -θ 0Λ-Λ/{φ k :k<n}<πn .

The proofs of (14) - (18) are almost the same as the proofs of (4) - (8).

Next we show that for all n,

(19) T + A{ψk: k < n} + Θ0 Λ θjh φn.

We first show that

(20) T + θoΛθ^φo,

(21) T + ψn + φnh φn+1.
(20) follows from Lemma 15 (iii) and (iv) and (17) with n = 0. (21) follows from (15)

and (17).
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Now (19) follows from (20) and (21).
Let a0 = d(-<θ0+bφk:kE N}), al = d(θ0). Then a0 is 1^. By Lemma 15 (vi), aα is Σx.

By (18), a0 < a and, by Lemma 15 (v), al < a. But then a0 u al < a. By Lemma 15 (ii),

(14), (19), and (15), a0 u ax > a. Thus, a0 u al = a, as desired.

The proof of Theorem 14 actually yields the following stronger result; Theorem

14' is also an improvement of Theorem 4.

Theorem 14'. (a) Suppose ae CONT and a < b < lτ. There is then a Σx degree c such

that a u c = b.

(b) Suppose ae CONT. There are then degrees a0, ai such that (i) a0 and ai are

both Σx and Γ ,̂ (ii) a0 n al = Oτ, (iii) a0 u aα = a, (iv) for every degree b > a, there

is a Σ1 degree bj such that a^ u bj = b, i = 0,1.

One way to strengthen Theorem 12 would be to show that there is a Πj degree a >

Oτ such that no Σx degree cups to a. This, however, is not the case:

Theorem 15. For every Πi degree a > Oτ, there is a ΣI (and Πi) degree which cups

to a.

Proof. The following proof is similar to that of Theorem 11. Let π be such that a =

d(π) and let δ(u) be a PR formula such that π := Vuδ(u). By Lemma 18, there is a PR

formula η(x,y,z) such that for all φ, ψ,

(1) if T + φh π, then T + ψh - Ξzη(φ,ψ,z),

(2) if T + (pi**- π, then Ξzη(φ,ψ,z) is Π1-conservative over T + ψ.

Next let θ and χ be such that

(3) Th θ <-> Vu(-δ(u) -» 3z<uη(χ,θ,z)),

Th χ <-> Vz(η(χ,θ,z) -» Ξu<z-ιδ(u)).
Then

(4) Tl-θvχ,

(5) T h ( θ Λ χ ) ^ π .

We now show that

(6) T + χϊ π.

Suppose not. Then, by (1) and (3), T + θh π. But then, by (4), Th π, contrary to
assumption. This proves (6).

Now let

σ := 3z(η(χ,θ,z) Λ Vu<zδ(u)).

Then

Th σ <-» Ξzη(χ,θ,z) Λ θ.

By (3), d(θ) < a. By (2) and (6), σ = θ. Thus, d(σ) is Σα and nx. Let b = a n d(χ). By

(6), a i d(χ) and so b < a. By (5), d(σ) u b = a. Thus, d(σ) cups to a. Also note that
b (is Πx and) d(σ) n b = Oτ.

The problem if for every degree a > Oτ, there is a Σx degree which cups to a
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remains open. By Theorem 14, this is true of every sufficiently large degree.

Our next task is to show that the result of interchanging Σj and Γ^ in Theorem

15 is false.

Theorem 16. There is a Σ} degree a > Oτ such that no Γ^ degree cups to a.

Let ξ(x) be as in Lemma 5.8 with n = 1 and let a = d({ξ(k):keN}). Then a > Oτ and

no Yli degree cups to a (see the proof of Theorem 3 (a)). To obtain a Σ1 degree sat-

isfying these conditions we first prove the following refinement of Lemma 5.8 (for

n = l).

Lemma 22. There are Γ^ formulas ξ(x), η(x) and Σj sentences χk such that

(i) W ξ(k)
(ii) Thη(k)^ξ(k),

(iii) Thξ(k+l)^η(k),

(iv) ξ(k) is Σ1-conservative over T + -^(k),

(v) {ξ(k):kEN}Ξ{χk:kEN}.

Proof. We combine the ideas of the proofs of Lemma 5.8 and Theorem 11. By

Lemma 18, there is a PR formula γ(x,z) such that for all φ,

(1) if Th φ, then Th ->3zγ(φ,z),

(2) if Th φ, then Ξzγ(φ,z) Π1-conservative over T + φ.

Let δ(u) be an arbitrary PR formula. Let κ(z,u,x,y) and v(z,u,x,y) be Γ^ formulas

and μ(z,u,x,y,v) a PR formula such that

(3) Th κ(z,u,x,y) <-> Vvμ(z,u,x,y,v),

(4) Th -v(z,u,x,0),

(5) Th κ(δ,u,k,y) ̂  v(δ,u,k,y) v VvίpJ^kKg^v) -» -Prfτ(ξδ(k),v)),

(6) Th v(δ,u,k,y+l) ̂  Vv(-μ(δ,u,k+l,y,v) -̂  Ξz<max{u,v}γ(ηδ(k),z)),

where

ξδ(x) := Vu(δ(u) -̂  κ(δ,u,x,u ^x)),

ηδ(x) := Vu(δ(u) -^ v(δ,u,x,u - x)).

As in the proof of Lemma 5.8, (5) implies that

(7) Th ξδ(k) ~ ηδ(k) v Vvί^K-ηgίkjΛξδίkXv) ^ -Prfτ(ξδ(k),v)).

Let

η^(x) := Vu(δ(u) -> v(δ,u,x,(u ^ (x+1)) + 1)).

Then, by (6),

(8) Th η^(k) <-> Vuv(δ(u) Λ -ιμ(δ,u,k+l,u ^ (k+l),v) ̂  3z<max{u,v}γ(ηδ(k),z)).

Let
χδ/k := 3z(γ(ηδ(k),z) Λ Vuv<z-(δ(u) Λ -μ(δ,u,k+l,u ^ (k+l),v))).

Then χδ k is Σj and (cf. Lemma 1.3)

(9) Th χδ/k <-» Ξzγ(ηδ(k),z) Λ Vuv(δ(u) A -μ(δ,u,k+l,u ^ (k+l),v) ̂
Ξz<max{u,v}γ(ηδ(k),z))
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and so, by (8),
(10) Th χδ/k <-> Ξzγ(ηδ(k),z) A η^(k).

We now show that

(11) Thηδ(k)-+ξδ(k),

(12) ifThξδ(k),thenThηδ(k),

(13) Thξδ(k+l)->η^(k),

(14) if Th δ(u) -» u > k, then Th η^(k) <-> ηδ(k),

(15) if Th δ(u) -> u > k and Th η§(k), then Th ξδ(k+l).

(11) follows from (7). (12) follows from (7) by the same argument as in the proof of

Lemma 5.8. (13) follows by predicate logic from (3) and (8). (14) is obvious.

To prove (15), assume Th δ(u) -» u > k and Th ηδ(k). Then, by (14), Th η^(k).

Also, by (1), Th -Έzγ(ηδ(k),z). By (8), it follows that

Th Vuv(δ(u) -> μ(δ,u,k+l,u ± (k+l),v))

and so, by (3), Th ξδ(k+l). This proves (15).

It can now be shown that

if Ξuδ(u) is true, then ΊV ξg(0).

The proof of this from (4), (12), (15) is the same as that of (6) in the proof of Lemma

5.8.
As in the proof of Lemma 5.8 we can now find a PR formula δ'(x) such that

Ξuδ'(u) is false and TV ξg,(0). Let ξ(x) := ξδ/(x), η(x) := ηg,(x), χk := χg,/k.

The verification of (i) - (iv) is now straightforward or much the same as in the

proof of Lemma 5.8; this is where (13) is needed.

To prove (v), we first note that (ξ(k): keN} < {χk: keN} follows from (10), (14),

(11). Next suppose T + (χk: ke N}h π. There is then an m such that T + χQh

Xl Λ-Λ %m -> π BY « and (ϋ), w η(0) Hence, by (2), 3zγ(η(0),z) is I^-conserva-
tive over T + η(0). But then, by (10) and (14), T + η(0)h χl Λ...Λ χm -> π. By (10), (14),

(ii), (iii), T + χ1h η(0). It follows that T -H χ1 Λ...Λ χmh π. Continuing in this way we

eventually get T + η(m)h π and so, by (iii), T + ξ(m+l)h π. This shows that {χk:

keN} < (ξ(k): keN} and so (v) is proved.

Proof of Theorem 16. Let ξ(x) and η(x) be as in Lemma 22. Let a = d({ξ(k):ke N}).

Then, by Lemma 22 (i), a > Oτ. Also, by Lemma 22 (v) and Lemma 13, a is Σx. By

Lemma 22 (ii), d(ξ(k)) < d(η(k)) for every k. That d(ξ(k)) doesn't cup to d(η(k)) now

follows from Lemma 22 (iv).

Suppose b is Πj and b < a. Then, by Lemma 22 (ii) and (iii), b < d(ξ(k)), for some

k, and d(η(k)) < a. Since d(ξ(k)) doesn't cup to d(η(k)), it follows that b doesn't cup
to a.

Note that if a is as in Theorem 16, then a does not cup to any Γ^ degree. Indeed,

let b be Π1 and > a. If a cups to b, there is a Πj degree c < a which cups to b. But

then c cups to a, contrary to assumption.

Finally, we prove Theorem 5 (and a bit more). We have already observed that

d(-ιπ) is the p.c. of d(π). Thus, every Γ^ degree has a p.c. It follows that, in terms of

our classification of degrees, the following result is the best we can do.
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Theorem 17. There is a Σ^ degree which has no p.c.

This is a consequence of the following strengthening of Lemma 20.

Lemma 23. There is a sentence σ such that {b > d(-ισ): b is Σ-J has no g.l.b.

To prove this, we need another:

Lemma 24. Suppose {πk: keN} is r.e. and let G = {d(πk): keN}. Suppose there is no

finite subset H of G such that OH is a lower bound of G. Then G has no g.l.b.

Proof. Let X = {π: T + πkh π for every k}. X is not r.e. This can be seen as follows.

Let R(k,m) be a primitive recursive relation such that Y = {k: VmR(k,m)} is not r.e.

and let p(x,y) be a PR binumeration of R(k,m). We may assume that Z = {πk: ke N}

is primitive recursive; let ζ(x) be a PR binumeration of Z. Finally, let η(x) :=

Vz(-p(x,z) -> 3u<z(ζ(u) A TrΠl(u)).

It is sufficient to show that
(1) Y = {k:η(k)eX}.

If keY, then, clearly, η(k)eX. Suppose k£ Y. Let m be such that not R(k,m). Then T

+ η(k)h VZIm. By assumption, there is an n such that T + πn\f V Z I m and so

η(k)gX. Thus, (1) holds and so X is not r.e.

Suppose d(A) < d(πk) for every k. Then Th(A) n Πj c X. Since X is not r.e., it fol-

lows that there is a πe X such that AM- π. But then π < πk for every k and d(π) ̂  d(A).

Thus, d(A) is not the g.l.b. of G.

Proof of Lemma 23. From the proof of Theorem 11 it is clear that there are (primi-

tive) recursive functions f(n) and g(n) such that if π is any E^ sentence, then f(π) is

a Π1 sentence, g(π) is a Σ^ sentence, and if Ί\f π, then T < T + f(π) = T + g(π) <

T + π.
We now define πk and σk as follows. Let KQ be any Π^ sentence not provable in

T Next suppose πk has been defined and TI/ πk. Let ψ be a Π1 sentence undecid-

able in T + ->πk. Then T < T + πk v ψ < T + πk. Let σk := g(πkvψ) and πk+1 := f(πkvψ).

Then ΊV πk+1.

For every k,

(1) πk + 1<σk<πk.

By Theorem 5.4 (a), there is a sentence σ such that

(2) T + σ is a Π1-conservative extension of T + {-ιπk: ke N}.

By (1) and (2),

(3) -,σ < σk.

Moreover

(4) if b is Σ! and b > d(-.σ), there is a k such that b > d(πk).

For suppose b = d(χ) > d(-ισ), where χ is Σx. Then T + χh -,σ, whence T + σh -.χ.

But then, by (2), there is a k such that T+-,πkh-πχ, whence T+χh πk and so b > d(πk).
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Let G = (d(πk): keN}. If {b > d(-ισ): b is Σα} has a g.l.b. c, then, by (1), (3), (4), c

is the g.l.b. of G. But from (1) it follows that no d(πk) is a lower bound of G. Hence,

by Lemma 24, G has no g.l.b. and so {b > d(-.σ): b is Σ^ has no g.l.b.

Proof of Theorem 17. Let σ be as in Lemma 23. By Lemma 6, for all B, (T + σ)iB <

T iff B < T + χ for all Σl sentences χ such that T + χh -πσ. But then the p.c. of d(σ),

if it had one, would also be the g.l.b. of {b > d(-.σ): b is Σj}. Thus, by Lemma 23,

d(σ) has no p.c.

Every ΣI degree is the p.c. of some degree. It is an open problem if the converse

of this is true. If it is, the Σ1 degrees can be characterized in a purely algebraic way

as those degrees that are p.c.s.

Exercises for Chapter 7.

In the following exercises we assume that PAH T and that A, B, etc. are extensions

ofT

1. Suppose G £ Dτ. G is independent if for any disjoint finite subsets G0 and G^ of

G, OG0 ^ LJG^ (O0 = lτ, LJ0 = Oτ.) (Thus, for example, 0 is independent and

{a} is independent iff Oj < a < lτ.) Show that for every finite independent set G,

there are degrees b0, bj such that G u {bj is independent, i - Ό, 1, and b0 n b1 = Oτ.

Conclude that every finite independent set is included in 2κo many maximal inde-

pendent sets.

2. Suppose a < b.

(a) c cups to b above a if there is a d such that a < d < b and c u d = b. Show that

there is a ce (a,b] which doesn't cup to b above a.

(b) c caps to a below b if there is a d such that a < d < b and c n d = a. Show that

there is a ce [a,b) which doesn't cap to a below b.

3. Suppose a < b and b < lτ if T is Σ1-sound. For ce [a,b], let c* be the complement of

c in [a,b] if it exists, i.e. c n c* = a and c u c* = b. (Complements are unique.) Let

Cpla/b be the set of degrees in [a,b] having complements in [a,b].

(a) Show that Cpla/b is closed under n, u, and *.

Let Cpla b = (Cpla/b, π, u, *, a, b). Then Cpla b is a Boolean algebra.

(b) Show that if c, de Cpla^b and c < d, there is an ee Cpla b such that c < e < d.

(It follows that the Boolean algebras Cpla/b are (denumerable and) atomless and

therefore isomorphic.)

(c) Show that if a < c < d < b, there is an ee [c,d) such that Cplab n [e,d) = 0.

[Hint:Cpla/bn[c,d]CCplc/d.]

(d) Show that i f a < c < e < d < b and e£ Cpla/b, there are c', d' such that c < cr <
e < dr < d and Cpla/b n [c'̂ 7] = 0.
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4. Suppose a is Σ1.

(a) Show that if a < b < lτ/ then a caps to Oτ below b.

(b) Show that if a < b and b is high, then a «b. Conclude that if bt > a, i = 0,1,

and b0 n bx = a, then b0 and b1 are low. ((a) and (b) are true of every a which is the

p.c. of some degree,)

5. Show that for every low degree a, there is a low Γ^ degree > a. [Hint: Let B =

T + σ and σ := Ξxδ(x), where δ(x) is PR, be such that a < d(B) < lτ. We may assume

that BV -<ConB. Let

θ:=Vy(PrfB(l,y)^ax<yδ(x)),

χ := 3x(δ(x) Λ Vy<x-PrfB(l,y)).

Then σ < θ < χ and T + χ is consistent.]

6. Referring to the proof of Theorem 4, show that there is a primitive recursive

function g such that ψ can be replaced by the sentence

χ := Vu(PrfB(l,u) -> 3z<g(u)Prfτ(l,z)),

similar to θ. [Hint: Define g in such a way that PAh -«φ —> χ.]

7. (a) Show that there is an r.p. degree a which is not Π^ (compare Lemma 11).

[Hint: Let κ(x) be as in Exercise 2.11 and let a = d({κ(k):keN})].

(b) Improve (a) by showing that there is a non-Πj Σ^ degree a which is r.p.

(compare Exercise 16 (c)). [Hint: Define πk and σk so that TI/ πk, Th κ(k) -> πk/

where κ(x) is as in (a), and KQ Λ...Λ πk_ι Λ σk Ξ= πg Λ...Λ πk. Let a = d({σk:ke N}).]

8. Suppose AH B. Show that there is a Δ2 sentence φ such that A + φ - B (compare

Corollary 6.10 and Theorem 8).

9. Show that there is a Σ^ sentence σ such that Oj < d(σ) < lj and for every Σ^ sen-

tence χ, if σ < χ, then T + χh σ. [Hint: Let σ be such that d(-^σ) is Σj.]

10. Let <σk>k<ω and σ be as in Lemma 14. Show that every Γ^ degree < d(σ) caps

to Of below d(σ) (compare Exercise 26 (c)).

11. (a) Show that for every Γî  sentence π, d(π) u d(- π) is high; in fact, if b is the p.c.

of a, then a u b is high.

(b) Let a = d(σ) u d(- σ). a is high. Let <σk>k<ω and σ be as in Lemma 14. Show

that if b is HI and b < a, then b is low. [Hint: Use Exercise 4 (a).]

12. Show that there is a degree of the form d(σvπ) which is neither Σα nor Πj.

13. Show that there is a Πα degree a such that for every Πα degree b, if a n b = Oτ,

then a u b is low (compare Exercise 18 (c)).
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14. Suppose a < b < lτ. Show that
(a) there is a degree c < lτ such that for every d, if b n d = a, then d < c,

(b) there is a degree c> Oτ such that for every d, if a u d = b, then d > c.

15. (a) Verify that in any distributive lattice, for any a, b, the intervals [a n b,a] and

[b,a u b] are isomorphic

(b) Show that there are degrees a, b, c, d such that a «b, c < d, not c «d, and

[a,b] and [c,d] are isomorphic. [Hint: Use Exercises 4 (b) and 11 (a).]

16. (a) Verify that in any distributive lattice, if a < b < c and [a,c] satisfies the reduc-

tion principle, so does [b,c].
(b) Show that for each degree a < lγ, there is a b such that a < b < 1 j and [a,b]

does not satisfy the reduction principle.
(c) The non-r.p. degree a defined in the proof of Lemma 12 is high (cf. Exercise

11 (a)). Show that there is a Σ^ degree which is not r.p. Conclude from Exercise 7 (b)
that there are non-Γ^ Σ± degrees such that [Oτ,a] and [Oτ,b] are not isomorphic.

[Hint: Use Theorem 14' (a).]

17. (a) Suppose φ and X are as in Lemma 16. Show that if φ < X, then φ «X.

(b) Suppose a < b. Show that there are c, d such that a < c < d < b and [c,d] con-

tains no B! degree.

18. (a) Show, by combining the proofs of Theorem 4 and Lemma 15, that there are

cupping degrees a0 and a^ which are Σ1 and Γ^ and such that a0 n al = Oτ.

Conclude that there are low cupping degrees. (This also follows from Theorem 14'

(b) )
(b) Show that there is a high (Γ^) degree a which is not cupping. [Hint: Suppose

d(Conτ) < lτ. Let a = d(π) where π is Σ1-conservative over T + -»Conτ and -«π is

Γ^-conservative over T + -iConp.]

(c) Show that there is a low (Π1) degree a such that for every degree b, if a n b

= Oτ/ then a u b is not cupping (compare Exercise 13). [Hint: Let d(π) be as in (b).

Define a sentence σ such that d(σ) > Oτ and d(σ) u d(- σ) < d(π); use Theorem 11.

Let a = d(- σ).]

19. Show that there are degrees a, b such that a is Σl7 b is both Σx and nl7 and a u
b is not B L.

20. Prove Lemma 15 by letting Θ0 be a Γ^ Rosser sentence for T and θx :=

Vu(Prfτ(-θ0,u) -> Ξz<uPrfτ(θ0,z)).

Conclude that d(θ0) is Σx (compare Exercise 6.9).

21. (a) Suppose ae Eτ and a > Oτ. Show that there is a degree b < a such that [b,a] c
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Eτ. [Hint: We may assume that a ̂  d(Conτ). Let b = a n d(Conτ) and use Theorem
14' (b). (By Lemma 17, no member of [b,a) is Σ^.]

(b) Suppose there is a Σ1 degree which cups to a. Show that there is a b < a such

that for every CE [b,a], there is a Σj degree which cups to c.

22. (a) Let E^be the set of degrees obtained from Oτ by taking l.u.b.s, g.l.b.s, and

Σ1-extensions. Show that if ae E^ there is a least Σj degree > a. Conclude that there
is a Π1 degree not in E^ (This improves Theorem 12.)

(b) Let Ej,be the set of degrees obtained from E^ and the Γ^ degrees by taking

l.u.b.s and Σ1-extensions. Show that the degree defined in the proof of Theorem 13

is not in F^ Conclude that there is a degree which is not the l.u.b. of a finite set of

degrees of the form d(πΛσ). (This improves Theorem 13.)

23. Show that for any a, if there is a member of Gj which cups to a, then there is a

ΣI degree which cups to a. (This improves Theorem 15.)

24. (a) Show that not all non-Γ^ ΣI degrees are as stated in Theorem 16.

(b) Improve Theorem 16 by showing that for every degree b > 0 ,̂ there is a Σ^

degree a such that Oτ < a < b and no Γ^ degree cups to a. [Hint: By Theorem 11,

there are sentences π and σ such that Oj < d(π) = d(σ) < b. Let C = T + ->π. By the

proof of Lemma 22, with T replaced by C, there are Γ^ formulas ξ(x), η(x) and ΣI

sentences χ^ such that (i) - (iv) hold with T replaced by C and C + (ξ(k): ke N} = C

+ {χk: keN}. Let a = d({ξ(k)vπ:keN}).]

25. Show that in contrast to Lemma 24 we have the following: There is a set G =

{d(σ^): kE N} of Σ! degrees, where {σk: ke N} is (primitive) recursive, such that OH

> Oj for every finite subset H of G and OG = Oτ. [Hint: Let a be high and such that

there is no high Π^ degree < a (cf. Exercise 11 (b)). Let AE a and let σk := -«ConA j .̂]

26. (a) Show that there is a PR formula δ(u) such that if θ is defined as in the proof

of Theorem 11, then d(- θ) isn't Πx.
(b) Let θ be as in (a). Show that d(->θ) has a p.c. Conclude that there is a non-Γ^

ΣI degree which has a p.c.
(c) Let θ be as in (a). Show that there is a Γ^ degree < d(- θ) which does not cap

to Of below d(-ιθ) (compare Exercise 10).

Notes for Chapter 7.

The lattice Dτ was introduced by Lindstrόm (1979), (1984b); a related lattice Vτ

(degrees of finite extensions of T) has been defined by Svejdar (1978) (see also

Jeroslow (1971a)). (By Theorem 6.11 (a), Vτ and Dτ are isomorphic.) Theorem 1 is

due to Lindstrom (1979), (1984b) and (for Vτ) to Svejdar (1978). Corollary 1 is,
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modulo Theorem 6.6, a restatement of the equivalence of Exercise 2.22 (i) and (ii).

The proof of Theorem 4 was suggested by the proof of a related result in Hajkova

II (1971). Theorem 7 is new; the term "reduction principle" is borrowed from

descriptive set theory and recursion theory (cf. Soare (1987)). (The only way of

showing that intervals are isomorphic known so far is given in Exercise 15 (a) and

works in all distributive lattices.) The remaining results of § 1 are due to Lindstrom

(1979), (1984b). In connection with the proof of Theorem 4, see Exercise 6. Lemmas

11 and 12 lead to the question if there is a non-Πj r.p. degree; this question is

answered in Exercise 7.

Theorem 8 (with a slightly different proof; see Exercise 6.12 (a)) is due to

Montagna (cf. Lindstrom (1993)). Theorem 9 is due to Lindstrom (1979), (1984b),

(1993); (a) and (c) were also proved by Svejdar (1978); for a different proof of

Theorem 9 (d), see Exercise 12.

Theorem 10 is due to Lindstrom (1979), (1984b); (a) and the first half of (b) were

also proved by Svejdar (1978). Theorems 14 and 16 are new, they were announced

in Lindstrom (1993), where a weaker form of Theorem 16 is proved; Theorem 16

leads to the question if there is a Σ1 degree a such that no Π^ degree caps to a; this

is answered negatively in Exercise 5; in connection with Theorem 16, see also

Exercise 24. The remaining results of § 3 are due to Lindstrom (1984b), (1993). The

definition of the sentences φn and ψn in the proof of Theorem 14 (a) and the obser-

vations concerning these sentences, except (8), were first used by Misercque (1982)
in a different context. For improvements of Theorems 12, 13, 15, and 16, see

Exercises 22 (a), 22 (b), 23, 24 (b). Theorem 17 leads to the question if no non-Γ^ Σl

degree has a p.c.; this question is answered in Exercise 26 (b).

For a proof of Exercise 26 (a), see Lindstrom (1993).




