
5. PARTIAL CONSERVATIVITY

A sentence φ is Γ-conservatΐve over T if for every Γ sentence θ, if T + φh θ, then Th

θ. In this chapter we study this phenomenon for its own sake. Results on Γ-con-

servativity are, however, also very useful in many contexts, in particular in con-

nection with interpretability (see Chapters 6 and 7).

Our task in this chapter is to develop general methods for constructing partial-

ly conservative sentences satisfying additional conditions such as being nonprov-

able in a given theory.

We assume throughout that PAH T. The results of this chapter do not depend on

the assumption that T is reflexive.

A first example of a Π^-conservative sentence is given in the following:

Theorem 1. ->Conτ is Π1-conservative over T.

Proof. Suppose θ is Γ^ and

(1) T + -ιConτh θ.

From (1) we get PAh Prτ(--θ) -> Prτ(Conτ), whence

(2) PAh Prτ(-θ) -* -Conτ^Conτ.

By provable Σ1-completeness,

(3) PAh -θ -» Prτ(-ιθ).

By Corollary 2.2,

(4) PA + ConτhConτ^Conr

Combining (2), (3), (4) we get PAh -πθ -» - Conτ and so by (1), Th θ.

By Corollary 2.4, Theorem 1 provides us with an example of a (Σ1) sentence φ

which is Π^-conservative over T and nontrivially so, i.e. such that TM φ, even if T
is not Σ1-sound.

If φ is Γ-conservative over T and ψ is Π1, then clearly φ is Γ-conservative over

T + ψ. Also note that if T is Σ1-sound and π is Πj, then π is Σ1-conservative over T

iff π is true iff T + π is consistent.

Let us now try to construct a sentence φ which is nontrivially Γ-conservative

over T. Thus, given that

(1) T + φh θ,

where θ is Γ, we want to be able to conclude that Th θ. This follows if (1) implies
that

(2) T + - θh φ.

The natural way to ensure that (1) implies (2) is to let φ be a sentence saying of itself

that there is a false Γ sentence (namely θ) which φ implies in T. Thus, let φ be such

that

(3) PAh φ ̂  5u(Γ(u) Λ Prτ+φ(u) A -Trr(u)),

where Γ(x) is a PR binumeration of the set of Γ sentences. Then (1) implies (2).
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It is, however, not generally true that T> φ. This holds if T is true, since φ is then

false. But, for example, T + -ιConτh φ, and so if Th ->Conτ, then Th φ. To prevent

this from happening, we redefine φ as follows: let φ be such that
PAh φ <-> ay5uv<y(Γ(u) Λ Prfτ+φ(u,v) Λ ~-TrΓ(u) Λ Vz<y- Prfτ(φ,z)).

Then ΊΫ φ and φ is Γ-conservative over T. Also, if Γ = Πn, then φ is 1^ which is

optimal; in fact, this is the sentence used in the proof of Theorem 2 (a), below, for

Γ = Πn.

From our present point of view the proof of Theorem 4.2 with S = T can be

understood as follows (see the remarks following Corollary 4.1). Let ψ be as in that

proof. It is sufficient to show that ->ψ is pd-conservative over T; in fact, that is exact-

ly what is done in the proof of Theorem 4.2. This also follows from the fact that (3)

with φ replaced by -«ψ and Γ by Γd is true.

Let [Γ]s(x,y) :=
Vuv<y(Γ(u) Λ Prfs+x(u,v) -> Trr(u)).

This formula is constructed to yield the following:

Lemma 1. [Γ]τ(x,y) is a Γ formula such that
(i) PAh [Γ]τ(x,y) A z < y -> [Γ]τ(x,z),
(ii) T + φ h [Γ]τ(φ,m) for all φ and m,

(iii) if ψ is Γ and T + φh ψ, there is a q such that PA + [Γ]τ(φ,q)h ψ.

Proof, (i) is clear, (ii) Let GQ,...̂  be all Γ sentences < m provable in T + φ and whose

proofs are < m. Then
PAh Vuv<m(Γ(u) Λ Prfτ+φ(u,v) -̂  u = Θ0 v...v u = θk).

Also clearly, by Fact 10 (a) (ii),

T + φh u = ΘQ v...v u = θk -> Trr(u).

It follows that T + φ h [Γ]τ(φ, m).

(iii) Suppose ψ is Γ and T + φh ψ. Let p be a proof of ψ in T + φ and let q =
max{ψ,p}. Then PA + [Γ]τ(φ,q)h Trr(ψ) and so PA + [Γ]τ(φ,q)h ψ.

S is a Γ-subtheory of T, SHΓ T, if every Γ sentence provable in S is provable in T.

We write [Γ](x,y) for [Γ]τ(x,y).

Lemma 2. Suppose χ(x,y) is Π1. There is then a Π* formula ξ(x) such that for all k

and m,

(i) T + ξ(k)hχ(k,m),

(ii) T + ξ(k)HΓT + {χ(k,q):qeN}.

Proof. Case 1. Γ = Σ^. Let ξ(x) be such that

(1) PAh ξ(k) <-> Vy([Σj(ξ(k)/y) -> χ(k,y)).

Then (i) follows from Lemma 1 (ii) and (1). To prove (ii), suppose ψ is Σj^ and

T + ξ(k)h ψ. By Lemma 1 (iii), there is a q such that
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Hence, by Lemma 1 (i),

PA + Vy<qχ(k,y) + -.ψh VyQΣJίξίkXy) -> χ(k,y))

and so, by (1),

PA + Vy<qχ(k,y) + - ψh ξ(k).

But then, since T + ξ(k)h ψ, it follows that T + |χ(k,q): qeNJh ψ, as desired.

Case 2. Γ = Πn. Let ξ(x) be such that

PAh ξ(k) <-> ΞyHΠn](ξ(k),y) A Vz<yχ(k,z)).

The proof that ξ(x) is as claimed is then almost the same as in Case 1.

From Lemma 2 we derive the following result on numerations of r.e. sets.

Lemma 3. Let X be an r.e. set. There is then a Π1 formula ξ(x) such that

(i) i f k e X , t h e n T h - ξ(k),

(ii) if kg X, then ξ(k) is Γ-conservative over T.

Proof. Let p(x,y) be a PR formula such that X = {k: ΞmPAh p(k,m)} and let ξ(x) be

as in Lemma 2 with χ(x,y) := - p(x,y).

For extensions of PA Lemma 3 implies Theorem 3.1.

We can now prove our first general theorem on the existence of nontrivially par-

tially conservative sentences.

Theorem 2. (a) There is a Γd sentence φ such that Tb4 φ and φ is Γ-conservative over

T.

(b) If X is r.e. and monoconsistent with T, there is a Π1 sentence φ such that φg X

and φ is Γ-conservative over T.

Proof, (a) is the special case of (b) where X = Th(T). *

(b) Let ξ(x) be as in Lemma 3 and let φ be such that PAh φ <-» ξ(φ). If φe X, then,

by Lemma 3 (i), Th - ξ(φ) and so Th - φ, which is impossible. Thus, φ£ X and so, by

Lemma 3 (ii), φ is Γ-conservative over T.

Of course, the Π* sentence mentioned in Theorem 2 (a) is not Γτ (compare

Corollary 2.5).

The following result is a natural strengthening of Theorem 2.

Theorem 3. (a) There is a Γ sentence φ such that φ is Γd-conservative over T and

-«φ is Γ-conservative over T.

(b) If X is r.e. and monoconsistent with T, there is a Γ sentence φ such that φ is

Γd-conservative over T, - φ is Γ-conservative over T, and φ, -iφe X.

We derive Theorem 3 from:

Lemma 4. Suppose %o(x,y) is Γd and Xι(x,y) is Γ. Then there is a Γ formula ξ(x) such
that for i = 0,1,
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(i) T + ξi(k)h Vy<mχi(k,y) -> X^^m),

(ii) if ψ is Γd and T + ξi(k)h ψ1, then T + (χ^^^q): qe N}h ψ1.

Proof. We need only prove this for Γ = Σ^. Let ξ(x) be such that

(1) PAh ξ(k) *-> Ξy(HΠn](ξ(k),y) v -χ0(k,y)) A Vz<y([Σn](-ξ(k),z) A Xl(k,z))).

We verify (i) and (ii) for i = 0 and leave the case i = 1 to the reader.

(i) By Lemma 1 (ii),

T + ξ(k)h-[Πj(ξ(k),y)-4y>m.

It follows that

T + ξ(k) + Vy<mχ0(k,y)h HΠn](ξ(k),y) v -χ0(k,y)) -» y > m.

But then, by (1),

T + ξ(k) + Vy<mχ0(k,y)h χι(k,m),

as desired.

(ii) Suppose ψ is Πn and

(2) T + ξ(k)hψ.
By Lemma 1 (iii), there is a q such that T + [Πn](ξ(k),q)h ψ and so

(3) T + iψh -[Πn](ξ(k),q).

By Lemma 1 (ii), for every m,

(4) T + -ξ(k)h[Σn]K(k),m).

By (3), (4), Lemma 1 (i), and (1), it follows that

T + -ψ + -ξ(k) + Vy<qXl(k,y)h ξ(k)

and so

T + -ψ + Vy<qχι(k,y)hξ(k).

But then, by (2), T + Vy<qχα(k,y)h ψ, as desired.

Proof of Theorem 3. (a) is a special case of (b). 4

(b) Let pi(x,y), i = 0, 1, be PR Enumerations of relations Rj(k,m) such that X = {k:

ΞmRo(k,m)} and {φ: ->φe X} = {k: 3mR1(k,m)}. Let ξ(x) be as in Lemma 4 with Xi(x,y)

:= ~»Pi_i(x,y). Let φ be such that PAh φ <-> ξ(φ). Suppose φe X or -iφe X. Let m be the

least number such that Ro(φ,m) or R1(φ,m). Suppose Ri(φ,m). Then not R1_i(φ,n) for

n < m. (We may assume that Ro(k,n) implies not R1(k,n).) But then, by Lemma 4 (i),

Tl — 'ξHψ)/ whence Tl — '(p*. But this is impossible, since q^eX. It follows that φ,
-«φ^ X. But then, by Lemma 4 (ii), φ is Γd-conservative over T and -<φ is Γ-conser-

vative over T.

Let Prf'τ/Γ(x,y) :=
Ξuv<y(Γ(u) A Trr(u) A Prfτ+u(x,v));

a slight modification of the formula Prfτr(x,y) defined in Chapter 4. In the proofs

of Lemmas 2 and 4 [Γ](x,y) can be replaced by ->Prf jpd(->x,y). Then, for example,

formula (1) in the proof of Lemma 4 becomes:

(Sm) PAh ξ(k) <-> Ξy((Prf'τ/ΣnK(k),y) v -χ0(k,y)) A

Vz<y(-Prf'τ/Πn(ξ(k),y) A Xl(k/Z))).

This formula may be compared with formula (1) in the proof of Theorem 3.2 and

(R7) following the proof of Theorem 2.2.
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Our next result is related to Theorem 4.3; it will be used several times, in some

cases indirectly, in Chapters 6 and 7.

S is a Γ-conservative extension of T if TH SHpT. By Theorems 4.4 (a) and 4.5, T +

Rmτ is a Π1-conservative extension of PA + Con^l.

Theorem 4. (a) Let X be an r.e. set of Γ sentences. There is then a Γ sentence θ such

that T + θ is a Γ^-conservative extension of T + X.

(b) Let γ(x,y) be any Γ formula. There is then a Γ formula η(x) such that for every

k, T + η(k) is a Γ^-conservative extension of T + (γ(k,m): me N}.

Proof, (a) By Craig's theorem, we may assume that X is primitive recursive. Let

η(x) be a PR Enumeration of X. Then for every q,

(1) PA + Xhη(q)->TrΓ(q).

By Lemma 2 with (Γ replaced by Π1 and) χ(x,y) := η(y) -> Trr(y), there is a Γ sen-

tence θ such that for all φ,

(2) T + θhη(φ)^TrΓ(φ),

(3) T + ΘHpd T + (η(q) -> Trr(q): qe N}.

From (2) it follows that T + θh X and from (1) and (3) it follows that T + ΘHpd

T + X. Φ

(b) Left to the reader.

So far there has been no indication that the properties of Σ^ and Πn, n > 1, in

terms of partial conservativity may be different, but we shall now show that they

are.
Let ψ0 and ψj be Γ sentences. If

(1) Th Ψo v Ψl,

then, trivially,

(2) ψj is pd-conservative over T + -ιψι_j, i = 0, 1.

If Γ = Πn, the converse of this is true. This follows from our next:

Lemma 5. Let ψ0 and ψj be any Πn sentences. There are then Πn sentences Θ0 and

G! such that

(i) T h θ Q V θ ! ,

(ii) Th Ψi -> θj, i = 0, 1,

(iii) Th Θ0 Λ Ql -> ψ0 A ψχ.

Proof. By Fact 5, we may assume that ψi := Vxδ^x), where δj(x) is Σ .̂ Let θj :=

Then (i), (ii), (iii) are easily verified (cf. Lemma 1.3).

From (ii) and (iii) of Lemma 5 it follows that T + -ΊÎ  + ψι_ih -iθj. Hence, assum-

ing (2), T + -^ψih -«θj. It follows that Th Θ0 v θj^ -» ψ0 v ψ1 and so, by Lemma 5 (i),

we get (1).

We now prove that if Γ = Σ^, then (2) does not imply (1).
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Theorem 5. (a) There are 1^ sentences ψ0/ ψi such that
(i) Th -.(Ψo Λ Ψl),

(ii) ΊV ψ0 v ψl7

(iii) ψi is Πn-conservative over T + ~lψι_j, i = 0, 1.

(b) Suppose X is r.e. and monoconsistent with T. Then there are Σn sentences ψ0,

ψ! such that (i) and (iii) hold and

(iv) ψQ

We derive this theorem from:

Lemma 6. Let X be an r.e. set. There are then Σ^ formulas ξo(x) and ξι(x) such that

for i = 0, 1,
(i) Th^ξoMΛξiM),

(ii) ifkeX,thenTh-.ξi(k),

(iii) if kg X, then ξj(k) is Πn-conservative over T + -iξ^k).

Proof. Let p(x,y) be a PR formula such that X = {k: 3mPAh p(k,m)}. For i = 0, 1, let

ζi(x)/ λi(x)/ δj(x,y) be, respectively, 2̂ , Σ^, and Πn_ι formulas such that
(1) PAh Xi(k) <-> ay(-[Πn](ξi(k),y) Λ Vz<y-πp(k,z)),

(2) PAhχiM^Ξyδi^y),

ξi(x) := ay(^(x,y) Λ Vz<y+i- δ1_i(x,z)).

This application of (double) self-reference is more complicated than any we have

encountered so far and it requires some thought to see that it is admissible. But in

view of Fact 5 it is.

(i) is then clear. To prove (ii), suppose ke X. Let m be such that

PAh p(k,m). By Lemma 1 (ii),

So,by(l),

(3) T

Also, by (2), PAh ξj(x) -> χ^x). Now (ii) follows from this and (3).

Finally, to prove (iii), suppose kg X. Now suppose ψ is Πn and

By (i), it follows that

(4) T + ξi(k)h ψ.

But then, by Lemma 1 (iii), there is a q such that T + [Πn](ξi(k),q)h ψ. Also

Th - p(k,m) for all m. By (1), it now follows that T + -«ψh χ^k). Thus, by (2),

T + -iψh Ξyδi(k,y). But then

Combining this with (4) we get T + ̂ i_i(k)h ψ. This proves (iii).

Proof of Theorem 5. (a) follows from (b). φ

(b) We may assume that if ψe X and Th ψ — » θ, then θe X. Let ξ^x) be as in

Lemma 6. Let φ be such that
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PAh φ <-> ξ0(φ) v ξ^φ).

Set ψi := ξj(φ). If φeX, then, by Lemma 6 (ii), Th - (̂φ) for i = 0, 1, and so Th ->φ,

impossible. Thus, φg X and so (iv) holds, (i) and (iii) follow from Lemma 6 (i) and

(iii), respectively.

Theorem 5 (b) will be used in the proof of Theorem 7.7 (b), below. Note that, by

Theorem 5, Lemma 5 with Πn replaced by 1^ is false.

We can now partially improve Corollary 2.5 as follows:

Corollary 1. There are 1^ sentences ψ0, Ψi, such that Th ψ0 -> ~«ψι and there is no

Δn sentence φ for which Th ψ0 -» φ and Th φ -> -iψj.

Proof. Let ψ0, ψj be as in Theorem 5 (a). Suppose φ is Δ^ Th ψ0 — > φ, and Th φ — >

-•ψ!. Then Th --ψ! -̂  φ and Th -ιψ0 -» -«φ and so Th ψ0 v ψlx a contradiction.

Let Cons(Γ,T) be the set of sentences Γ-conservative over T. It is clear from the

definition of Cons(Γ,T) that it is a Π^ set. We now show that this classification is

correct.

Our next lemma follows at once from Lemma 3.2 (b) but has a simpler direct

proof which we leave to the reader.

Lemma 7. Let R(k,m) be any r.e. relation. There are then formulas Po(*/y) and

p1(x,y) such that pg(x/y) is Σlx Pι(x,y) is nlx po(*/y) numerates R(k,m) in T, PAh

Pθ(k,m) — > p1(k,m), and if not R(k,m), then Th

Theorem 6. (a) Cons(Γ,T) is a complete Π^ set.

(b) If Γ Φ ΣI, then Π1 n Cons(Γ,T) is a complete n° set.

Proof. Let X be any Π^ set and let R(k,m) be an r.e. relation such that X =

(k: VmR(k,m)}. Let p(x,y) be a formula numerating R(k,m) in T, which is ΣI if Γ =

Σn and Π^ if Γ = Πn. Let ξ(x) be as in (the proof of) Lemma 2 with χ(x,y) := p(x,y)

To prove (a) it is now sufficient to show that

(1) kEXiffξ(k)eCons(Γ,T).

By Lemma 2,

(2) T + ξ(k)hp(k,m),

(3) T + ξ(k)HΓT + {p(k,q):qEN}.

If keX, then Th p(k,q) for every q and so, by (3), ξ(k)eCons(Γ,T). If kgX, there is

an m such that Th p(k,m) and so, by (2), ξ(k)£ Cons(Γ,T) (in fact, ξ(k) is not Σα- or

not Π1-conservative over T, as the case may be). Thus, (1) holds.This proves (a).

If Γ is Σj^ or Πn with n > 2, then ξ(x) is Γd as claimed in (b). Finally, suppose Γ =

Πj. Let p0(x,y) and Pι(x,y) be as in Lemma 7. Let p(x,y) := Po(x/y) Then ξ(x) is Σα.

By Lemma 7, ξ(k)£ Cons(Πl7T) if k^ X. Thus, (b) holds in this case, too.

Suppose T is Σ1-sound and θ is Π^ Then θ is Σ1-conservative over T iff θ is true.

Thus, H! n Cons(Σl7T) is Π°.
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We conclude this chapter with a proof of Theorem 4.8. We derive this result

from the following lemma; a refinement of this lemma (for n = 1) will be proved in
Chapter 7 (Lemma 7.22).

Lemma 8. There is a Πn formula ξ(x) such that for every k,

(i) Th ξ(k),

(ii) Thξ(k+l)->ξ(k),
(iii) ξ(k) is ^-conservative over T + ->ξ(k+l).

Proof. In a first attempt to prove Lemma 8 it is natural to let ξ(x) be such that

PAh ξ(k) ̂  ξ(k+l) v Vv([ΣJK(k+l)Λξ(k),v) -> -Prfτ(ξ(k),v)).
But then (i) does not follow and so we have to proceed in a more indirect way.

Let δ(u) be any formula. Let κ(z,x,y) be a Πn formula such that

(1) PAh -κ(z,x,0),

(2) PAh κ(δ,k,y+l) ̂  κ(δ,k+l,y) v Vv([ZJ(^5(k)Ak(k),v) ̂  -Prfτ(ξδ(k),v)),

where

ξδ(x) := Vu(δ(u) -+ κ(δ,x,(u ^ x) + 1)),
ηδ(x) := Vu(δ(u) -* κ(δ,x+l,u ^x)).

(-i is the function such that k-im = k - m i f k > m and = 0 otherwise.) In (2) set y =

u - k. Then, since neither y nor u is free in the second disjunct of (2), by predicate

logic, we get

(3) PAh ξδ(k) ̂  ηδ(k) v Vv([ΣJ(^δ(k)Λξδ(k)Λ) -* -Prfτ(ξδ(k),v)).
It follows that

(4) ifThξδ(k),thenThηδ(k).

For let p be a proof of ξδ(k) in T. By Lemma 1 (ii),

T + -ηδ(k)Λξδ(k)h-Prfτ(ξδ(k),p),

whence T + ξδ(k)h ηδ(k) and so Th ηδ(k).

Clearly

(5) if Th δ(u) -+ u > k, then Th ηδ(k) <-> ξδ(k+l).

Suppose now δ(u) is PR. Then

(6) if 3uδ(u) is true, then Th ξδ(0).

Suppose Ξuδ(u) is true and Th ξδ(0). Let m be the least number such that δ(m) is

true. Then Th δ(u) -> u > m. By (4) and (5), it follows that Th ηδ(m). But also Th

δ(m) and so, by (1), Th -<ηδ(m), a contradiction. Thus, (6) is proved.

Now let δ7(u) be a PR formula such that

(7) PAhΞuδ'(u)<-+Prτ(ξδ,(0)).

If 3uδ7(u) is true, then, by (6), Prτ(ξδ,(0)) is false and, by (7), it is true. Thus, 3uδ'(u)

is false, whence, by (7), Prτ(ξδ,(0)) is false and so Th ξδ,(0).

Let ξ(x) := ξδ,(x) and η(x) := ηδ/(x). Then Th ξ(0). Hence, by (3) and (5) with δ(u)

:= δr(u), we get (i) and (ii).

(iii) can be verified as follows. Suppose

(8) T + πξ(k+l) + ξ(k)h σ,
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where σ is Σ^. Then, by (5), T + -"η(k) + ξ(k)h σ. Hence, by Lemma 1 (iii), there is a

q such that

But then, by (i), (3), and Lemma 1 (i), T + - σh ξ(k), whence T + - ξ(k)h σ and so, by

(8), T + - ξ(k+l)h σ, proving (iii).

Proof of Theorem 4.8. Let ξ(x) be as in Lemma 8. By Lemma 8 (i) and (iii), TI/ ξ(k)

-> ξ(k+l). It follows that T + ξ(0) + (ξ(k) -> ξ(k+l): keN} is an axiomatization of T

+ (ξ(k): ke N} which is irredundant over T. Let π ,̂ ke N, be Πn sentences such that

T + {%: ke N} is an axiomatization of T + (ξ(k): ke N}. Let r be arbitrary. By Lemma

8 (ii), there is an m such that T + ξ(m)h πr. Let s be such that T + π0 Λ...Λ πsh ξ(m+l).

We may assume that s > r. It follows that

T + ξ(m) Λ -«ξ(m+l)h ->(π0 Λ...Λ πτ_ι Λ πr+1 Λ...Λ πs).

But then, by Lemma 8 (iii),

T + π0 Λ...Λ πτ.ι Λ πr+1 Λ...Λ πsh ξ(m+l).

It follows, by Lemma 8 (ii), that T + {πk: k Φ r}h πr. Thus, T + {π :̂ keN} is not irre-

dundant over T.

We have actually proved more than is stated in Theorem 4.8. First of all, for

every r, T + (πk: k Φ r}h πr; in fact, for every m, T + {πk: k > m}h πr. Secondly, this

holds for all, not necessarily r.e., sets {πk: ke N} of Πn sentences such that T + (π :̂

keN} Hh T + {ξ(k): keN}. The theory T + (η(k): keN} constructed in the proof of

Theorem 4.7, on the other hand, is deductively equivalent to T + (η(k): kg H} and

(η(k): kgH} is irredundant over T. (The set (η(k): kgH} is not r.e. (cf. Lemma 4.6).)

Exercises for Chapter 5.
In the following exercises we assume that PAH T.

1. Let θ be a Γ^ Rosser sentence for T. Show that -iθ is not Π1-conservative over T

(compare Exercise 2 (c)).

2. Suppose T is not Σ^-sound.

(a) Show that Conτ is not Σ1-conservative over T. [Hint: Let δ(y) be a PR for-

mula such that 3yδ(y) is false and provable in T. Let χ be as in Exercise 2.21. Then

W χ and T + -χh Prτ(χ) A Prτ(-χ).]

(b) Improve (a) by showing that if TI/ -«Conj, there is a Σ^ sentence σ such that

T + Conτh Prτ(σ) and Tb6 Prτ(σ).

(c) Improve (a) by showing that if θ is a Π1 Rosser sentence for T, θ is not Σ1-con-

servative over T. [Hint: Let ψ := 3u(Prfτ(-«θ,u) Λ Vz<u-»Prfτ(θ,z)). T + -iψ is consis-

tent. T + - ψ + θh Conτ+^θ and T + - θh -iψ. Thus, T + - ψ + θh Conτ+^ψ. Apply (a)

to T + -iψ.]

3. Show that the result of replacing Σn by Πn in Corollary 1 is false.
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4. φ is a self-prover in T if Th φ -> Prτ(φ). Every Σ1 sentence is a self-prover.

(a) Show that φ is a self-prover in T iff there is a sentence θ such that

Th φ <-> (θ Λ Prτ(θ)).

(b) Show that for every n > 0, there is a 1^ (Πn+1) self-prover in T which is not

5. (a) Show that Lemma 2 (ii) can be replaced by

if PAH S H T, then S + ξ(k)HΓ S + (χ(k,q): qe N}.

(b) φ is hereditarily Γ-conservative over T if φ is Γ-conservative over S for every

S such that PAH SH T. Show that in Lemma 3 and Theorem 2 we can replace

"Γd-conservative over T" by "hereditarily Γ^-conservative over T".

(c) Show that in Theorem 3 we cannot in general replace "Γ- (P -̂) conserva-

tive" by "hereditarily Γ- (Γ1-) conservative". [Hint: Let φ be a Σl sentence and ψ a

Π L sentence such that PA -H φ Λ ψ is consistent and PAI/ φ v ψ. Let T = PA + φ Λ ψ.]

6. (a) Show that there are sentences φ and ψ such that, T + φl/ ψ, T + ψl/ φ, φ is

Πn-conservative over T + ψ, and ψ is ^-conservative over T + φ.

(b) Improve (a) by showing that there are sentences φ and ψ as in (a) such that

φ is ΣΠ and ψ is Πn. [Hint: Let

Th φ ̂  3zHΠn]τ+ψ(φ,z) Λ Vu<z-Prfτ(φ,u)),

Th ψ <-» Vz([ΣJτ+φ(ψ,z) -> -Prfτ(ψ,z)).

Use Exercise 5 (b).]

7. Show that there are 1^ sentences ψ0/ Ψi as in Theorem 5 satisfying the addition-

al condition that -"ψj is ^-conservative over T, i = 0, 1.

8. (a) S is a proper Γ-subtheory of T if Shr T/1Γ S. Suppose AH B/lΠl A. Show that
there is a sentence χ such that A is a proper Γ^-subtheory of A + χ1 and A + χ1 HΓ

B, i = 0, 1.

(b) Show that there are sentences φ0, (pi such that φ0, (pi, ^(po v -«φ1 are Γ-con-

servative over T and -ι(p0, -«(pi, (po Λ (pj are not Π1-conservative over T. [Hint: Use

Lemma 4.]

9. (a) Show that there is a Δn+1 sentence φ such that φ and -«φ are Πn-conservative

over T. [Hint: Let φ be such that

PAh φ <-> ΞyHΠn](φ,y) Λ Vz<y[Πn](-φ,z)).]

(b) Show that if T is Σj^-sound, there is no A^ sentence φ such that φ and -«φ

are Σn-conservative over T.

(c) Show that there is no Bn sentence φ such that φ and -«φ are Πn- (1^-) con-

servative over T. Conclude that there is a Δn+1 sentence which is not B^ (compare

Corollary 2.5). [Hint: Suppose not. Let φ := (π0 Λ σ0) v...v (πn Λ σn). In the Πn case,

for k < n+1, show that
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Th V{Λ -.α: X c {0,..vn} & X has exactly k elements}.]
jeX I

10. Let X0 and X± be disjoint r.e. sets.

(a) Show that there is a Σ^ formula ξ(x), such that ξ^x) numerates Xi in T, i = 0,

1, and if kg XQ u Xl7 then ξ(k) is Πn-conservative over T and - ξ(k) is ^-conserva-

tive over T.

(b) Show that there is a formula ξ(x) such that (i) if keX0/ then Th ξ(k), (ii) if

keX l Λ then Th ~ ξ(k), (iii) if Y0 and ΎI are any disjoint finite subsets of (X0 u X^0,

then Λ{ξ(k): ke Y0} Λ Λ{-iξ(k): ke Yα} is Γ-conservative over T. [Hint: First define a

formula η(k) such that all the sentences (- )η(O) Λ...Λ (~ι)η(k) are Γ-conservative

over T. Then let ξ(x) := (ξo(x) v η(x)) Λ -.ξ^x) for suitable ξ0(x), ξι(x).]

11. (a) Let X and Y be r.e. sets of Γ and Γd sentences, respectively, such that if φe X

and ψeY, then Th φ v ψ. Show that there is a Γ sentence θ such that T + θ is a

Γd-conservative extension of T + X and T + ->θ is a Γ-conservative extension of T

+ Y.

(b) Let Θ0, QI, Θ2,... be a recursive sequence of Γ sentences such that Th

-«(θk Λ θm) for k Φ m. Let XQ and \ι be disjoint r.e. sets. Show that there is a sen-

tence φ such that X0 = {k: Th θk -> φ} and Xl = {k: Th θk -> - φ}.

12. Suppose T is not Σ1-sound. Show that Π^ n Cons^/Γ) is a complete Π^set.

[Hint: Let R(k,m) and S(k,m,n) be an r.e. and a primitive recursive relation such

that X = {k: VmR(k,m)} and R(k,m) iff 3nS(k,m,n). Let σ(x,y,z) be a PR binumera-

tion of S(k,m,n). Let γ(x) be a PR formula such that Ξxγ(x) is false and provable in

T. Let p0(x,y), Pι(x,y), and δ(x,y,z) be such that

PAh p0(x,y) <+ Vz(Prfτ(p1(x/y)/z) -+ Ξu<zσ(x,y,u)),

Pθ(χ/y) := Vzδ(x,y,z),
Pl(x,y) := 3z(γ(z) Λ Vu<zδ(x,y,z)).

Then

Th p0(χ,y) -̂  Pι(χ,y),
if R(k,m), then Th p0(k,m),

if not R(k,m), then Th

13. (a) Let HCons(Γ,T) be the set of sentences hereditarily Γ-conservative over T.

Suppose Γ Φ Σ!. Show that Π1 n HCons(Γ,T) is a complete Π^ set.

(b) Show that

Π1 n Cons(Γ,T) n {φ: -nφeCons(Γd,T)}

is a complete Π^ set.

(c) Show that

Σj, x Σn n {< φ0/φι>: Φie Cons(Πn/ T + -φ )̂, i = 0, 1}

is a complete Π^ set.
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14. (a) Suppose φ is Σn, and Πn-conservative over T. Let ψ be any Πn sentence

which is ^-conservative over T + φ. Show that T + ->φh ψ. Conclude that no Πn

sentence is nontrivially ^-conservative over T + φ and T + ->(p. [Hint: Let φ :=

Ξxγ(x) and ψ := Vxδ(x), where γ(x) and δ(x) are Π^ and Σ ,̂ respectively. Then T

+ φ + ψh 3x(γ(x) A Vy<xδ(y)).]

(b) Show that there is an r.e. family of consistent extensions of PA such that for

no Γ does there exist a Γ sentence which is nontrivially Γd-conservative over every

member of the family. [Hint: Let φ be a Π^ sentence undecidable in PA. Then

{PA + - θ: PAh θ -» φ} u {PA + θ: PAh φ -> θ}

is an r.e. family of extensions of PA. Suppose θ is Πn and nontrivially Σn-conserv-

ative over all members of this family. Then PA + φl/ θ. θ is Σj^-conservative over T

+ -ι(θ Λ φ). It follows that PA + φh θ, a contradiction. The dual case is similar.]

15. This exercise may be compared with Theorems 2.13, 2.14.

(a) For each Γ, there is a primitive recursive function f such that for every Γ sen-

tence φ, f(φ) is a proof in PA of φ <-» Trr(φ). Use this to show that there is a Γ sen-

tence θ and a primitive recursive function g(k) such that θ is Γ^-conservative over

T and if ψ is any P* sentence and q a proof of ψ in T + θ, then g(q) is a proof of ψ

inT.
(b) Let f be any recursive function. Show that there are sentences φ, ψ such that

φ is Γ-conservative over T, ψ is Γ, Th ψ, and there is a proof p of ψ in T + φ such

that q > f(p) for every proof q of ψ in T.

Notes for Chapter 5.
The general concept Γ-conservative is due to Guaspari (1979). Theorem 1 is due to

Kreisel (1962). Lemma 2 is due to Lindstrδm (1984a). Lemma 3 and Theorem 2 with

X = Th(T) are due to Guaspari (1979); for somewhat stronger results, also due to

Guaspari (1979), see Exercise 5 (b). The proofs of Lemma 3 and Theorem 2 are from

Lindstrδm (1984a). Lemma 4 is due to Lindstrόm (1984a). (Lemmas 2 and 4 and

their proofs are similar to and were inspired by results of Guaspari (1979), Solovay

(cf. Guaspari (1979)), and Hajek (1971); for further applications, see e.g. Hajek and

Pudlak (1993).) Theorem 3 less the references to the set X is due to Solovay (cf.

Guaspari (1979); see also Jensen and Ehrenfeucht (1976); the full result is proved in

Smoryriski (1981a) and Lindstrδm (1984a). The formula Prf'τ/Γ(x,y) was introduced

by Smoryriski (1981a); (Sm) and the fixed point mentioned in Exercise 3.7 (a) are

special cases of a very general construction due to Smoryriski (1981a); however, in

the proof of his main theorem Smoryriski has to assume that the formulas %i(x,y)

are PR. Theorem 4 is due to Lindstrδm (1984a). Lemma 6 and Theorem 5 are due

to Bennet (1986), (1986a). Corollary 1 with Σ^ replaced by Πn is false (Exercise 3).

Theorem 6 for Γ = Γ^ and for Γ = Πn+1 are essentially due to Solovay (cf. Hajek

(1979)) and Hajek (1979), respectively, (in both cases with different proofs);
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Theorem 6 for Γ = Σ^ n > 1, is due to Quinsey (1980), (1981) (with a different proof);

the present proof is due to Lindstrom (1984a). For more information on Cons(Γ,T)

and related sets, see Exercises 12 and 13. Lemma 8 is due to Lindstrom (1993);

Lemma 8 with Πn and 1^ interchanged and restricted to Σ^-sound theories is also

true but the proof is quite different.

An alternative concept of partial conservativity has been introduced and studied

by Hajek (1984).

Exercise 2 (a) is due to Smoryriski (1980); Exercise 2 (c) is due to Svejdar (cf.

Hajek and Pudlak (1993)). Exercise 4 is due to Kent (1973). Exercise 5 (b) is due to

Guaspari (1979). Exercise 7 is due to Bennet (1986). Exercise 10 (a) is due to

Smoryriski (1981a). Exercise 12 is due to Quinsey (1981); the suggested proof is due

to Bennet. Exercise 13 (c) is due to Bennet (1986). Exercise 14 is due to Misercque

(1983).




