5. PARTIAL CONSERVATIVITY

A sentence φ is Γ -conservative over T if for every Γ sentence θ , if $T + \varphi \vdash \theta$, then T $\vdash \theta$. In this chapter we study this phenomenon for its own sake. Results on Γ -conservativity are, however, also very useful in many contexts, in particular in connection with interpretability (see Chapters 6 and 7).

Our task in this chapter is to develop general methods for constructing partially conservative sentences satisfying additional conditions such as being nonprovable in a given theory.

We assume throughout that PA IT. The results of this chapter do not depend on the assumption that T is reflexive.

A first example of a Π_1 -conservative sentence is given in the following:

Theorem 1. \neg Con_T is Π_1 –conservative over T.

```
Proof. Suppose \theta is \Pi_1 and
```

```
(1) T + \neg Con_T \vdash \theta.
```

From (1) we get $PA \vdash Pr_T(\neg \theta) \rightarrow Pr_T(Con_T)$, whence

(2) PA \vdash Pr_T($\neg \theta$) $\rightarrow \neg$ Con_{T+ \neg Con_T}.

By provable Σ_1 -completeness,

(3) $PA \vdash \neg \theta \rightarrow Pr_T(\neg \theta).$

By Corollary 2.2,

```
(4) PA + Con<sub>T</sub> \vdash Con<sub>T+¬Con<sub>T</sub></sub>.
```

Combining (2), (3), (4) we get $PA \vdash \neg \theta \rightarrow \neg Con_T$ and so by (1), $T \vdash \theta$.

By Corollary 2.4, Theorem 1 provides us with an example of a (Σ_1) sentence φ which is Π_1 -conservative over T and nontrivially so, i.e. such that T $\nvDash \varphi$, even if T is not Σ_1 -sound.

If φ is Γ -conservative over T and ψ is Γ^d , then clearly φ is Γ -conservative over T + ψ . Also note that if T is Σ_1 -sound and π is Π_1 , then π is Σ_1 -conservative over T iff π is true iff T + π is consistent.

Let us now try to construct a sentence ϕ which is nontrivially $\Gamma\text{--conservative}$ over T. Thus, given that

(1) $T + \varphi \vdash \theta$,

where θ is Γ , we want to be able to conclude that TF θ . This follows if (1) implies that

(2) $T + \neg \theta \vdash \varphi$.

The natural way to ensure that (1) implies (2) is to let φ be a sentence saying of itself that there is a false Γ sentence (namely θ) which φ implies in T. Thus, let φ be such that

(3) $PA \vdash \phi \leftrightarrow \exists u(\Gamma(u) \land Pr_{T+\phi}(u) \land \neg Tr_{\Gamma}(u)),$

where $\Gamma(x)$ is a PR binumeration of the set of Γ sentences. Then (1) implies (2).

It is, however, not generally true that $T \nvDash \varphi$. This holds if T is true, since φ is then false. But, for example, $T + \neg Con_T \vdash \varphi$, and so if $T \vdash \neg Con_T$, then $T \vdash \varphi$. To prevent this from happening, we redefine φ as follows: let φ be such that

PA⊢ $\varphi \leftrightarrow \exists y \exists uv \leq y (\Gamma(u) \land \Prf_{T+\varphi}(u,v) \land \neg Tr_{\Gamma}(u) \land \forall z \leq y \neg \Prf_{T}(\varphi,z)).$ Then T⊭ φ and φ is Γ -conservative over T. Also, if $\Gamma = \Pi_n$, then φ is Σ_n which is optimal; in fact, this is the sentence used in the proof of Theorem 2 (a), below, for $\Gamma = \Pi_n$.

From our present point of view the proof of Theorem 4.2 with S = T can be understood as follows (see the remarks following Corollary 4.1). Let ψ be as in that proof. It is sufficient to show that $\neg \psi$ is Γ^d -conservative over T; in fact, that is exactly what is done in the proof of Theorem 4.2. This also follows from the fact that (3) with φ replaced by $\neg \psi$ and Γ by Γ^d is true.

Let $[\Gamma]_S(x,y) :=$

 $\forall uv \leq y(\Gamma(u) \land Prf_{S+x}(u,v) \to Tr_{\Gamma}(u)).$

This formula is constructed to yield the following:

Lemma 1. $[\Gamma]_T(x,y)$ is a Γ formula such that

(i) $PA\vdash [\Gamma]_T(x,y) \land z \le y \to [\Gamma]_T(x,z),$

(ii) $T + \varphi \vdash [\Gamma]_T(\varphi, m)$ for all φ and m,

(iii) if ψ is Γ and $T + \varphi \vdash \psi$, there is a q such that PA + $[\Gamma]_T(\varphi,q) \vdash \psi$.

Proof. (i) is clear. (ii) Let $\theta_0, ..., \theta_k$ be all Γ sentences $\leq m$ provable in $T + \varphi$ and whose proofs are $\leq m$. Then

PA⊢ \forall uv≤m(Γ(u) ∧ Prf_{T+φ}(u,v) → u = θ₀ ∨...∨ u = θ_k). Also clearly, by Fact 10 (a) (ii),

$$\begin{split} T+\phi\vdash u &= \theta_0 \lor ... \lor u = \theta_k \to Tr_{\Gamma}(u). \\ \text{It follows that } T+\phi\vdash [\Gamma]_T(\phi,m). \end{split}$$

(iii) Suppose ψ is Γ and $T + \varphi \vdash \psi$. Let p be a proof of ψ in $T + \varphi$ and let $q = \max\{\psi, p\}$. Then PA + $[\Gamma]_T(\varphi, q) \vdash \operatorname{Tr}_{\Gamma}(\psi)$ and so PA + $[\Gamma]_T(\varphi, q) \vdash \psi$.

S is a Γ -subtheory of T, SH_{Γ} T, if every Γ sentence provable in S is provable in T. We write $[\Gamma](x,y)$ for $[\Gamma]_T(x,y)$.

Lemma 2. Suppose $\chi(x,y)$ is Γ^d . There is then a Γ^d formula $\xi(x)$ such that for all k and m,

(i) $T + \xi(k) \vdash \chi(k,m)$,

(ii) $T + \xi(k) \dashv_{\Gamma} T + \{\chi(k,q): q \in N\}.$

Proof. *Case 1.* $\Gamma = \Sigma_n$. Let $\xi(x)$ be such that

(1) $PA \vdash \xi(k) \leftrightarrow \forall y([\Sigma_n](\xi(k), y) \to \chi(k, y)).$

Then (i) follows from Lemma 1 (ii) and (1). To prove (ii), suppose ψ is Σ_n and $T + \xi(k) \vdash \psi$. By Lemma 1 (iii), there is a q such that

 $PA + [\Sigma_n](\xi(k),q) \vdash \psi.$

Hence, by Lemma 1 (i),

 $\mathsf{PA} + \forall y \leq q \chi(k, y) + \neg \psi \vdash \forall y([\Sigma_n](\xi(k), y) \to \chi(k, y))$

and so, by (1),

 $\mathbf{PA} + \forall y \leq q \chi(k, y) + \neg \psi \vdash \xi(k).$

But then, since $T + \xi(k) \vdash \psi$, it follows that $T + \{\chi(k,q): q \in N\} \vdash \psi$, as desired.

Case 2. $\Gamma = \Pi_n$. Let $\xi(x)$ be such that

 $\mathsf{PA}\vdash \xi(k) \leftrightarrow \exists y(\neg[\Pi_n](\xi(k),y) \land \forall z \leq y\chi(k,z)).$

The proof that $\xi(x)$ is as claimed is then almost the same as in Case 1. From Lemma 2 we derive the following result on numerations of r.e. sets.

Lemma 3. Let X be an r.e. set. There is then a Γ^d formula $\xi(x)$ such that

(i) if $k \in X$, then $T \vdash \neg \xi(k)$,

(ii) if $k \notin X$, then $\xi(k)$ is Γ -conservative over T.

Proof. Let $\rho(x,y)$ be a PR formula such that $X = \{k: \exists mPA \vdash \rho(k,m)\}$ and let $\xi(x)$ be as in Lemma 2 with $\chi(x,y) := \neg \rho(x,y)$.

For extensions of PA Lemma 3 implies Theorem 3.1.

We can now prove our first general theorem on the existence of nontrivially partially conservative sentences.

Theorem 2. (a) There is a Γ^d sentence φ such that $T \nvDash \varphi$ and φ is Γ -conservative over T.

(b) If X is r.e. and monoconsistent with T, there is a Γ^d sentence φ such that $\varphi \notin X$ and φ is Γ -conservative over T.

Proof. (a) is the special case of (b) where X = Th(T).

(b) Let $\xi(x)$ be as in Lemma 3 and let φ be such that PA $\vdash \varphi \leftrightarrow \xi(\varphi)$. If $\varphi \in X$, then, by Lemma 3 (i), $T \vdash \neg \xi(\varphi)$ and so $T \vdash \neg \varphi$, which is impossible. Thus, $\varphi \notin X$ and so, by Lemma 3 (ii), φ is Γ -conservative over T.

Of course, the Γ^d sentence mentioned in Theorem 2 (a) is not Γ^T (compare Corollary 2.5).

The following result is a natural strengthening of Theorem 2.

Theorem 3. (a) There is a Γ sentence φ such that φ is Γ^d -conservative over T and $\neg \varphi$ is Γ -conservative over T.

(b) If X is r.e. and monoconsistent with T, there is a Γ sentence φ such that φ is Γ^d -conservative over T, $\neg \varphi$ is Γ -conservative over T, and φ , $\neg \varphi \notin X$.

We derive Theorem 3 from:

Lemma 4. Suppose $\chi_0(x,y)$ is Γ^d and $\chi_1(x,y)$ is Γ . Then there is a Γ formula $\xi(x)$ such that for i = 0, 1,

5. Partial conservativity

(i) $T + \xi^{i}(k) \vdash \forall y \leq m\chi_{i}(k,y) \rightarrow \chi_{1-i}(k,m),$

(ii) if ψ is Γ^d and $T + \xi^i(k) \vdash \psi^i$, then $T + \{\chi_{1-i}(k,q): q \in N\} \vdash \psi^i$.

Proof. We need only prove this for $\Gamma = \Sigma_n$. Let $\xi(x)$ be such that $\mathsf{PA}\vdash \xi(\mathbf{k}) \leftrightarrow \exists \mathbf{y} \big((\neg [\Pi_n](\xi(\mathbf{k}), \mathbf{y}) \lor \neg \chi_0(\mathbf{k}, \mathbf{y})) \land \forall \mathbf{z} < \mathbf{y} ([\Sigma_n](\neg \xi(\mathbf{k}), \mathbf{z}) \land \chi_1(\mathbf{k}, \mathbf{z})) \big).$ (1)We verify (i) and (ii) for i = 0 and leave the case i = 1 to the reader. (i) By Lemma 1 (ii), $T + \xi(k) \vdash \neg [\Pi_n](\xi(k), y) \rightarrow y > m.$ It follows that $T + \xi(k) + \forall y \leq m \chi_0(k, y) \vdash (\neg [\Pi_n](\xi(k), y) \lor \neg \chi_0(k, y)) \rightarrow y > m.$ But then, by (1), $T+\xi(k)+\forall y{\leq}m\chi_0(k,y){\vdash}\chi_1(k,m),$ as desired. (ii) Suppose ψ is Π_n and (2) $T + \xi(k) \vdash \psi$. By Lemma 1 (iii), there is a q such that $T + [\Pi_n](\xi(k),q) \vdash \psi$ and so (3) $T + \neg \psi \vdash \neg [\Pi_n](\xi(k),q).$ By Lemma 1 (ii), for every m, (4) $T + \neg \xi(k) \vdash [\Sigma_n](\neg \xi(k), m).$ By (3), (4), Lemma 1 (i), and (1), it follows that $T + \neg \psi + \neg \xi(k) + \forall y \leq q \chi_1(k, y) \vdash \xi(k)$ and so T + ¬ ψ + ∀y≤q $\chi_1(k,y)$ ⊢ ξ(k). But then, by (2), T + $\forall y \leq q\chi_1(k,y) \vdash \psi$, as desired. **Proof of Theorem 3.** (a) is a special case of (b). \blacklozenge (b) Let $\rho_i(x,y)$, i = 0, 1, be PR binumerations of relations $R_i(k,m)$ such that X = {k:

(b) Let $p_i(X,y)$, i = 0, i, be inclusions of relations of relations $K_i(X,n)$ such that $X = \{k: \exists mR_0(k,m)\}$ and $\{\varphi: \neg \varphi \in X\} = \{k: \exists mR_1(k,m)\}$. Let $\xi(x)$ be as in Lemma 4 with $\chi_i(x,y) := \neg \rho_{1-i}(x,y)$. Let φ be such that $PA \vdash \varphi \leftrightarrow \xi(\varphi)$. Suppose $\varphi \in X$ or $\neg \varphi \in X$. Let m be the least number such that $R_0(\varphi,m)$ or $R_1(\varphi,m)$. Suppose $R_i(\varphi,m)$. Then not $R_{1-i}(\varphi,n)$ for $n \leq m$. (We may assume that $R_0(k,n)$ implies not $R_1(k,n)$.) But then, by Lemma 4 (i), $T \vdash \neg \xi^i(\varphi)$, whence $T \vdash \neg \varphi^i$. But this is impossible, since $\varphi^i \in X$. It follows that φ , $\neg \varphi \notin X$. But then, by Lemma 4 (ii), φ is Γ^d -conservative over T and $\neg \varphi$ is Γ -conservative over T.

Let $Prf'_{T,\Gamma}(x,y) :=$

 $\exists uv \leq y(\Gamma(u) \land Tr_{\Gamma}(u) \land Prf_{T+u}(x,v));$

a slight modification of the formula $Prf_{T,\Gamma}(x,y)$ defined in Chapter 4. In the proofs of Lemmas 2 and 4 [Γ](x,y) can be replaced by $\neg Prf'_{T,\Gamma}d(\neg x,y)$. Then, for example, formula (1) in the proof of Lemma 4 becomes:

 $\begin{array}{ll} (\text{Sm}) \quad \text{PA}\vdash \xi(k) \leftrightarrow \exists y \big((\Pr{f'_{T,\Sigma_n}}(\neg \xi(k), y) \vee \neg \chi_0(k, y)) \wedge \\ & \forall z < y (\neg \Pr{f'_{T,\Pi_n}}(\xi(k), y) \wedge \chi_1(k, z)) \big). \end{array}$

This formula may be compared with formula (1) in the proof of Theorem 3.2 and (\mathbf{R}') following the proof of Theorem 2.2.

Our next result is related to Theorem 4.3; it will be used several times, in some cases indirectly, in Chapters 6 and 7.

S is a Γ -conservative extension of T if T \dashv S \dashv_{Γ} T. By Theorems 4.4 (a) and 4.5, T + Rfn_T is a Π_1 -conservative extension of PA + Con^{ω}_T.

Theorem 4. (a) Let X be an r.e. set of Γ sentences. There is then a Γ sentence θ such that T + θ is a Γ^d -conservative extension of T + X.

(b) Let $\gamma(x,y)$ be any Γ formula. There is then a Γ formula $\eta(x)$ such that for every $k, T + \eta(k)$ is a Γ^d -conservative extension of $T + {\gamma(k,m): m \in N}$.

Proof. (a) By Craig's theorem, we may assume that X is primitive recursive. Let $\eta(x)$ be a PR binumeration of X. Then for every q,

(1) $PA + X \vdash \eta(q) \rightarrow Tr_{\Gamma}(q).$

By Lemma 2 with (Γ replaced by Γ^d and) $\chi(x,y) := \eta(y) \to \operatorname{Tr}_{\Gamma}(y)$, there is a Γ sentence θ such that for all φ ,

 $(2) \qquad T+\theta\vdash \eta(\phi) \to {\rm Tr}_{\Gamma}(\phi),$

 $(3) \qquad T + \theta \dashv_{\Gamma} d T + \{\eta(q) \rightarrow Tr_{\Gamma}(q) \colon q \in N\}.$

From (2) it follows that $T + \theta \vdash X$ and from (1) and (3) it follows that $T + \theta \dashv_{\Gamma} d$ T + X.

(b) Left to the reader.

So far there has been no indication that the properties of Σ_n and Π_n , n > 1, in terms of partial conservativity may be different, but we shall now show that they are.

Let ψ_0 and ψ_1 be Γ sentences. If

(1) TF $\psi_0 \lor \psi_1$,

then, trivially,

(2) ψ_i is Γ^d -conservative over $T + \neg \psi_{1-i}$, i = 0, 1.

If $\Gamma = \Pi_{n'}$ the converse of this is true. This follows from our next:

Lemma 5. Let ψ_0 and ψ_1 be any Π_n sentences. There are then Π_n sentences θ_0 and θ_1 such that

(i) $T \vdash \theta_0 \lor \theta_1$,

- (ii) $T \vdash \psi_i \rightarrow \theta_i, i = 0, 1,$
- (iii) $T \vdash \theta_0 \land \theta_1 \rightarrow \psi_0 \land \psi_1.$

Proof. By Fact 5, we may assume that $\psi_i := \forall x \delta_i(x)$, where $\delta_i(x)$ is Σ_{n-1} . Let $\theta_i := \forall x (\neg \delta_i(x) \rightarrow \exists y < x + i \neg \delta_{1-i}(y))$.

Then (i), (ii), (iii) are easily verified (cf. Lemma 1.3).

From (ii) and (iii) of Lemma 5 it follows that $T + \neg \psi_i + \psi_{1-i} \vdash \neg \theta_i$. Hence, assuming (2), $T + \neg \psi_i \vdash \neg \theta_i$. It follows that $T \vdash \theta_0 \lor \theta_1 \rightarrow \psi_0 \lor \psi_1$ and so, by Lemma 5 (i), we get (1).

We now prove that if $\Gamma = \Sigma_{n'}$ then (2) does not imply (1).

Theorem 5. (a) There are Σ_n sentences ψ_0 , ψ_1 such that

- (i) $T \vdash \neg(\psi_0 \land \psi_1),$
- (ii) $T \not\vdash \psi_0 \lor \psi_1$,
- (iii) ψ_i is Π_n -conservative over T + $\neg \psi_{1-i}$, i = 0, 1.

(b) Suppose X is r.e. and monoconsistent with T. Then there are Σ_n sentences ψ_0 , ψ_1 such that (i) and (iii) hold and

 ψ_1 such that (i) and (iii) note and

(iv) $\psi_0 \lor \psi_1 \notin X$.

We derive this theorem from:

Lemma 6. Let X be an r.e. set. There are then Σ_n formulas $\xi_0(x)$ and $\xi_1(x)$ such that for i = 0, 1,

- (i) $T \vdash \neg(\xi_0(x) \land \xi_1(x)),$
- (ii) if $k \in X$, then $T \vdash \neg \xi_i(k)$,

(iii) if $k \notin X$, then $\xi_i(k)$ is \prod_n -conservative over $T + \neg \xi_{1-i}(k)$.

Proof. Let $\rho(x,y)$ be a PR formula such that $X = \{k: \exists mPA \vdash \rho(k,m)\}$. For i = 0, 1, let $\xi_i(x), \chi_i(x), \delta_i(x,y)$ be, respectively, $\Sigma_{n'} \Sigma_{n'}$ and Π_{n-1} formulas such that

- (1) $PA \vdash \chi_i(k) \leftrightarrow \exists y(\neg [\Pi_n](\xi_i(k), y) \land \forall z \leq y \neg \rho(k, z)),$
- (2) $PA \vdash \chi_i(x) \leftrightarrow \exists y \delta_i(x,y),$

 $\xi_i(x) := \exists y (\delta_i(x,y) \land \forall z {<} y {+} i \neg \delta_{1-i}(x,z)).$

This application of (double) self-reference is more complicated than any we have encountered so far and it requires some thought to see that it is admissible. But in view of Fact 5 it is.

(i) is then clear. To prove (ii), suppose $k \in X$. Let m be such that PA+ $\rho(k,m)$. By Lemma 1 (ii),

 $T + \xi_i(k) \vdash \neg [\Pi_n](\xi_i(k), y) \to m < y.$

So, by (1),

(3) $T + \xi_i(k) \vdash \neg \chi_i(k).$

Also, by (2), PA $\vdash \xi_i(x) \rightarrow \chi_i(x)$. Now (ii) follows from this and (3).

Finally, to prove (iii), suppose $k \notin X$. Now suppose ψ is Π_n and

 $T + \neg \xi_{1-i}(k) + \xi_i(k) \vdash \psi.$

By (i), it follows that

(4) $T + \xi_i(k) \vdash \psi$.

But then, by Lemma 1 (iii), there is a q such that $T + [\Pi_n](\xi_i(k),q) \vdash \psi$. Also $T \vdash \neg \rho(k,m)$ for all m. By (1), it now follows that $T + \neg \psi \vdash \chi_i(k)$. Thus, by (2),

T + ¬ ψ ⊢ ∃ $y\delta_i(k,y)$. But then

 $T + \neg \psi + \neg \xi_{1-i}(k) \vdash \xi_i(k).$

Combining this with (4) we get $T + \neg \xi_{1-i}(k) \vdash \psi$. This proves (iii). **Proof of Theorem 5.** (a) follows from (b). \blacklozenge

(b) We may assume that if $\psi \in X$ and $T \vdash \psi \rightarrow \theta$, then $\theta \in X$. Let $\xi_i(x)$ be as in Lemma 6. Let φ be such that

5. Partial conservativity

 $PA\vdash \phi \leftrightarrow \xi_0(\phi) \lor \xi_1(\phi).$

Set $\psi_i := \xi_i(\varphi)$. If $\varphi \in X$, then, by Lemma 6 (ii), $T \vdash \neg \xi_i(\varphi)$ for i = 0, 1, and so $T \vdash \neg \varphi$, impossible. Thus, $\varphi \notin X$ and so (iv) holds. (i) and (iii) follow from Lemma 6 (i) and (iii), respectively.

Theorem 5 (b) will be used in the proof of Theorem 7.7 (b), below. Note that, by Theorem 5, Lemma 5 with Π_n replaced by Σ_n is false.

We can now partially improve Corollary 2.5 as follows:

Corollary 1. There are Σ_n sentences ψ_0 , ψ_1 , such that $T \vdash \psi_0 \rightarrow \neg \psi_1$ and there is no Δ_n sentence φ for which $T \vdash \psi_0 \rightarrow \varphi$ and $T \vdash \varphi \rightarrow \neg \psi_1$.

Proof. Let ψ_0 , ψ_1 be as in Theorem 5 (a). Suppose φ is Δ_n , $T \vdash \psi_0 \rightarrow \varphi$, and $T \vdash \varphi \rightarrow \neg \psi_1$. Then $T \vdash \neg \psi_1 \rightarrow \varphi$ and $T \vdash \neg \psi_0 \rightarrow \neg \varphi$ and so $T \vdash \psi_0 \lor \psi_1$, a contradiction.

Let $Cons(\Gamma,T)$ be the set of sentences Γ -conservative over T. It is clear from the definition of $Cons(\Gamma,T)$ that it is a Π_2^0 set. We now show that this classification is correct.

Our next lemma follows at once from Lemma 3.2 (b) but has a simpler direct proof which we leave to the reader.

Lemma 7. Let R(k,m) be any r.e. relation. There are then formulas $\rho_0(x,y)$ and $\rho_1(x,y)$ such that $\rho_0(x,y)$ is Σ_1 , $\rho_1(x,y)$ is Π_1 , $\rho_0(x,y)$ numerates R(k,m) in T, PAH $\rho_0(k,m) \rightarrow \rho_1(k,m)$, and if not R(k,m), then TH $\rho_1(k,m)$.

Theorem 6. (a) $Cons(\Gamma,T)$ is a complete Π_2^0 set. (b) If $\Gamma \neq \Sigma_1$, then $\Gamma^d \cap Cons(\Gamma,T)$ is a complete Π_2^0 set.

Proof. Let X be any Π_2^0 set and let R(k,m) be an r.e. relation such that X = {k: $\forall mR(k,m)$ }. Let $\rho(x,y)$ be a formula numerating R(k,m) in T, which is Σ_1 if $\Gamma = \Sigma_n$ and Π_1 if $\Gamma = \Pi_n$. Let $\xi(x)$ be as in (the proof of) Lemma 2 with $\chi(x,y) := \rho(x,y)$. To prove (a) it is now sufficient to show that

(1) $k \in X \text{ iff } \xi(k) \in \text{Cons}(\Gamma, T).$

By Lemma 2,

(2) $T + \xi(k) \vdash \rho(k,m)$,

(3) $T + \xi(k) \dashv_{\Gamma} T + \{\rho(k,q): q \in N\}.$

If $k \in X$, then $T \vdash \rho(k,q)$ for every q and so, by (3), $\xi(k) \in \text{Cons}(\Gamma,T)$. If $k \notin X$, there is an m such that $T \nvDash \rho(k,m)$ and so, by (2), $\xi(k) \notin \text{Cons}(\Gamma,T)$ (in fact, $\xi(k)$ is not Σ_1 - or not Π_1 -conservative over T, as the case may be). Thus, (1) holds. This proves (a).

If Γ is Σ_n or Π_n with $n \ge 2$, then $\xi(x)$ is Γ^d as claimed in (b). Finally, suppose $\Gamma = \Pi_1$. Let $\rho_0(x,y)$ and $\rho_1(x,y)$ be as in Lemma 7. Let $\rho(x,y) := \rho_0(x,y)$. Then $\xi(x)$ is Σ_1 . By Lemma 7, $\xi(k) \notin \text{Cons}(\Pi_1, T)$ if $k \notin X$. Thus, (b) holds in this case, too.

Suppose T is Σ_1 -sound and θ is Π_1 . Then θ is Σ_1 -conservative over T iff θ is true. Thus, $\Pi_1 \cap \text{Cons}(\Sigma_1, T)$ is Π_1^0 . We conclude this chapter with a proof of Theorem 4.8. We derive this result from the following lemma; a refinement of this lemma (for n = 1) will be proved in Chapter 7 (Lemma 7.22).

Lemma 8. There is a Π_n formula $\xi(x)$ such that for every k,

(i) T⊬ ξ(k),

(ii) $T \vdash \xi(k+1) \rightarrow \xi(k)$,

(iii) $\xi(k)$ is Σ_n -conservative over T + $\neg \xi(k+1)$.

Proof. In a first attempt to prove Lemma 8 it is natural to let $\xi(x)$ be such that $PA\vdash \xi(k) \leftrightarrow \xi(k+1) \lor \forall v([\Sigma_n](\neg \xi(k+1) \land \xi(k), v) \to \neg Prf_T(\xi(k), v)).$

But then (i) does not follow and so we have to proceed in a more indirect way.

Let $\delta(u)$ be any formula. Let $\kappa(z,x,y)$ be a Π_n formula such that

(1) $PA \vdash \neg \kappa(z, x, 0),$

(2) $PA\vdash \kappa(\delta,k,y+1) \leftrightarrow \kappa(\delta,k+1,y) \lor \forall v([\Sigma_n](\neg \eta_{\delta}(k) \land \xi_{\delta}(k),v) \to \neg Prf_T(\xi_{\delta}(k),v)),$ where

$$\begin{split} \xi_{\delta}(x) &:= \forall u(\delta(u) \to \kappa(\delta, x, (u \bullet x) + 1)), \\ \eta_{\delta}(x) &:= \forall u(\delta(u) \to \kappa(\delta, x + 1, u \bullet x)). \end{split}$$

(• is the function such that $k \cdot m = k - m$ if $k \ge m$ and = 0 otherwise.) In (2) set $y = u \cdot k$. Then, since neither y nor u is free in the second disjunct of (2), by predicate logic, we get

 $(3) \qquad PA\vdash \xi_{\delta}(k) \leftrightarrow \eta_{\delta}(k) \vee \forall v([\Sigma_{n}](\neg \eta_{\delta}(k) \land \xi_{\delta}(k), v) \rightarrow \neg Prf_{T}(\xi_{\delta}(k), v)).$

It follows that

(4) if $T \vdash \xi_{\delta}(k)$, then $T \vdash \eta_{\delta}(k)$.

For let p be a proof of $\xi_{\delta}(k)$ in T. By Lemma 1 (ii),

 $T + \neg \eta_{\delta}(k) \wedge \xi_{\delta}(k) \vdash \neg Prf_{T}(\xi_{\delta}(k), p),$

whence $T + \xi_{\delta}(k) \vdash \eta_{\delta}(k)$ and so $T \vdash \eta_{\delta}(k)$.

Clearly

(5) if $T \vdash \delta(u) \rightarrow u > k$, then $T \vdash \eta_{\delta}(k) \leftrightarrow \xi_{\delta}(k+1)$.

- Suppose now $\delta(u)$ is PR. Then
- (6) if $\exists u \delta(u)$ is true, then $T \nvDash \xi_{\delta}(0)$.

Suppose $\exists u \delta(u)$ is true and $T \vdash \xi_{\delta}(0)$. Let m be the least number such that $\delta(m)$ is true. Then $T \vdash \delta(u) \rightarrow u \ge m$. By (4) and (5), it follows that $T \vdash \eta_{\delta}(m)$. But also $T \vdash \delta(m)$ and so, by (1), $T \vdash \neg \eta_{\delta}(m)$, a contradiction. Thus, (6) is proved.

Now let $\delta'(u)$ be a PR formula such that

(7) $PA \vdash \exists u \delta'(u) \leftrightarrow Pr_{T}(\xi_{\delta'}(0)).$

If $\exists u\delta'(u)$ is true, then, by (6), $Pr_T(\xi_{\delta'}(0))$ is false and, by (7), it is true. Thus, $\exists u\delta'(u)$ is false, whence, by (7), $Pr_T(\xi_{\delta'}(0))$ is false and so $T \nvDash \xi_{\delta'}(0)$.

Let $\xi(x) := \xi_{\delta'}(x)$ and $\eta(x) := \eta_{\delta'}(x)$. Then $T \nvDash \xi(0)$. Hence, by (3) and (5) with $\delta(u)$:= $\delta'(u)$, we get (i) and (ii).

(iii) can be verified as follows. Suppose

(8)
$$T + \neg \xi(k+1) + \xi(k) \vdash \sigma$$
,

where σ is Σ_n . Then, by (5), T + $\neg \eta(k) + \xi(k) \vdash \sigma$. Hence, by Lemma 1 (iii), there is a q such that

T + [Σ_n](¬η(k)∧ξ(k),q)⊢ σ.

But then, by (i), (3), and Lemma 1 (i), $T + \neg \sigma \vdash \xi(k)$, whence $T + \neg \xi(k) \vdash \sigma$ and so, by (8), $T + \neg \xi(k+1) \vdash \sigma$, proving (iii).

Proof of Theorem 4.8. Let $\xi(x)$ be as in Lemma 8. By Lemma 8 (i) and (iii), $T \nvDash \xi(k) \rightarrow \xi(k+1)$. It follows that $T + \xi(0) + \{\xi(k) \rightarrow \xi(k+1): k \in N\}$ is an axiomatization of $T + \{\xi(k): k \in N\}$ which is irredundant over T. Let π_k , $k \in N$, be Π_n sentences such that $T + \{\pi_k: k \in N\}$ is an axiomatization of $T + \{\xi(k): k \in N\}$. Let r be arbitrary. By Lemma 8 (ii), there is an m such that $T + \xi(m) \vdash \pi_r$. Let s be such that $T + \pi_0 \land \dots \land \pi_s \vdash \xi(m+1)$. We may assume that s > r. It follows that

 $T + \xi(m) \land \neg \xi(m+1) \vdash \neg (\pi_0 \land ... \land \pi_{r-1} \land \pi_{r+1} \land ... \land \pi_s).$ But then, by Lemma 8 (iii),

T + π_0 ∧...∧ π_{r-1} ∧ π_{r+1} ∧...∧ $\pi_s \vdash \xi(m+1)$. It follows, by Lemma 8 (ii), that T + { π_k : k ≠ r} ⊢ π_r . Thus, T + { π_k : k∈N} is not irredundant over T. ■

We have actually proved more than is stated in Theorem 4.8. First of all, for every r, T + { π_k : k ≠ r}+ π_r ; in fact, for every m, T + { π_k : k > m}+ π_r . Secondly, this holds for all, not necessarily r.e., sets { π_k : k ∈ N} of Π_n sentences such that T + { π_k : k ∈ N} \dashv + T + { $\xi(k)$: k ∈ N}. The theory T + { $\eta(k)$: k ∈ N} constructed in the proof of Theorem 4.7, on the other hand, is deductively equivalent to T + { $\eta(k)$: k ∉ H} and { $\eta(k)$: k ∉ H} is irredundant over T. (The set { $\eta(k)$: k ∉ H} is not r.e. (cf. Lemma 4.6).)

Exercises for Chapter 5.

In the following exercises we assume that PAH T.

1. Let θ be a Π_1 Rosser sentence for T. Show that $\neg \theta$ is not Π_1 -conservative over T (compare Exercise 2 (c)).

2. Suppose T is not Σ_1 -sound.

(a) Show that Con_T is not Σ_1 -conservative over T. [Hint: Let $\delta(y)$ be a PR formula such that $\exists y \delta(y)$ is false and provable in T. Let χ be as in Exercise 2.21. Then $T \nvDash \chi$ and $T + \neg \chi \vdash \Pr_T(\chi) \land \Pr_T(\neg \chi)$.]

(b) Improve (a) by showing that if $T \nvDash \neg Con_T$, there is a Σ_1 sentence σ such that $T + Con_T \vdash Pr_T(\sigma)$ and $T \nvDash Pr_T(\sigma)$.

(c) Improve (a) by showing that if θ is a Π_1 Rosser sentence for T, θ is not Σ_1 -conservative over T. [Hint: Let $\psi := \exists u(\Pr f_T(\neg \theta, u) \land \forall z \leq u \neg \Pr f_T(\theta, z))$. T + $\neg \psi$ is consistent. T + $\neg \psi + \theta \vdash \operatorname{Con}_{T+\neg \theta}$ and T + $\neg \theta \vdash \neg \psi$. Thus, T + $\neg \psi + \theta \vdash \operatorname{Con}_{T+\neg \psi}$. Apply (a) to T + $\neg \psi$.]

3. Show that the result of replacing Σ_n by Π_n in Corollary 1 is false.

Exercises

4. φ is a *self-prover in* T if T⊢ φ → Pr_T(φ). Every Σ₁ sentence is a self-prover.
(a) Show that φ is a self-prover in T iff there is a sentence θ such that

 $T\vdash \phi \leftrightarrow (\theta \wedge Pr_T(\theta)).$

(b) Show that for every n > 0, there is a Σ_n (Π_{n+1}) self-prover in T which is not $\Pi_n^T (\Sigma_{n+1}^T)$.

5. (a) Show that Lemma 2 (ii) can be replaced by

if PA \dashv S \dashv T, then S + $\xi(k) \dashv_{\Gamma} S + {\chi(k,q): q \in N}$.

(b) φ is *hereditarily* Γ -conservative over T if φ is Γ -conservative over S for every S such that PA-I S-I T. Show that in Lemma 3 and Theorem 2 we can replace " Γ^d -conservative over T" by "hereditarily Γ^d -conservative over T".

(c) Show that in Theorem 3 we cannot in general replace " Γ – (Γ ^d–) conservative" by "hereditarily Γ – (Γ ^d–) conservative". [Hint: Let φ be a Σ_1 sentence and ψ a Π_1 sentence such that PA + $\varphi \land \psi$ is consistent and PA $\not\models \varphi \lor \psi$. Let T = PA + $\varphi \land \psi$.]

6. (a) Show that there are sentences φ and ψ such that, $T + \varphi \nvDash \psi$, $T + \psi \nvDash \varphi$, φ is Π_n -conservative over $T + \psi$, and ψ is Σ_n -conservative over $T + \varphi$.

(b) Improve (a) by showing that there are sentences φ and ψ as in (a) such that φ is Σ_n and ψ is Π_n . [Hint: Let

 $\mathsf{T}\vdash \varphi \leftrightarrow \exists z(\neg [\Pi_n]_{T+\psi}(\varphi, z) \land \forall u \leq z \neg \mathsf{Prf}_T(\varphi, u)),$

 $T\vdash \psi \leftrightarrow \forall z([\Sigma_n]_{T+\omega}(\psi, z) \to \neg Prf_T(\psi, z)).$

Use Exercise 5 (b).]

7. Show that there are Σ_n sentences ψ_0 , ψ_1 as in Theorem 5 satisfying the additional condition that $\neg \psi_i$ is Σ_n -conservative over T, i = 0, 1.

8. (a) S is a *proper* Γ -subtheory of T if S $\vdash_{\Gamma} TA_{\Gamma}$ S. Suppose A \dashv B A_{Π_1} A. Show that there is a sentence χ such that A is a proper Π_1 -subtheory of A + χ^i and A + $\chi^i \dashv_{\Gamma}$ B, i = 0, 1.

(b) Show that there are sentences φ_0 , φ_1 such that φ_0 , φ_1 , $\neg \varphi_0 \vee \neg \varphi_1$ are Γ -conservative over T and $\neg \varphi_0$, $\neg \varphi_1$, $\varphi_0 \wedge \varphi_1$ are not Π_1 -conservative over T. [Hint: Use Lemma 4.]

9. (a) Show that there is a Δ_{n+1} sentence φ such that φ and $\neg \varphi$ are Π_n -conservative over T. [Hint: Let φ be such that

 $PA\vdash \phi \leftrightarrow \exists y(\neg [\Pi_n](\phi, y) \land \forall z < y[\Pi_n](\neg \phi, z)).]$

(b) Show that if T is Σ_n -sound, there is no Δ_{n+1} sentence φ such that φ and $\neg \varphi$ are Σ_n -conservative over T.

(c) Show that there is no B_n sentence φ such that φ and $\neg \varphi$ are $\Pi_n^-(\Sigma_n^-)$ conservative over T. Conclude that there is a Δ_{n+1} sentence which is not B_n^T (compare Corollary 2.5). [Hint: Suppose not. Let $\varphi := (\pi_0 \land \sigma_0) \lor ... \lor (\pi_n \land \sigma_n)$. In the Π_n case, for $k \le n+1$, show that

$$T\vdash \bigvee \{\bigwedge_{i\in X} \neg \sigma_{j}: X \subseteq \{0, ..., n\} \& X \text{ has exactly } k \text{ elements} \}.$$

10. Let X_0 and X_1 be disjoint r.e. sets.

(a) Show that there is a Σ_n formula $\xi(x)$, such that $\xi^i(x)$ numerates X_i in T, i = 0, 1, and if $k \notin X_0 \cup X_1$, then $\xi(k)$ is Π_n -conservative over T and $\neg \xi(k)$ is Σ_n -conservative over T.

(b) Show that there is a formula $\xi(x)$ such that (i) if $k \in X_0$, then $T \vdash \xi(k)$, (ii) if $k \in X_1$, then $T \vdash \neg \xi(k)$, (iii) if Y_0 and Y_1 are any disjoint finite subsets of $(X_0 \cup X_1)^c$, then $\land \{\xi(k): k \in Y_0\} \land \land \{\neg \xi(k): k \in Y_1\}$ is Γ -conservative over T. [Hint: First define a formula $\eta(k)$ such that all the sentences $(\neg)\eta(0) \land ... \land (\neg)\eta(k)$ are Γ -conservative over T. Then let $\xi(x) := (\xi_0(x) \lor \eta(x)) \land \neg \xi_1(x)$ for suitable $\xi_0(x), \xi_1(x)$.]

11. (a) Let X and Y be r.e. sets of Γ and Γ^d sentences, respectively, such that if $\varphi \in X$ and $\psi \in Y$, then $T \vdash \varphi \lor \psi$. Show that there is a Γ sentence θ such that $T + \theta$ is a Γ^d -conservative extension of T + X and $T + \neg \theta$ is a Γ -conservative extension of T + Y.

(b) Let θ_0 , θ_1 , θ_2 ,... be a recursive sequence of Γ sentences such that $T \vdash \neg(\theta_k \land \theta_m)$ for $k \neq m$. Let X_0 and X_1 be disjoint r.e. sets. Show that there is a sentence φ such that $X_0 = \{k: T \vdash \theta_k \rightarrow \varphi\}$ and $X_1 = \{k: T \vdash \theta_k \rightarrow \neg\varphi\}$.

12. Suppose T is not Σ_1 -sound. Show that $\Pi_1 \cap \text{Cons}(\Sigma_1, T)$ is a complete Π_2^0 set. [Hint: Let R(k,m) and S(k,m,n) be an r.e. and a primitive recursive relation such that $X = \{k: \forall mR(k,m)\}$ and R(k,m) iff $\exists nS(k,m,n)$. Let $\sigma(x,y,z)$ be a PR binumeration of S(k,m,n). Let $\gamma(x)$ be a PR formula such that $\exists x\gamma(x)$ is false and provable in T. Let $\rho_0(x,y)$, $\rho_1(x,y)$, and $\delta(x,y,z)$ be such that

$$\begin{split} & PA\vdash \rho_0(x,y) \leftrightarrow \forall z (Prf_T(\rho_1(\dot{x},\dot{y}),z) \rightarrow \exists u \leq z \sigma(x,y,u)), \\ & \rho_0(x,y) := \forall z \delta(x,y,z), \\ & \rho_1(x,y) := \exists z (\gamma(z) \land \forall u \leq z \delta(x,y,z)). \end{split}$$

Then

T⊢ $\rho_0(x,y) \rightarrow \rho_1(x,y)$, if R(k,m), then T⊢ $\rho_0(k,m)$, if not R(k,m), then T⊭ $\rho_1(k,m)$.]

13. (a) Let $HCons(\Gamma,T)$ be the set of sentences hereditarily Γ -conservative over T. Suppose $\Gamma \neq \Sigma_1$. Show that $\Gamma^d \cap HCons(\Gamma,T)$ is a complete Π_2^0 set.

(b) Show that

 $\Gamma^{d} \cap Cons(\Gamma,T) \cap \{\phi: \neg \phi \in Cons(\Gamma^{d},T)\}$ is a complete Π_{2}^{0} set.

(c) Show that

$$\begin{split} & \Sigma_n \times \Sigma_n \cap \{ <\phi_0, \phi_1 >: \phi_i \in Cons(\Pi_n, T + \neg \phi_{1-i}), \, i=0, \, 1 \} \\ & \text{ is a complete } \Pi_2^0 \text{ set.} \end{split}$$

Notes

14. (a) Suppose φ is Σ_n , and Π_n -conservative over T. Let ψ be any Π_n sentence which is Σ_n -conservative over $T + \varphi$. Show that $T + \neg \varphi \vdash \psi$. Conclude that no Π_n sentence is nontrivially Σ_n -conservative over $T + \varphi$ and $T + \neg \varphi$. [Hint: Let $\varphi := \exists x \gamma(x)$ and $\psi := \forall x \delta(x)$, where $\gamma(x)$ and $\delta(x)$ are Π_{n-1} and Σ_{n-1} , respectively. Then $T + \varphi + \psi \vdash \exists x(\gamma(x) \land \forall y \leq x \delta(y))$.]

(b) Show that there is an r.e. family of consistent extensions of PA such that for no Γ does there exist a Γ sentence which is nontrivially Γ^d -conservative over every member of the family. [Hint: Let φ be a Π_1 sentence undecidable in PA. Then

 ${PA + \neg \theta: PA \vdash \theta \rightarrow \phi} \cup {PA + \theta: PA \vdash \phi \rightarrow \theta}$ is an r.e. family of extensions of PA. Suppose θ is Π_n and nontrivially Σ_n -conservative over all members of this family. Then $PA + \phi \nvDash \theta$. θ is Σ_n -conservative over T + $\neg(\theta \land \phi)$. It follows that $PA + \phi \vdash \theta$, a contradiction. The dual case is similar.]

15. This exercise may be compared with Theorems 2.13, 2.14.

(a) For each Γ , there is a primitive recursive function f such that for every Γ sentence φ , $f(\varphi)$ is a proof in PA of $\varphi \leftrightarrow \operatorname{Tr}_{\Gamma}(\varphi)$. Use this to show that there is a Γ sentence θ and a primitive recursive function g(k) such that θ is Γ^{d} -conservative over T and if ψ is any Γ^{d} sentence and q a proof of ψ in T + θ , then g(q) is a proof of ψ in T.

(b) Let f be any recursive function. Show that there are sentences φ , ψ such that φ is Γ -conservative over T, ψ is Γ , T $\vdash \psi$, and there is a proof p of ψ in T + φ such that q > f(p) for every proof q of ψ in T.

Notes for Chapter 5.

The general concept Γ -conservative is due to Guaspari (1979). Theorem 1 is due to Kreisel (1962). Lemma 2 is due to Lindström (1984a). Lemma 3 and Theorem 2 with X = Th(T) are due to Guaspari (1979); for somewhat stronger results, also due to Guaspari (1979), see Exercise 5 (b). The proofs of Lemma 3 and Theorem 2 are from Lindström (1984a). Lemma 4 is due to Lindström (1984a). (Lemmas 2 and 4 and their proofs are similar to and were inspired by results of Guaspari (1979), Solovay (cf. Guaspari (1979)), and Hájek (1971); for further applications, see e.g. Hájek and Pudlák (1993).) Theorem 3 less the references to the set X is due to Solovay (cf. Guaspari (1979); see also Jensen and Ehrenfeucht (1976); the full result is proved in Smoryński (1981a) and Lindström (1984a). The formula $Prf'_{T,\Gamma}(x,y)$ was introduced by Smoryński (1981a); (Sm) and the fixed point mentioned in Exercise 3.7 (a) are special cases of a very general construction due to Smoryński (1981a); however, in the proof of his main theorem Smoryński has to assume that the formulas $\chi_i(x,y)$ are PR. Theorem 4 is due to Lindström (1984a). Lemma 6 and Theorem 5 are due to Bennet (1986), (1986a). Corollary 1 with Σ_n replaced by Π_n is false (Exercise 3). Theorem 6 for $\Gamma = \Pi_1$ and for $\Gamma = \Pi_{n+1}$ are essentially due to Solovay (cf. Hájek (1979)) and Hájek (1979), respectively, (in both cases with different proofs); Theorem 6 for $\Gamma = \Sigma_n$, n > 1, is due to Quinsey (1980), (1981) (with a different proof); the present proof is due to Lindström (1984a). For more information on Cons(Γ ,T) and related sets, see Exercises 12 and 13. Lemma 8 is due to Lindström (1993); Lemma 8 with Π_n and Σ_n interchanged and restricted to Σ_n -sound theories is also true but the proof is quite different.

An alternative concept of *partial conservativity* has been introduced and studied by Hájek (1984).

Exercise 2 (a) is due to Smoryński (1980); Exercise 2 (c) is due to Švejdar (cf. Hájek and Pudlák (1993)). Exercise 4 is due to Kent (1973). Exercise 5 (b) is due to Guaspari (1979). Exercise 7 is due to Bennet (1986). Exercise 10 (a) is due to Smoryński (1981a). Exercise 12 is due to Quinsey (1981); the suggested proof is due to Bennet. Exercise 13 (c) is due to Bennet (1986). Exercise 14 is due to Misercque (1983).