5．PARTIAL CONSERVATIVITY

A sentence φ is Γ－conservative over T if for every Γ sentence θ ，if $T+\varphi \vdash \theta$ ，then $T \vdash$ θ ．In this chapter we study this phenomenon for its own sake．Results on Γ－con－ servativity are，however，also very useful in many contexts，in particular in con－ nection with interpretability（see Chapters 6 and 7）．

Our task in this chapter is to develop general methods for constructing partial－ ly conservative sentences satisfying additional conditions such as being nonprov－ able in a given theory．

We assume throughout that $\mathrm{PA} \dashv \mathrm{T}$ ．The results of this chapter do not depend on the assumption that T is reflexive．

A first example of a Π_{1}－conservative sentence is given in the following：

Theorem 1．\neg Con $_{\mathrm{T}}$ is Π_{1}－conservative over T ．

Proof．Suppose θ is Π_{1} and
（1） $\mathrm{T}+\neg \mathrm{Con}_{\mathrm{T}} \vdash$ ．
From（1）we get PAト $\operatorname{Pr}_{\mathrm{T}}(\neg \theta) \rightarrow \operatorname{Pr}_{\mathrm{T}}\left(\mathrm{Con}_{\mathrm{T}}\right)$ ，whence
（2）PAト $\operatorname{Pr}_{\mathrm{T}}(\neg \theta) \rightarrow \neg \mathrm{Con}_{\mathrm{T}+\neg \mathrm{Con}_{\mathrm{T}}}$ ．
By provable Σ_{1}－completeness，
（3）\quad PAト $\neg \theta \rightarrow \operatorname{Pr}_{\mathrm{T}}(\neg \theta)$ ．
By Corollary 2．2，
（4）$\quad \mathrm{PA}+\mathrm{Con}_{\mathrm{T}} \vdash \mathrm{Con}_{\mathrm{T}+\neg \mathrm{Con}_{\mathrm{T}}}$ ．
Combining（2），（3），（4）we get PAト $\neg \theta \rightarrow \neg \mathrm{Con}_{\mathrm{T}}$ and so by（1），Tト θ ．
By Corollary 2．4，Theorem 1 provides us with an example of a $\left(\Sigma_{1}\right)$ sentence φ which is Π_{1}－conservative over T and nontrivially so，i．e．such that TH φ ，even if T is not Σ_{1}－sound．

If φ is Γ－conservative over T and ψ is Γ ，then clearly φ is Γ－conservative over $\mathrm{T}+\psi$ ．Also note that if T is Σ_{1}－sound and π is Π_{1} ，then π is Σ_{1}－conservative over T iff π is true iff $T+\pi$ is consistent．

Let us now try to construct a sentence φ which is nontrivially Γ－conservative over T．Thus，given that
（1）$T+\varphi \vdash \theta$ ，
where θ is Γ ，we want to be able to conclude that $\mathrm{T} \vdash \theta$ ．This follows if（1）implies that
（2）$T+\neg \theta \vdash \varphi$ ．
The natural way to ensure that（1）implies（2）is to let φ be a sentence saying of itself that there is a false Γ sentence（namely θ ）which φ implies in T．Thus，let φ be such that
（3）\quad PAト $\varphi \leftrightarrow \exists \mathrm{u}\left(\Gamma(\mathrm{u}) \wedge \operatorname{Pr}_{\mathrm{T}+\varphi}(\mathrm{u}) \wedge \neg \operatorname{Tr}_{\Gamma}(\mathrm{u})\right)$ ，
where $\Gamma(x)$ is a PR binumeration of the set of Γ sentences．Then（1）implies（2）．

It is, however, not generally true that $\mathrm{T} \psi \varphi$. This holds if T is true, since φ is then false. But, for example, $\mathrm{T}+\neg \mathrm{Con}_{\mathrm{T}} \vdash \varphi$, and so if $\mathrm{T} \vdash \neg \mathrm{Con}_{\mathrm{T}}$, then $\mathrm{T} \vdash \varphi$. To prevent this from happening, we redefine φ as follows: let φ be such that

$$
\operatorname{PA} \vdash \varphi \leftrightarrow \exists y \exists u v \leq y\left(\Gamma(u) \wedge \operatorname{Prf}_{\mathrm{T}+\varphi}(\mathrm{u}, \mathrm{v}) \wedge \neg \operatorname{Tr}_{\Gamma}(\mathrm{u}) \wedge \forall \mathrm{z} \leq \mathrm{y} \neg \operatorname{Prf}_{\mathrm{T}}(\varphi, \mathrm{z})\right) .
$$

Then TH φ and φ is Γ-conservative over T. Also, if $\Gamma=\Pi_{n}$, then φ is Σ_{n} which is optimal; in fact, this is the sentence used in the proof of Theorem 2 (a), below, for $\Gamma=\Pi_{n}$.

From our present point of view the proof of Theorem 4.2 with $S=T$ can be understood as follows (see the remarks following Corollary 4.1). Let ψ be as in that proof. It is sufficient to show that $\neg \psi$ is Γ^{d}-conservative over T; in fact, that is exactly what is done in the proof of Theorem 4.2. This also follows from the fact that (3) with φ replaced by $\neg \psi$ and Γ by Γ^{d} is true.

Let $[\Gamma]_{S}(x, y):=$

$$
\forall \mathrm{uv} \leq \mathrm{y}\left(\Gamma(\mathrm{u}) \wedge \operatorname{Prf}_{\mathrm{S}+\mathrm{x}}(\mathrm{u}, \mathrm{v}) \rightarrow \operatorname{Tr}_{\Gamma}(\mathrm{u})\right)
$$

This formula is constructed to yield the following:
Lemma 1. $[\Gamma]_{\mathrm{T}}(\mathrm{x}, \mathrm{y})$ is a Γ formula such that
(i) \quad PAト $[\Gamma]_{T}(x, y) \wedge z \leq y \rightarrow[\Gamma]_{T}(x, z)$,
(ii) $T+\varphi \vdash[\Gamma]_{\mathrm{T}}(\varphi, \mathrm{m})$ for all φ and m ,
(iii) if ψ is Γ and $T+\varphi \vdash \psi$, there is a q such that $P A+[\Gamma]_{T}(\varphi, q) \vdash \psi$.

Proof. (i) is clear. (ii) Let $\theta_{0}, \ldots, \theta_{\mathrm{k}}$ be all Γ sentences $\leq \mathrm{m}$ provable in $\mathrm{T}+\varphi$ and whose proofs are $\leq m$. Then

PA $\vdash \forall \mathrm{uv} \leq \mathrm{m}\left(\Gamma(\mathrm{u}) \wedge \operatorname{Prf}_{\mathrm{T}+\varphi}(\mathrm{u}, \mathrm{v}) \rightarrow \mathrm{u}=\theta_{0} \vee \ldots \vee \mathrm{u}=\theta_{\mathrm{k}}\right)$.
Also clearly, by Fact 10 (a) (ii),

$$
\mathrm{T}+\varphi \vdash \mathrm{u}=\theta_{0} \vee \ldots \vee \mathrm{u}=\theta_{\mathrm{k}} \rightarrow \operatorname{Tr}_{\Gamma}(\mathrm{u})
$$

It follows that $T+\varphi \vdash[\Gamma]_{\mathrm{T}}(\varphi, \mathrm{m})$.
(iii) Suppose ψ is Γ and $T+\varphi \vdash \psi$. Let p be a proof of ψ in $T+\varphi$ and let $\mathrm{q}=$ $\max \{\psi, \mathrm{p}\}$. Then PA $+[\Gamma]_{\mathrm{T}}(\varphi, q) \vdash \operatorname{Tr}_{\Gamma}(\psi)$ and so $\mathrm{PA}+[\Gamma]_{\mathrm{T}}(\varphi, q) \vdash \psi$.
S is a Γ-subtheory of $\mathrm{T}, \mathrm{S}_{\Gamma} \mathrm{T}$, if every Γ sentence provable in S is provable in T . We write $[\Gamma](x, y)$ for $[\Gamma]_{T}(x, y)$.

Lemma 2. Suppose $\chi(x, y)$ is Γ^{d}. There is then a Γ^{d} formula $\xi(x)$ such that for all k and m,
(i) $\mathrm{T}+\xi(\mathrm{k}) \vdash \chi(\mathrm{k}, \mathrm{m})$,
(ii) $\quad \mathrm{T}+\xi(\mathrm{k}) \dashv_{\Gamma} \mathrm{T}+\{\chi(\mathrm{k}, \mathrm{q}): \mathrm{q} \in \mathrm{N}\}$.

Proof. Case 1. $\Gamma=\Sigma_{\mathrm{n}}$. Let $\xi(\mathrm{x})$ be such that
(1) \quad PA $\vdash \xi(\mathrm{k}) \leftrightarrow \forall \mathrm{y}\left(\left[\Sigma_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \rightarrow \chi(\mathrm{k}, \mathrm{y})\right)$.

Then (i) follows from Lemma 1 (ii) and (1). To prove (ii), suppose ψ is Σ_{n} and $T+\xi(\mathrm{k}) \vdash \psi$. By Lemma 1 (iii), there is a q such that

$$
P A+\left[\Sigma_{n}\right](\xi(k), q) \vdash \psi
$$

Hence, by Lemma 1 (i),

$$
\mathrm{PA}+\forall \mathrm{y} \leq \mathrm{q} \chi(\mathrm{k}, \mathrm{y})+\neg \psi \vdash \forall \mathrm{y}\left(\left[\Sigma_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \rightarrow \chi(\mathrm{k}, \mathrm{y})\right)
$$

and so, by (1),

$$
P A+\forall y \leq q \chi(k, y)+\neg \psi \vdash \xi(k)
$$

But then, since $T+\xi(k) \vdash \psi$, it follows that $T+\{\chi(k, q): q \in N\} \vdash \psi$, as desired.
Case 2. $\Gamma=\Pi_{\mathrm{n}}$. Let $\xi(\mathrm{x})$ be such that PA• $\xi(\mathrm{k}) \leftrightarrow \exists \mathrm{y}\left(\neg\left[\Pi_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \wedge \forall \mathrm{z} \leq \mathrm{y} \chi(\mathrm{k}, \mathrm{z})\right)$.
The proof that $\xi(\mathrm{x})$ is as claimed is then almost the same as in Case 1.
From Lemma 2 we derive the following result on numerations of r.e. sets.

Lemma 3. Let X be an r.e. set. There is then a Γ^{d} formula $\xi(x)$ such that (i) if $k \in X$, then $T \vdash \neg \xi(k)$,
(ii) if $\mathrm{k} \notin \mathrm{X}$, then $\xi(\mathrm{k})$ is Γ-conservative over T .

Proof. Let $\rho(x, y)$ be a PR formula such that $X=\{k: \exists m P A \vdash \rho(k, m)\}$ and let $\xi(x)$ be as in Lemma 2 with $\chi(x, y):=\neg \rho(x, y)$.

For extensions of PA Lemma 3 implies Theorem 3.1.
We can now prove our first general theorem on the existence of nontrivially partially conservative sentences.

Theorem 2. (a) There is a Γ^{d} sentence φ such that $T \nmid \varphi$ and φ is Γ-conservative over T.
(b) If X is r.e. and monoconsistent with T, there is a Γ^{d} sentence φ such that $\varphi \notin X$ and φ is Γ-conservative over T .

Proof. (a) is the special case of (b) where $X=T h(T)$.
(b) Let $\xi(x)$ be as in Lemma 3 and let φ be such that PAト $\varphi \leftrightarrow \xi(\varphi)$. If $\varphi \in X$, then, by Lemma $3(\mathrm{i}), \mathrm{T} \vdash \neg \xi(\varphi)$ and so $\mathrm{T} \vdash \neg \varphi$, which is impossible. Thus, $\varphi \notin \mathrm{X}$ and so, by Lemma 3 (ii), φ is Γ-conservative over T.

Of course, the Γ^{d} sentence mentioned in Theorem 2 (a) is not Γ^{T} (compare Corollary 2.5).

The following result is a natural strengthening of Theorem 2.

Theorem 3. (a) There is a Γ sentence φ such that φ is Γ^{d}-conservative over T and $\neg \varphi$ is Γ-conservative over T.
(b) If X is r.e. and monoconsistent with T, there is a Γ sentence φ such that φ is Γ^{d}-conservative over $\mathrm{T}, \neg \varphi$ is Γ-conservative over T , and $\varphi, \neg \varphi \notin \mathrm{X}$.

We derive Theorem 3 from:

Lemma 4. Suppose $\chi_{0}(x, y)$ is Γ^{d} and $\chi_{1}(x, y)$ is Γ. Then there is a Γ formula $\xi(x)$ such that for $\mathrm{i}=0,1$,
(i) $\quad \mathrm{T}+\xi^{\mathrm{i}}(\mathrm{k}) \vdash \forall \mathrm{y} \leq \mathrm{m} \chi_{\mathrm{i}}(\mathrm{k}, \mathrm{y}) \rightarrow \chi_{1-\mathrm{i}}(\mathrm{k}, \mathrm{m})$,
(ii) if ψ is Γ^{d} and $\mathrm{T}+\xi^{\mathrm{i}}(\mathrm{k}) \vdash \psi^{\mathrm{i}}$, then $\mathrm{T}+\left\{\chi_{1-\mathrm{i}}(\mathrm{k}, \mathrm{q}): q \in \mathrm{~N}\right\} \vdash \psi^{\mathrm{i}}$.

Proof. We need only prove this for $\Gamma=\Sigma_{\mathrm{n}}$. Let $\xi(\mathrm{x})$ be such that
(1) $\quad \operatorname{PA} \vdash \xi(\mathrm{k}) \leftrightarrow \exists \mathrm{y}\left(\left(\neg\left[\Pi_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \vee \neg \chi_{0}(\mathrm{k}, \mathrm{y})\right) \wedge \forall \mathrm{z}<\mathrm{y}\left(\left[\Sigma_{\mathrm{n}}\right](\neg \xi(\mathrm{k}), \mathrm{z}) \wedge \chi_{1}(\mathrm{k}, \mathrm{z})\right)\right)$.

We verify (i) and (ii) for $\mathrm{i}=0$ and leave the case $\mathrm{i}=1$ to the reader.
(i) By Lemma 1 (ii),

$$
\mathrm{T}+\xi(\mathrm{k}) \vdash \neg\left[\Pi_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \rightarrow \mathrm{y}>\mathrm{m} .
$$

It follows that

$$
\mathrm{T}+\xi(\mathrm{k})+\forall \mathrm{y} \leq \mathrm{m} \chi_{0}(\mathrm{k}, \mathrm{y}) \vdash\left(\neg\left[\Pi_{\mathrm{n}}\right](\xi(\mathrm{k}), \mathrm{y}) \vee \neg \chi_{0}(\mathrm{k}, \mathrm{y})\right) \rightarrow \mathrm{y}>\mathrm{m} .
$$

But then, by (1),
$\mathrm{T}+\xi(\mathrm{k})+\forall \mathrm{y} \leq \mathrm{m} \chi_{0}(\mathrm{k}, \mathrm{y}) \vdash \chi_{1}(\mathrm{k}, \mathrm{m})$,
as desired.
(ii) Suppose ψ is Π_{n} and
(2) $T+\xi(k) \vdash \psi$.

By Lemma 1 (iii), there is a q such that $T+\left[\Pi_{n}\right](\xi(k), q) \vdash \psi$ and so
(3) $T+\neg \psi \vdash \neg\left[\Pi_{n}\right](\xi(k), q)$.

By Lemma 1 (ii), for every m,
(4) $T+\neg \xi(k) \vdash\left[\Sigma_{n}\right](\neg \xi(k), m)$.

By (3), (4), Lemma 1 (i), and (1), it follows that

$$
\mathrm{T}+\neg \psi+\neg \xi(\mathrm{k})+\forall \mathrm{y} \leq \mathrm{q} \chi_{1}(\mathrm{k}, \mathrm{y}) \vdash \xi(\mathrm{k})
$$

and so

$$
\mathrm{T}+\neg \psi+\forall \mathrm{y} \leq \mathrm{q} \chi_{1}(\mathrm{k}, \mathrm{y}) \vdash \xi(\mathrm{k}) .
$$

But then, by (2), $T+\forall y \leq q \chi_{1}(k, y) \vdash \psi$, as desired.
Proof of Theorem 3. (a) is a special case of (b).
(b) Let $\rho_{i}(x, y), i=0,1$, be PR binumerations of relations $R_{i}(k, m)$ such that $X=\{k$: $\left.\exists \mathrm{mR}_{0}(\mathrm{k}, \mathrm{m})\right\}$ and $\{\varphi: \neg \varphi \in \mathrm{X}\}=\left\{\mathrm{k}: \exists \mathrm{mR}_{1}(\mathrm{k}, \mathrm{m})\right\}$. Let $\xi(\mathrm{x})$ be as in Lemma 4 with $\chi_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$ $:=\neg \rho_{1-\mathrm{i}}(x, y)$. Let φ be such that PAト $\varphi \leftrightarrow \xi(\varphi)$. Suppose $\varphi \in X$ or $\neg \varphi \in X$. Let m be the least number such that $R_{0}(\varphi, m)$ or $R_{1}(\varphi, m)$. Suppose $R_{i}(\varphi, m)$. Then not $R_{1-i}(\varphi, n)$ for $n \leq m$. (We may assume that $R_{0}(k, n)$ implies not $R_{1}(k, n)$.) But then, by Lemma 4 (i), $\mathrm{T} \vdash \neg \xi^{\mathrm{i}}(\varphi)$, whence $\mathrm{T} \vdash \neg \varphi^{\mathrm{i}}$. But this is impossible, since $\varphi^{\mathrm{i}} \in \mathrm{X}$. It follows that φ, $\neg \varphi \notin$. But then, by Lemma 4 (ii), φ is Γ^{d}-conservative over T and $\neg \varphi$ is Γ-conservative over T.

Let $\operatorname{Prf}_{\mathrm{T}, \Gamma}^{\prime}(\mathrm{x}, \mathrm{y}):=$

$$
\exists \mathrm{uv} \leq \mathrm{y}\left(\Gamma(\mathrm{u}) \wedge \operatorname{Tr}_{\Gamma}(\mathrm{u}) \wedge \operatorname{Prf}_{\mathrm{T}+\mathrm{u}}(\mathrm{x}, \mathrm{v})\right)
$$

a slight modification of the formula $\operatorname{Prf}_{\mathrm{T}, \Gamma}(\mathrm{x}, \mathrm{y})$ defined in Chapter 4. In the proofs of Lemmas 2 and $4[\Gamma](x, y)$ can be replaced by $\neg \operatorname{Prf}_{T, \Gamma}^{\prime} \mathrm{d}(\neg x, y)$. Then, for example, formula (1) in the proof of Lemma 4 becomes:
$(\mathrm{Sm}) \operatorname{PA} \vdash \xi(\mathrm{k}) \leftrightarrow \exists \mathrm{y}\left(\left(\operatorname{Prf}_{\mathrm{T}, \Sigma_{\mathrm{n}}}^{\prime}(\neg \xi(\mathrm{k}), \mathrm{y}) \vee \neg \chi_{0}(\mathrm{k}, \mathrm{y})\right) \wedge\right.$

$$
\left.\forall \mathrm{z}<\mathrm{y}\left(\neg \operatorname{Prf}_{\mathrm{T}, \Pi_{\mathrm{n}}}^{\prime}(\xi(\mathrm{k}), \mathrm{y}) \wedge \chi_{1}(\mathrm{k}, \mathrm{z})\right)\right) .
$$

This formula may be compared with formula (1) in the proof of Theorem 3.2 and (R^{\prime}) following the proof of Theorem 2.2.

Our next result is related to Theorem 4.3; it will be used several times, in some cases indirectly, in Chapters 6 and 7.

S is a Γ-conservative extension of T if $\mathrm{T}-\mathrm{S}^{-} \Gamma \mathrm{T}$. By Theorems 4.4 (a) and $4.5, \mathrm{~T}+$ $R \mathrm{Rn}_{\mathrm{T}}$ is a Π_{1}-conservative extension of $\mathrm{PA}+\mathrm{Con}_{\mathrm{T}}^{\omega}$.

Theorem 4. (a) Let X be an r.e. set of Γ sentences. There is then a Γ sentence θ such that $T+\theta$ is a Γ^{d}-conservative extension of $T+X$.
(b) Let $\gamma(x, y)$ be any Γ formula. There is then a Γ formula $\eta(x)$ such that for every $k, T+\eta(k)$ is a Γ^{d}-conservative extension of $T+\{\gamma(k, m): m \in N\}$.

Proof. (a) By Craig's theorem, we may assume that X is primitive recursive. Let $\eta(x)$ be a PR binumeration of X. Then for every q,
(1) $\quad \mathrm{PA}+\mathrm{X} \vdash \eta(\mathrm{q}) \rightarrow \operatorname{Tr}_{\Gamma}(\mathrm{q})$.

By Lemma 2 with (Γ replaced by Γ^{d} and) $\chi(x, y):=\eta(y) \rightarrow \operatorname{Tr}_{\Gamma}(y)$, there is a Γ sentence θ such that for all φ,
(2) $T+\theta \vdash \eta(\varphi) \rightarrow \operatorname{Tr}_{\Gamma}(\varphi)$,
(3) $T+\theta \dashv_{\Gamma} d T+\left\{\eta(q) \rightarrow \operatorname{Tr}_{\Gamma}(q): q \in N\right\}$.

From (2) it follows that $T+\theta \vdash X$ and from (1) and (3) it follows that $T+\theta-\Gamma_{\Gamma} d$

T + X.

(b) Left to the reader.

So far there has been no indication that the properties of Σ_{n} and $\Pi_{n}, n>1$, in terms of partial conservativity may be different, but we shall now show that they are.

Let ψ_{0} and ψ_{1} be Γ sentences. If
(1) $\mathrm{T} \vdash \psi_{0} \vee \psi_{1}$,
then, trivially,
(2) $\quad \psi_{i}$ is Γ^{d}-conservative over $\mathrm{T}+\neg \psi_{1-\mathrm{i}}, \mathrm{i}=0,1$.

If $\Gamma=\Pi_{n}$, the converse of this is true. This follows from our next:

Lemma 5. Let ψ_{0} and ψ_{1} be any Π_{n} sentences. There are then Π_{n} sentences θ_{0} and θ_{1} such that
(i) $\mathrm{T} \vdash \theta_{0} \vee \theta_{1}$,
(ii) $\mathrm{T} \vdash \psi_{\mathrm{i}} \rightarrow \theta_{\mathrm{i}}, \mathrm{i}=0,1$,
(iii) $\quad \mathrm{T} \vdash \theta_{0} \wedge \theta_{1} \rightarrow \psi_{0} \wedge \psi_{1}$.

Proof. By Fact 5, we may assume that $\psi_{\mathrm{i}}:=\forall x \delta_{i}(x)$, where $\delta_{i}(x)$ is $\Sigma_{\mathrm{n}-1}$. Let $\theta_{\mathrm{i}}:=$ $\forall x\left(\neg \delta_{i}(x) \rightarrow \exists \mathrm{y}<\mathrm{x}+\mathrm{i} \neg \delta_{1-\mathrm{i}}(\mathrm{y})\right)$.
Then (i), (ii), (iii) are easily verified (cf. Lemma 1.3).
From (ii) and (iii) of Lemma 5 it follows that $T+\neg \psi_{i}+\psi_{1-\mathrm{i}} \vdash \neg \theta_{\mathrm{i}}$. Hence, assuming (2), $\mathrm{T}+\neg \psi_{\mathrm{i}} \vdash \neg \theta_{\mathrm{i}}$. It follows that $\mathrm{T} \vdash \theta_{0} \vee \theta_{1} \rightarrow \psi_{0} \vee \psi_{1}$ and so, by Lemma 5 (i), we get (1).

We now prove that if $\Gamma=\Sigma_{\mathrm{n}}$, then (2) does not imply (1).

Theorem 5．（a）There are Σ_{n} sentences ψ_{0}, ψ_{1} such that
（i） $\mathrm{T} \vdash \neg\left(\psi_{0} \wedge \psi_{1}\right)$ ，
（ii） $\mathrm{T} \mid+\psi_{0} \vee \psi_{1}$ ，
（iii）ψ_{i} is Π_{n}－conservative over $\mathrm{T}+\neg \psi_{1-\mathrm{i}}, \mathrm{i}=0,1$ ．
（b）Suppose X is r．e．and monoconsistent with T ．Then there are Σ_{n} sentences ψ_{0} ， Ψ_{1} such that（i）and（iii）hold and
（iv）$\psi_{0} \vee \psi_{1} \notin X$ ．

We derive this theorem from：

Lemma 6．Let X be an r．e．set．There are then Σ_{n} formulas $\xi_{0}(x)$ and $\xi_{1}(x)$ such that for $\mathrm{i}=0,1$ ，
（i）$T \vdash \neg\left(\xi_{0}(x) \wedge \xi_{1}(x)\right)$ ，
（ii）if $k \in X$ ，then $T \vdash \neg \xi_{i}(k)$ ，
（iii）if $\mathrm{k} \notin \mathrm{X}$ ，then $\xi_{\mathrm{i}}(\mathrm{k})$ is Π_{n}－conservative over $\mathrm{T}+\neg \xi_{1-\mathrm{i}}(\mathrm{k})$ ．
Proof．Let $\rho(x, y)$ be a PR formula such that $X=\{k$ ：$\exists \mathrm{mPA} \vdash \rho(k, m)\}$ ．For $i=0,1$ ，let $\xi_{\mathrm{i}}(\mathrm{x}), \chi_{\mathrm{i}}(\mathrm{x}), \delta_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$ be，respectively，$\Sigma_{\mathrm{n}}, \Sigma_{\mathrm{n}}$ and $\Pi_{\mathrm{n}-1}$ formulas such that
（1）\quad PA $\vdash \chi_{\mathrm{i}}(\mathrm{k}) \leftrightarrow \exists \mathrm{y}\left(\neg\left[\Pi_{\mathrm{n}}\right]\left(\xi_{\mathrm{i}}(\mathrm{k}), \mathrm{y}\right) \wedge \forall \mathrm{z} \leq \mathrm{y} \neg \rho(\mathrm{k}, \mathrm{z})\right)$ ，
（2）PAト $\chi_{i}(x) \leftrightarrow \exists y \delta_{i}(x, y)$ ，

$$
\xi_{\mathrm{i}}(\mathrm{x}):=\exists \mathrm{y}\left(\delta_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \wedge \forall \mathrm{z}<\mathrm{y}+\mathrm{i} \neg \delta_{1-\mathrm{i}}(\mathrm{x}, \mathrm{z})\right) .
$$

This application of（double）self－reference is more complicated than any we have encountered so far and it requires some thought to see that it is admissible．But in view of Fact 5 it is．
（i）is then clear．To prove（ii），suppose $k \in X$ ．Let m be such that
PAト $\rho(k, m)$ ．By Lemma 1 （ii），

$$
\mathrm{T}+\xi_{\mathrm{i}}(\mathrm{k}) \vdash \neg\left[\Pi_{\mathrm{n}}\right]\left(\xi_{\mathrm{i}}(\mathrm{k}), \mathrm{y}\right) \rightarrow \mathrm{m}<\mathrm{y} .
$$

So，by（1），
（3） $\mathrm{T}+\xi_{\mathrm{i}}(\mathrm{k}) \vdash \neg \chi_{\mathrm{i}}(\mathrm{k})$ ．
Also，by（2），PAト $\xi_{i}(x) \rightarrow \chi_{i}(x)$ ．Now（ii）follows from this and（3）．
Finally，to prove（iii），suppose $k \notin X$ ．Now suppose ψ is Π_{n} and

$$
T+\neg \xi_{1-\mathrm{i}}(\mathrm{k})+\xi_{\mathrm{i}}(\mathrm{k}) \vdash \psi .
$$

By（i），it follows that
（4）$T+\xi_{i}(k) \vdash \psi$ ．
But then，by Lemma 1 （iii），there is a q such that $T+\left[\Pi_{n}\right]\left(\xi_{i}(k), q\right) \vdash \psi$ ．Also
$\mathrm{T} \vdash \neg \rho(\mathrm{k}, \mathrm{m})$ for all m ．By（1），it now follows that $\mathrm{T}+\neg \psi \vdash \chi_{\mathrm{i}}(\mathrm{k})$ ．Thus，by（2），
$\mathrm{T}+\neg \psi \vdash \exists \mathrm{y} \delta_{\mathrm{i}}(\mathrm{k}, \mathrm{y})$ ．But then

$$
\mathrm{T}+\neg \psi+\neg \xi_{1-\mathrm{i}}(\mathrm{k}) \vdash \xi_{\mathrm{i}}(\mathrm{k}) .
$$

Combining this with（4）we get $\mathrm{T}+\neg \xi_{1-\mathrm{i}}(\mathrm{k}) \vdash \psi$ ．This proves（iii）．
Proof of Theorem 5．（a）follows from（b）．
（b）We may assume that if $\psi \in X$ and $T \vdash \psi \rightarrow \theta$ ，then $\theta \in X$ ．Let $\xi_{i}(x)$ be as in Lemma 6．Let φ be such that

PAト $\varphi \leftrightarrow \xi_{0}(\varphi) \vee \xi_{1}(\varphi)$.
Set $\psi_{\mathrm{i}}:=\xi_{\mathrm{i}}(\varphi)$. If $\varphi \in \mathrm{X}$, then, by Lemma 6 (ii), $\mathrm{T} \vdash \neg \xi_{\mathrm{i}}(\varphi)$ for $\mathrm{i}=0,1$, and so $\mathrm{T} \vdash \neg \varphi$, impossible. Thus, $\varphi \notin \mathrm{X}$ and so (iv) holds. (i) and (iii) follow from Lemma 6 (i) and (iii), respectively.

Theorem 5 (b) will be used in the proof of Theorem 7.7 (b), below. Note that, by Theorem 5 , Lemma 5 with Π_{n} replaced by Σ_{n} is false.

We can now partially improve Corollary 2.5 as follows:
Corollary 1. There are Σ_{n} sentences ψ_{0}, ψ_{1}, such that $\mathrm{T} \vdash \psi_{0} \rightarrow \neg \psi_{1}$ and there is no Δ_{n} sentence φ for which $\mathrm{T} \vdash \psi_{0} \rightarrow \varphi$ and $\mathrm{T} \vdash \varphi \rightarrow \neg \psi_{1}$.

Proof. Let ψ_{0}, ψ_{1} be as in Theorem 5 (a). Suppose φ is $\Delta_{\mathrm{n}}, \mathrm{T} \vdash \psi_{0} \rightarrow \varphi$, and $\mathrm{T} \vdash \varphi \rightarrow$ $\neg \psi_{1}$. Then $\mathrm{T} \vdash \neg \psi_{1} \rightarrow \varphi$ and $\mathrm{T} \vdash \neg \psi_{0} \rightarrow \neg \varphi$ and so $\mathrm{T} \vdash \psi_{0} \vee \psi_{1}$, a contradiction.

Let $\operatorname{Cons}(\Gamma, T)$ be the set of sentences Γ-conservative over T. It is clear from the definition of $\operatorname{Cons}(\Gamma, T)$ that it is a Π_{2}^{0} set. We now show that this classification is correct.

Our next lemma follows at once from Lemma 3.2 (b) but has a simpler direct proof which we leave to the reader.

Lemma 7. Let $R(k, m)$ be any r.e. relation. There are then formulas $\rho_{0}(x, y)$ and $\rho_{1}(x, y)$ such that $\rho_{0}(x, y)$ is $\Sigma_{1}, \rho_{1}(x, y)$ is $\Pi_{1}, \rho_{0}(x, y)$ numerates $R(k, m)$ in T, PAト $\rho_{0}(k, m) \rightarrow \rho_{1}(k, m)$, and if not $R(k, m)$, then $T \nmid \rho_{1}(k, m)$.

Theorem 6. (a) $\operatorname{Cons}(\Gamma, T)$ is a complete Π_{2}^{0} set.
(b) If $\Gamma \neq \Sigma_{1}$, then $\Gamma^{\mathrm{d}} \cap \operatorname{Cons}(\Gamma, T)$ is a complete Π_{2}^{0} set.

Proof. Let X be any Π_{2}^{0} set and let $R(k, m)$ be an r.e. relation such that $X=$
$\{\mathrm{k}: \forall \mathrm{mR}(\mathrm{k}, \mathrm{m})\}$. Let $\rho(\mathrm{x}, \mathrm{y})$ be a formula numerating $\mathrm{R}(\mathrm{k}, \mathrm{m})$ in T , which is Σ_{1} if $\Gamma=$ Σ_{n} and Π_{1} if $\Gamma=\Pi_{\mathrm{n}}$. Let $\xi(\mathrm{x})$ be as in (the proof of) Lemma 2 with $\chi(x, y):=\rho(x, y)$. To prove (a) it is now sufficient to show that
(1) $k \in X$ iff $\xi(k) \in \operatorname{Cons}(\Gamma, T)$.

By Lemma 2,
(2) $T+\xi(k) \vdash \rho(k, m)$,
(3) $T+\xi(k) \dashv_{\Gamma} T+\{\rho(k, q): q \in N\}$.

If $k \in X$, then $T \vdash \rho(k, q)$ for every q and so, by $(3), \xi(k) \in \operatorname{Cons}(\Gamma, T)$. If $k \notin X$, there is an m such that $T \nmid \rho(k, m)$ and so, by $(2), \xi(k) \notin \operatorname{Cons}(\Gamma, T)$ (in fact, $\xi(k)$ is not $\Sigma_{1}-$ or not Π_{1}-conservative over T, as the case may be). Thus, (1) holds.This proves (a). If Γ is Σ_{n} or Π_{n} with $\mathrm{n} \geq 2$, then $\xi(\mathrm{x})$ is Γ^{d} as claimed in (b). Finally, suppose $\Gamma=$ Π_{1}. Let $\rho_{0}(x, y)$ and $\rho_{1}(x, y)$ be as in Lemma 7. Let $\rho(x, y):=\rho_{0}(x, y)$. Then $\xi(x)$ is Σ_{1}. By Lemma $7, \xi(k) \notin \operatorname{Cons}\left(\Pi_{1}, T\right)$ if $k \notin X$. Thus, (b) holds in this case, too.

Suppose T is Σ_{1}-sound and θ is Π_{1}. Then θ is Σ_{1}-conservative over T iff θ is true. Thus, $\Pi_{1} \cap \operatorname{Cons}\left(\Sigma_{1}, T\right)$ is Π_{1}^{0}.

We conclude this chapter with a proof of Theorem 4.8. We derive this result from the following lemma; a refinement of this lemma (for $n=1$) will be proved in Chapter 7 (Lemma 7.22).

Lemma 8. There is a Π_{n} formula $\xi(x)$ such that for every k,
(i) $\mathrm{T} \nmid \Leftarrow(\mathrm{k})$,
(ii) $\mathrm{T} \vdash \xi(\mathrm{k}+1) \rightarrow \xi(\mathrm{k})$,
(iii) $\quad \xi(\mathrm{k})$ is Σ_{n}-conservative over $\mathrm{T}+\neg \xi(\mathrm{k}+1)$.

Proof. In a first attempt to prove Lemma 8 it is natural to let $\xi(x)$ be such that $\operatorname{PA} \vdash \xi(\mathrm{k}) \leftrightarrow \xi(\mathrm{k}+1) \vee \forall \mathrm{v}\left(\left[\Sigma_{\mathrm{n}}\right](\neg \xi(\mathrm{k}+1) \wedge \xi(\mathrm{k}), \mathrm{v}) \rightarrow \neg \operatorname{Prf}_{\mathrm{T}}(\xi(\mathrm{k}), \mathrm{v})\right)$.
But then (i) does not follow and so we have to proceed in a more indirect way.
Let $\delta(u)$ be any formula. Let $\kappa(z, x, y)$ be a Π_{n} formula such that
(1) PAト $\neg \mathrm{K}(z, x, 0)$,
(2) $\quad \operatorname{PA} \vdash(\delta, \mathrm{k}, \mathrm{y}+1) \leftrightarrow \kappa(\delta, \mathrm{k}+1, \mathrm{y}) \vee \forall \mathrm{v}\left(\left[\Sigma_{\mathrm{n}}\right]\left(\neg \eta_{\delta}(\mathrm{k}) \wedge \xi_{\delta}(\mathrm{k}), \mathrm{v}\right) \rightarrow \neg \operatorname{Prf}_{\mathrm{T}}\left(\xi_{\delta}(\mathrm{k}), \mathrm{v}\right)\right)$,
where

$$
\begin{aligned}
& \xi_{\delta}(\mathrm{x}):=\forall \mathrm{u}(\delta(\mathrm{u}) \rightarrow \kappa(\delta, \mathrm{x},(\mathrm{u} \dot{-x})+1)), \\
& \eta_{\delta}(\mathrm{x}):=\forall \mathrm{u}(\delta(\mathrm{u}) \rightarrow \kappa(\delta, \mathrm{x}+1, \mathrm{u} \dot{\mathrm{x}})) .
\end{aligned}
$$

(- is the function such that $\mathrm{k} \cdot \mathrm{m}=\mathrm{k}-\mathrm{m}$ if $\mathrm{k} \geq \mathrm{m}$ and $=0$ otherwise.) In (2) set $\mathrm{y}=$ $u \div k$. Then, since neither y nor u is free in the second disjunct of (2), by predicate logic, we get
(3) $\quad \operatorname{PA} \vdash \xi_{\delta}(\mathrm{k}) \leftrightarrow \eta_{\delta}(\mathrm{k}) \vee \forall \mathrm{v}\left(\left[\Sigma_{\mathrm{n}}\right]\left(\neg \eta_{\delta}(\mathrm{k}) \wedge \xi_{\delta}(\mathrm{k}), \mathrm{v}\right) \rightarrow \neg \operatorname{Prf}_{\mathrm{T}}\left(\xi_{\delta}(\mathrm{k}), \mathrm{v}\right)\right)$.

It follows that
(4) if $\mathrm{T} \vdash \xi_{\delta}(\mathrm{k})$, then $\mathrm{T} \vdash \eta_{\delta}(\mathrm{k})$.

For let p be a proof of $\xi_{\delta}(\mathrm{k})$ in T. By Lemma 1 (ii),

$$
\mathrm{T}+\neg \eta_{\delta}(\mathrm{k}) \wedge \xi_{\delta}(\mathrm{k}) \vdash \neg \operatorname{Prf}_{\mathrm{T}}\left(\xi_{\delta}(\mathrm{k}), \mathrm{p}\right)
$$

whence $T+\xi_{\delta}(\mathrm{k}) \vdash \eta_{\delta}(\mathrm{k})$ and so $\mathrm{T} \vdash \eta_{\delta}(\mathrm{k})$.
Clearly
(5) if $\mathrm{T} \vdash \delta(\mathrm{u}) \rightarrow \mathrm{u}>\mathrm{k}$, then $\mathrm{T} \vdash \eta_{\delta}(\mathrm{k}) \leftrightarrow \xi_{\delta}(\mathrm{k}+1)$.

Suppose now $\delta(\mathrm{u})$ is PR. Then
(6) if $\exists \mathrm{u} \delta(\mathrm{u})$ is true, then $\mathrm{T} \nvdash \xi_{\delta}(0)$.

Suppose $\exists \mathrm{u} \delta(\mathrm{u})$ is true and $\mathrm{T} \vdash \xi_{\delta}(0)$. Let m be the least number such that $\delta(\mathrm{m})$ is true. Then $\mathrm{T} \vdash \delta(\mathrm{u}) \rightarrow \mathrm{u} \geq \mathrm{m}$. By (4) and (5), it follows that $\mathrm{T} \vdash \eta_{\delta}(\mathrm{m})$. But also $\mathrm{T} \vdash$ $\delta(\mathrm{m})$ and so, by (1), Tト $\neg \eta_{\delta}(\mathrm{m})$, a contradiction. Thus, (6) is proved.

Now let $\delta^{\prime}(\mathrm{u})$ be a PR formula such that
(7) $\quad \operatorname{PA} \vdash \exists \mathrm{u} \delta^{\prime}(\mathrm{u}) \leftrightarrow \operatorname{Pr}_{\mathrm{T}}\left(\xi_{\delta^{\prime}}(0)\right)$.

If $\exists \mathrm{u} \delta^{\prime}(\mathrm{u})$ is true, then, by $(6), \operatorname{Pr}_{\mathrm{T}}\left(\xi_{\delta^{\prime}}(0)\right)$ is false and, by (7), it is true. Thus, $\exists \mathrm{u} \delta^{\prime}(\mathrm{u})$ is false, whence, by $(7), \operatorname{Pr}_{\mathrm{T}}\left(\xi_{\delta^{\prime}}(0)\right)$ is false and so $\mathrm{T} \mid \forall \xi_{\delta^{\prime}}(0)$.

Let $\xi(x):=\xi_{\delta^{\prime}}(x)$ and $\eta(x):=\eta_{\delta^{\prime}}(x)$. Then TH $\xi(0)$. Hence, by (3) and (5) with $\delta(u)$ $:=\delta^{\prime}(u)$, we get (i) and (ii).
(iii) can be verified as follows. Suppose
(8) $\mathrm{T}+\neg \xi(\mathrm{k}+1)+\xi(\mathrm{k}) \vdash \sigma$,
where σ is Σ_{n}. Then, by (5), $\mathrm{T}+\neg \eta(\mathrm{k})+\xi(\mathrm{k}) \vdash \sigma$. Hence, by Lemma 1 (iii), there is a q such that

$$
\mathrm{T}+\left[\Sigma_{\mathrm{n}}\right](\neg \eta(\mathrm{k}) \wedge \xi(\mathrm{k}), \mathrm{q}) \vdash \sigma .
$$

But then, by (i), (3), and Lemma $1(\mathrm{i}), \mathrm{T}+\neg \sigma \vdash \xi(\mathrm{k})$, whence $\mathrm{T}+\neg \xi(\mathrm{k}) \vdash \sigma$ and so, by (8), $T+\neg \xi(k+1) \vdash \sigma$, proving (iii).

Proof of Theorem 4.8. Let $\xi(\mathrm{x})$ be as in Lemma 8. By Lemma 8 (i) and (iii), T $\mid \nmid(k)$ $\rightarrow \xi(\mathrm{k}+1)$. It follows that $\mathrm{T}+\xi(0)+\{\xi(\mathrm{k}) \rightarrow \xi(\mathrm{k}+1): \mathrm{k} \in \mathrm{N}\}$ is an axiomatization of T $+\{\xi(\mathrm{k}): \mathrm{k} \in \mathrm{N}\}$ which is irredundant over T . Let $\pi_{\mathrm{k}}, \mathrm{k} \in \mathrm{N}$, be Π_{n} sentences such that $\mathrm{T}+\left\{\pi_{\mathrm{k}}: \mathrm{k} \in \mathrm{N}\right\}$ is an axiomatization of $\mathrm{T}+\{\xi(\mathrm{k}): \mathrm{k} \in \mathrm{N}\}$. Let r be arbitrary. By Lemma 8 (ii), there is an m such that $T+\xi(m) \vdash \pi_{r}$. Let s be such that $T+\pi_{0} \wedge \ldots \wedge \pi_{s} \vdash \xi(\mathrm{~m}+1)$. We may assume that $s>r$. It follows that

$$
\mathrm{T}+\xi(\mathrm{m}) \wedge \neg \xi(\mathrm{m}+1) \vdash \neg\left(\pi_{0} \wedge \ldots \wedge \pi_{\mathrm{r}-1} \wedge \pi_{\mathrm{r}+1} \wedge \ldots \wedge \pi_{\mathrm{s}}\right)
$$

But then, by Lemma 8 (iii),

$$
\mathrm{T}+\pi_{0} \wedge \ldots \wedge \pi_{\mathrm{r}-1} \wedge \pi_{\mathrm{r}+1} \wedge \ldots \wedge \pi_{\mathrm{s}} \vdash \xi(\mathrm{~m}+1)
$$

It follows, by Lemma 8 (ii), that $T+\left\{\pi_{k}: k \neq r\right\} \vdash \pi_{r}$. Thus, $T+\left\{\pi_{k}: k \in N\right\}$ is not irredundant over T.

We have actually proved more than is stated in Theorem 4.8. First of all, for every $\mathrm{r}, \mathrm{T}+\left\{\pi_{\mathrm{k}}: \mathrm{k} \neq \mathrm{r}\right\} \vdash \pi_{\mathrm{r}}$; in fact, for every $\mathrm{m}, \mathrm{T}+\left\{\pi_{\mathrm{k}}: \mathrm{k}>\mathrm{m}\right\} \vdash \pi_{\mathrm{r}}$. Secondly, this holds for all, not necessarily r.e., sets $\left\{\pi_{\mathrm{k}}: \mathrm{k} \in \mathrm{N}\right\}$ of Π_{n} sentences such that $\mathrm{T}+\left\{\pi_{\mathrm{k}}\right.$: $k \in N\} \nvdash T+\{\xi(k): k \in N\}$. The theory $T+\{\eta(k)$: $k \in N\}$ constructed in the proof of Theorem 4.7, on the other hand, is deductively equivalent to $T+\{\eta(k): k \notin H\}$ and $\{\eta(k): k \notin H\}$ is irredundant over T. (The set $\{\eta(k): k \notin H\}$ is not r.e. (cf. Lemma 4.6).)

Exercises for Chapter 5.

In the following exercises we assume that $\mathrm{PA} \uparrow \mathrm{T}$.

1. Let θ be a Π_{1} Rosser sentence for T. Show that $\neg \theta$ is not Π_{1}-conservative over T (compare Exercise 2 (c)).
2. Suppose T is not Σ_{1}-sound.
(a) Show that $\mathrm{Con}_{\mathrm{T}}$ is not Σ_{1}-conservative over T. [Hint: Let $\delta(\mathrm{y})$ be a PR formula such that $\exists \mathrm{y} \delta(\mathrm{y})$ is false and provable in T. Let χ be as in Exercise 2.21. Then $\mathrm{T} \mid \downarrow \chi$ and $\mathrm{T}+\neg \chi \vdash \operatorname{Pr}_{\mathrm{T}}(\chi) \wedge \operatorname{Pr}_{\mathrm{T}}(\neg \chi)$.]
(b) Improve (a) by showing that if $\mathrm{T} \forall \neg \mathrm{Con}_{\mathrm{T}}$, there is a Σ_{1} sentence σ such that $\mathrm{T}+\mathrm{Con}_{\mathrm{T}} \vdash \operatorname{Pr}_{\mathrm{T}}(\sigma)$ and $\mathrm{T} \nmid \operatorname{Pr}_{\mathrm{T}}(\sigma)$.
(c) Improve (a) by showing that if θ is a Π_{1} Rosser sentence for T, θ is not Σ_{1}-conservative over T. [Hint: Let $\psi:=\exists u\left(\operatorname{Prf}_{\mathrm{T}}(\neg \theta, \mathrm{u}) \wedge \forall \mathrm{z} \leq \mathrm{u} \neg \operatorname{Prf}_{\mathrm{T}}(\theta, \mathrm{z})\right)$. $\mathrm{T}+\neg \psi$ is consistent. $\mathrm{T}+\neg \psi+\theta \vdash \mathrm{Con}_{\mathrm{T}+\neg \theta}$ and $\mathrm{T}+\neg \theta \vdash \neg \psi$. Thus, $\mathrm{T}+\neg \psi+\theta \vdash \mathrm{Con}_{\mathrm{T}+\neg \psi}$. Apply (a) to $T+\neg \psi$.]
3. Show that the result of replacing Σ_{n} by Π_{n} in Corollary 1 is false.
4. φ is a self-prover in T if $\mathrm{T} \vdash \varphi \rightarrow \operatorname{Pr}_{\mathrm{T}}(\varphi)$. Every Σ_{1} sentence is a self-prover.
(a) Show that φ is a self-prover in T iff there is a sentence θ such that
$\mathrm{T} \vdash \varphi \leftrightarrow\left(\theta \wedge \operatorname{Pr}_{\mathrm{T}}(\theta)\right)$.
(b) Show that for every $\mathrm{n}>0$, there is a $\Sigma_{\mathrm{n}}\left(\Pi_{\mathrm{n}+1}\right)$ self-prover in T which is not $\Pi_{n}^{T}\left(\Sigma_{n+1}^{\mathrm{T}}\right)$.
5. (a) Show that Lemma 2 (ii) can be replaced by if $P A \dashv S \dashv T$, then $S+\xi(k) \dashv_{\Gamma} S+\{\chi(k, q): q \in N\}$.
(b) φ is hereditarily Γ-conservative over T if φ is Γ-conservative over S for every S such that $\mathrm{PA} \dashv \mathrm{S} \dashv \mathrm{T}$. Show that in Lemma 3 and Theorem 2 we can replace " Γ^{d}-conservative over T " by "hereditarily Γ^{d}-conservative over T ".
(c) Show that in Theorem 3 we cannot in general replace " Γ - (Γ^{d}) conservative" by "hereditarily $\Gamma-\left(\Gamma^{\mathrm{d}}\right)$ conservative". [Hint: Let φ be a Σ_{1} sentence and ψ a Π_{1} sentence such that $\mathrm{PA}+\varphi \wedge \psi$ is consistent and $\operatorname{PA} \nvdash \varphi \vee \psi$. Let $T=P A+\varphi \wedge \psi$.]
6. (a) Show that there are sentences φ and ψ such that, $T+\varphi \ngtr \psi, T+\psi \nvdash \varphi, \varphi$ is Π_{n}-conservative over $\mathrm{T}+\psi$, and ψ is Σ_{n}-conservative over $\mathrm{T}+\varphi$.
(b) Improve (a) by showing that there are sentences φ and ψ as in (a) such that φ is Σ_{n} and ψ is Π_{n}. [Hint: Let
$\mathrm{T} \vdash \varphi \leftrightarrow \exists \mathrm{z}\left(\neg\left[\Pi_{\mathrm{n}}\right]_{\mathrm{T}+\psi}(\varphi, \mathrm{z}) \wedge \forall \mathrm{u} \leq \mathrm{z} \neg \operatorname{Prf}_{\mathrm{T}}(\varphi, \mathrm{u})\right)$,
$\mathrm{T} \vdash \psi \leftrightarrow \forall \mathrm{z}\left(\left[\Sigma_{\mathrm{n}}\right]_{\mathrm{T}+\varphi}(\psi, \mathrm{z}) \rightarrow \neg \operatorname{Prf}_{\mathrm{T}}(\psi, \mathrm{z})\right)$.
Use Exercise 5 (b).]
7. Show that there are Σ_{n} sentences ψ_{0}, ψ_{1} as in Theorem 5 satisfying the additional condition that $\neg \psi_{\mathrm{i}}$ is Σ_{n}-conservative over $\mathrm{T}, \mathrm{i}=0,1$.
8. (a) S is a proper Γ-subtheory of T if $S \vdash_{\Gamma} T A_{\Gamma} S$. Suppose $A \dashv B A_{\Pi_{1}} A$. Show that there is a sentence χ such that A is a proper Π_{1}-subtheory of $A+\chi^{i}$ and $A+\chi^{i} \dashv_{\Gamma}$ $B, i=0,1$.
(b) Show that there are sentences φ_{0}, φ_{1} such that $\varphi_{0}, \varphi_{1}, \neg \varphi_{0} \vee \neg \varphi_{1}$ are Γ-conservative over T and $\neg \varphi_{0}, \neg \varphi_{1}, \varphi_{0} \wedge \varphi_{1}$ are not Π_{1}-conservative over T. [Hint: Use Lemma 4.]
9. (a) Show that there is a Δ_{n+1} sentence φ such that φ and $\neg \varphi$ are Π_{n}-conservative over T. [Hint: Let φ be such that

PAト $\varphi \leftrightarrow \exists y\left(\neg\left[\Pi_{n}\right](\varphi, y) \wedge \forall z<y\left[\Pi_{n}\right](\neg \varphi, z)\right)$.]
(b) Show that if T is Σ_{n}-sound, there is no Δ_{n+1} sentence φ such that φ and $\neg \varphi$ are Σ_{n}-conservative over T.
(c) Show that there is no B_{n} sentence φ such that φ and $\neg \varphi$ are $\Pi_{n}-\left(\Sigma_{n}{ }^{-}\right)$conservative over T. Conclude that there is a Δ_{n+1} sentence which is not B_{n}^{T} (compare Corollary 2.5). [Hint: Suppose not. Let $\varphi:=\left(\pi_{0} \wedge \sigma_{0}\right) \vee \ldots \vee\left(\pi_{n} \wedge \sigma_{n}\right)$. In the Π_{n} case, for $k \leq n+1$, show that
$\mathrm{T} \vdash \vee\left\{\widehat{\mathrm{j} \in \mathrm{X}}_{\wedge}^{\mathrm{X}} \neg \sigma_{\mathrm{j}}: \mathrm{X} \subseteq\{0, \ldots, \mathrm{n}\}\right.$ \& X has exactly k elements $\left.\}.\right]$
10. Let X_{0} and X_{1} be disjoint r.e. sets.
(a) Show that there is a Σ_{n} formula $\xi(x)$, such that $\xi^{i}(x)$ numerates X_{i} in $T, i=0$, 1 , and if $k \notin X_{0} \cup X_{1}$, then $\xi(k)$ is Π_{n}-conservative over T and $\neg \xi(k)$ is Σ_{n}-conservative over T.
(b) Show that there is a formula $\xi(x)$ such that (i) if $k \in X_{0}$, then $T \vdash \xi(k)$, (ii) if $k \in X_{1}$, then $T \vdash \neg \xi(k)$, (iii) if Y_{0} and Y_{1} are any disjoint finite subsets of $\left(X_{0} \cup X_{1}\right)^{c}$, then $\wedge\left\{\xi(k): k \in Y_{0}\right\} \wedge \wedge\left\{\neg \xi(k): k \in Y_{1}\right\}$ is Γ-conservative over T. [Hint: First define a formula $\eta(k)$ such that all the sentences $(\neg) \eta(0) \wedge \ldots \wedge(\neg) \eta(k)$ are Γ-conservative over T. Then let $\xi(x):=\left(\xi_{0}(x) \vee \eta(x)\right) \wedge \neg \xi_{1}(x)$ for suitable $\xi_{0}(x), \xi_{1}(x)$.]
11. (a) Let X and Y be r.e. sets of Γ and Γ^{d} sentences, respectively, such that if $\varphi \in X$ and $\psi \in \mathrm{Y}$, then $\mathrm{T} \vdash \varphi \vee \psi$. Show that there is a Γ sentence θ such that $\mathrm{T}+\theta$ is a Γ^{d}-conservative extension of $\mathrm{T}+\mathrm{X}$ and $\mathrm{T}+\neg \theta$ is a Γ-conservative extension of T +Y .
(b) Let $\theta_{0}, \theta_{1}, \theta_{2}, \ldots$ be a recursive sequence of Γ sentences such that $\mathrm{T} \vdash$ $\neg\left(\theta_{\mathrm{k}} \wedge \theta_{\mathrm{m}}\right)$ for $\mathrm{k} \neq \mathrm{m}$. Let X_{0} and X_{1} be disjoint r.e. sets. Show that there is a sentence φ such that $X_{0}=\left\{\mathrm{k}\right.$: $\left.\mathrm{T} \vdash \theta_{\mathrm{k}} \rightarrow \varphi\right\}$ and $\mathrm{X}_{1}=\left\{\mathrm{k}\right.$: $\left.\mathrm{T} \vdash \theta_{\mathrm{k}} \rightarrow \neg \varphi\right\}$.
12. Suppose T is not Σ_{1}-sound. Show that $\Pi_{1} \cap \operatorname{Cons}\left(\Sigma_{1}, T\right)$ is a complete Π_{2}^{0} set. [Hint: Let $R(k, m)$ and $S(k, m, n)$ be an re. and a primitive recursive relation such that $X=\{\mathrm{k}: \forall \mathrm{mR}(\mathrm{k}, \mathrm{m})\}$ and $\mathrm{R}(\mathrm{k}, \mathrm{m})$ iff $\exists \mathrm{nS}(\mathrm{k}, \mathrm{m}, \mathrm{n})$. Let $\sigma(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be a PR binumeration of $S(k, m, n)$. Let $\gamma(x)$ be a PR formula such that $\exists x \gamma(x)$ is false and provable in T. Let $\rho_{0}(x, y), \rho_{1}(x, y)$, and $\delta(x, y, z)$ be such that

$$
\begin{aligned}
& \text { PAト } \rho_{0}(x, y) \leftrightarrow \forall z\left(\operatorname{Prf}_{\mathrm{T}}\left(\rho_{1}(\dot{\mathrm{x}}, \dot{\mathrm{y}}), \mathrm{z}\right) \rightarrow \exists \mathrm{u} \leq \mathrm{z} \sigma(\mathrm{x}, \mathrm{y}, \mathrm{u})\right), \\
& \rho_{0}(\mathrm{x}, \mathrm{y}):=\forall \mathrm{z} \mathrm{\delta}(\mathrm{x}, \mathrm{y}, \mathrm{z}), \\
& \rho_{1}(\mathrm{x}, \mathrm{y}):=\exists \mathrm{z}(\gamma(\mathrm{z}) \wedge \forall \mathrm{u} \leq \mathrm{z} \delta(\mathrm{x}, \mathrm{y}, \mathrm{z})) .
\end{aligned}
$$

Then
$\mathrm{T} \vdash \rho_{0}(x, y) \rightarrow \rho_{1}(x, y)$, if $R(k, m)$, then $T \vdash \rho_{0}(k, m)$, if not $R(k, m)$, then $T \mid+\rho_{1}(k, m)$.]
13. (a) Let $\mathrm{HCons}(\Gamma, T)$ be the set of sentences hereditarily Γ-conservative over T. Suppose $\Gamma \neq \Sigma_{1}$. Show that $\Gamma^{\mathrm{d}} \cap \operatorname{HCons}(\Gamma, T)$ is a complete Π_{2}^{0} set.
(b) Show that $\Gamma^{\mathrm{d}} \cap \operatorname{Cons}(\Gamma, \mathrm{T}) \cap\left\{\varphi: \neg \varphi \in \operatorname{Cons}\left(\Gamma^{\mathrm{d}}, \mathrm{T}\right)\right\}$ is a complete Π_{2}^{0} set.
(c) Show that

$$
\Sigma_{\mathrm{n}} \times \Sigma_{\mathrm{n}} \cap\left\{\left\langle\varphi_{0}, \varphi_{1}\right\rangle: \varphi_{\mathrm{i}} \in \operatorname{Cons}\left(\Pi_{\mathrm{n}}, \mathrm{~T}+\neg \varphi_{1-\mathrm{i}}\right), \mathrm{i}=0,1\right\}
$$

is a complete Π_{2}^{0} set.
14. (a) Suppose φ is Σ_{n}, and Π_{n}-conservative over T. Let ψ be any Π_{n} sentence which is Σ_{n}-conservative over $T+\varphi$. Show that $T+\neg \varphi \vdash \psi$. Conclude that no Π_{n} sentence is nontrivially Σ_{n}-conservative over $\mathrm{T}+\varphi$ and $\mathrm{T}+\neg \varphi$. [Hint: Let $\varphi:=$ $\exists x \gamma(x)$ and $\psi:=\forall x \delta(x)$, where $\gamma(x)$ and $\delta(x)$ are Π_{n-1} and Σ_{n-1}, respectively. Then T $+\varphi+\psi \vdash \exists x(\gamma(x) \wedge \forall y \leq x \delta(y))$.
(b) Show that there is an r.e. family of consistent extensions of PA such that for no Γ does there exist a Γ sentence which is nontrivially Γ^{d}-conservative over every member of the family. [Hint: Let φ be a Π_{1} sentence undecidable in PA. Then

$$
\{\mathrm{PA}+\neg \theta: \mathrm{PA} \vdash \theta \rightarrow \varphi\} \cup\{\mathrm{PA}+\theta: \mathrm{PA} \vdash \varphi \rightarrow \theta\}
$$

is an r.e. family of extensions of PA. Suppose θ is Π_{n} and nontrivially Σ_{n}-conservative over all members of this family. Then $\mathrm{PA}+\varphi \nvdash \theta . \theta$ is Σ_{n}-conservative over T $+\neg(\theta \wedge \varphi)$. It follows that PA $+\varphi \vdash \theta$, a contradiction. The dual case is similar.]
15. This exercise may be compared with Theorems 2.13, 2.14.
(a) For each Γ, there is a primitive recursive function f such that for every Γ sentence $\varphi, \mathrm{f}(\varphi)$ is a proof in PA of $\varphi \leftrightarrow \operatorname{Tr}_{\Gamma}(\varphi)$. Use this to show that there is a Γ sentence θ and a primitive recursive function $g(k)$ such that θ is Γ^{d}-conservative over T and if ψ is any Γ^{d} sentence and q a proof of ψ in $T+\theta$, then $\mathrm{g}(\mathrm{q})$ is a proof of ψ in T .
(b) Let f be any recursive function. Show that there are sentences φ, ψ such that φ is Γ-conservative over T, ψ is $\Gamma, T \vdash \psi$, and there is a proof p of ψ in $T+\varphi$ such that $q>f(p)$ for every proof q of ψ in T.

Notes for Chapter 5.

The general concept Γ-conservative is due to Guaspari (1979). Theorem 1 is due to Kreisel (1962). Lemma 2 is due to Lindström (1984a). Lemma 3 and Theorem 2 with $X=\mathrm{Th}(\mathrm{T})$ are due to Guaspari (1979); for somewhat stronger results, also due to Guaspari (1979), see Exercise 5 (b). The proofs of Lemma 3 and Theorem 2 are from Lindström (1984a). Lemma 4 is due to Lindström (1984a). (Lemmas 2 and 4 and their proofs are similar to and were inspired by results of Guaspari (1979), Solovay (cf. Guaspari (1979)), and Hájek (1971); for further applications, see e.g. Hájek and Pudlák (1993).) Theorem 3 less the references to the set X is due to Solovay (cf. Guaspari (1979); see also Jensen and Ehrenfeucht (1976); the full result is proved in Smoryński (1981a) and Lindström (1984a). The formula $\operatorname{Prf}^{\prime}{ }_{\mathrm{T}, \Gamma}(\mathrm{x}, \mathrm{y})$ was introduced by Smoryński (1981a); (Sm) and the fixed point mentioned in Exercise 3.7 (a) are special cases of a very general construction due to Smoryński (1981a); however, in the proof of his main theorem Smoryński has to assume that the formulas $\chi_{i}(x, y)$ are PR. Theorem 4 is due to Lindström (1984a). Lemma 6 and Theorem 5 are due to Bennet (1986), (1986a). Corollary 1 with Σ_{n} replaced by Π_{n} is false (Exercise 3). Theorem 6 for $\Gamma=\Pi_{1}$ and for $\Gamma=\Pi_{n+1}$ are essentially due to Solovay (cf. Hájek (1979)) and Hájek (1979), respectively, (in both cases with different proofs);

Theorem 6 for $\Gamma=\Sigma_{\mathrm{n}}, \mathrm{n}>1$, is due to Quinsey (1980), (1981) (with a different proof); the present proof is due to Lindström (1984a). For more information on Cons(Γ, T) and related sets, see Exercises 12 and 13. Lemma 8 is due to Lindström (1993); Lemma 8 with Π_{n} and Σ_{n} interchanged and restricted to Σ_{n}-sound theories is also true but the proof is quite different.

An alternative concept of partial conservativity has been introduced and studied by Hájek (1984).

Exercise 2 (a) is due to Smoryński (1980); Exercise 2 (c) is due to Švejdar (cf. Hájek and Pudlák (1993)). Exercise 4 is due to Kent (1973). Exercise 5 (b) is due to Guaspari (1979). Exercise 7 is due to Bennet (1986). Exercise 10 (a) is due to Smoryński (1981a). Exercise 12 is due to Quinsey (1981); the suggested proof is due to Bennet. Exercise 13 (c) is due to Bennet (1986). Exercise 14 is due to Misercque (1983).

