
3. NUMERATIONS OF R.E. SETS

Any set numerated in T is r.e. The question arises if the converse of this is true, in

other words, if every r.e. set can be numerated in T. If T is Σ j-sound, then, of

course, the answer is "yes" (Corollary 1.4). If T is not Σ1-sound, the answer is still

"yes" although this is not so obvious. This is the first and most important result of

this chapter. We also prove some refinements of this result.

Beginning in this chapter we omit most references to the Lemmas, Facts, and

Corollaries of Chapter 1. To avoid too much repetition, proofs are sometimes left to

the reader.

§1. Numerations of r.e. sets. Let X be any r.e. set. Our first task is to show that X

can be numerated in T even if T is not Σ1-sound. We have already solved a similar

problem in generalizing GδdeΓs incompleteness theorem to non Σ^-sound theories

(Theorem 2.2). A similar construction will suffice for our present problem.

Theorem 1. Let X be any r.e. set. There is then a Σ^ (Π^) formula ξ(x) which numer-

ates X in T.

Proof. There is a primitive recursive relation R(k,m) such that X = (k: 5mR(k,m)}.

Let p(x,y) be a PR binumeration of R(k,m). Let ξ(x) be such that

(1) Qh ξ(k) ~ 3y(p(k,y) A Vz<y-Prfτ(ξ(k),z)).

Then ξ(x) is ΣI We are going to show that ξ(x) numerates X in T.

Suppose first ke X. There is then an m such that

(2) Qh p(k,m).

Now, for reductio ad absurdum, suppose T(/ ξ(k). Then Qh ->Prfτ(ξ(k),p) for every p.

It follows that

(3) Qh Vz<m-Prfτ(ξ(k),z).

Combining (2) and (3) we get

Qh 3y(p(k,y) A Vz<y-Prfτ(ξ(k),z)).

But then, by (1), Qh ξ(k) and so Th ξ(k) and we have reached the desired contra-

diction. Thus, Th ξ(k).

Next suppose Th ξ(k). Let p be a proof of ξ(k) in T. Then Qh Prfτ(ξ(k),p) and so

(4) Qh Vz<y-Prfτ(ξ(k),z) -* y < p.

Suppose k£X. Then Qh -ιp(k,m) for every m. It follows that

(5) Qh -3y<pp(k,y).

Combining (4) and (5) we get

Qh -3y(p(k,y) A Vz<y-Prfτ(ξ(k),z)),

whence, by (1), Qh - ξ(k) and so Th ~»ξ(k), impossible. Thus, keX and we have

shown that ξ(x) numerates X in T.
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Next let ξ(x) be such that

Qh ξ(k) <-> Vy(Prfτ(ξ(k),y) -> Ξz<yp(k,z)).

Then ξ(x) is Πj. We leave the proof that ξ(x) numerates X in T to the reader.

Let us say that ξ(x) correctly numerates X in Ί if ξ(x) numerates X in T and for

every k, Th ξ(k) iff ξ(k) is true. We can partially improve Theorem 1 as follows.

Theorem l'. The Σ± formula ξ(x) defined in the proof of Theorem 1 numerates X

correctly in T.

Proof. If ξ(k) is true, then Th ξ(k), since ξ(x) is Σlβ Conversely, suppose Th ξ(k). Let

p be the least proof of ξ(k) in T. Then (4) holds. Suppose there is no m < p such that

R(k,m). Then (5) follows and so, as before, we get Th -»ξ(k), which is impossible.

Thus, there is an m < p such that R(k,m). But then p(k,m) is true. Also, p being min-

imal, Vz<m- Prfτ(ξ(k),z) is true. It follows that

ay(p(k,y)AVz<y-Prfτ(ξ(k),z))

is true and so, by (1), ξ(k) is true, as desired.

Note that if X is numerated correctly in T by a Γ^ formula, then X is recursive.

The following strengthening of Theorem 1 is occasionally useful.

Lemma 1. Suppose X and Y are r.e. and Y is monoconsistent with Q. There is then

a Σ! (U^ formula ξ(x) such that for every k, if ke X, then Qh ξ(k) and if k<£ X, then

The proof is again left to the reader. Lemma 1 also follows from Lemma 2 (a),

below.

We now ask if there are (Σ1) formulas ξ(x) which not only numerate X in T but

also satisfy additional conditions in terms of provability or nonprovability of

(propositional combinations of) sentences of the form ξ(k) with kg X. The follow-

ing result is a first step in that direction.

Theorem 2. Let X0 and X± be disjoint r.e. sets. There is then a ΣI formula ξ(x) such

that ξ(x) numerates XQ in T and - ξ(x) numerates X1 in T.

Proof. Let R^m) be a primitive recursive relation such that Xi = {k:

i = 0, 1. Let Pi(x,y) be a PR Enumeration of R^m). Let ξ(x) be such that

(1) Qh ξ(k) ~ 3y((Po(k,y) v Prfτ(-ξ(k),y)) A Vz<y(-Pl(k,z) A -Prfτ(ξ(k),z))).

We show that ~ ξ(x) numerates X^ in T; the proof that ξ(x) numerates XQ in T is sim-

ilar and is left to the reader.

Suppose first ke\ι and, for reductio ad absurdum, ΊV - ξ(k). Then there is an m

such that Th p^m) and Th - Prfτ(-ιξ(k),p) for all p. Also kg X0 and so Th - p0(k,n)

for all n. It follows that

-» y < m,
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Th -πay<m((p0(k,y) v Prfτ(-ξ(k),y)).
But then, by (1), Th -ιξ(k), contrary to assumption. Thus, Th - ξ(k).

Next suppose Th ->ξ(k) and let p be such that Th Prfτ(-ιξ(k),p). We also have

and TV ξ(k) and so Th -.Prfτ(ξ(k),m) for all m. Suppose now keX^ Then Th

-ip^m) for all m. It follows that

Th Prfτ(-ξ(k),p) Λ Vz<p(-Pl(k,y) Λ -Prfτ(ξ(k),z)).

But then, by (1), Th ξ(k), impossible. Thus, keX^

One aspect of the above question is to ask to what extent results on numerations

of r.e. sets can be combined with results on independent formulas. For example,

does there exist a (Σα) formula ξ(x) which numerates X in T and is independent on

χc (= N - X) over T in the sense that the only propositional combinations of sen-

tences ξ(k), with kG Xc, provable in T are the tautologies? We now show that the

answer is affirmative.
To prove this we need part (a) of the following lemma; Lemma 2 (b) will be

needed later, in the proof of Theorem 7.13.

Lemma 2. Suppose X and Y are r.e. and Y is monoconsistent with Q.

(a) There is then a Σj (Πj) formula ξ(x) numerating X in Q and such that

(*) for every finite subset X' of Xc, V{ξ(k): ke X'}£ Y.

(b) Suppose PAH T. There are then formulas ξ(x) and ξ'(x) such that ξ(x) is Πj,

ξ'(x) is Σj, PAh ξ'(x) -» ξ(x), ξ'(x) numerates X in Q, and (*) holds.

Proof. We may assume that Th(Q) c Y. (If necessary, replace Y by Th(Q) u Y; this

set is still monoconsistent with Q.) Let R(k,m) and R*(k,m) be primitive recursive

relations such that X = {k: amR(k,m)} and Y = {k: ΞmR*(k,m)} and let p(x,y) be a PR

binumeration of R(k,m). Let S(η,m) be the following primitive recursive relation:

there are r < m and ko,...,kr < m such that R*(V{η(ks): s < r},m) and
Vs<rVp<m-.R(ks,p).

Let σ(x,y) be a PR binumeration of S(η,m).

(a) We construct a Σj formula as desired. Let ξ(x) be such that

(1) Qh ξ(x) ̂  Ξz(p(x,z) A Vu<z-,σ(ξ,u)).
We now show that

(2) -«S(ξ,m) for every m.

Suppose S(ξ,m) is true. Then Qh σ(ξ,m). Hence, by (1), for every k,
(3) Qh ξ(k) -+ Ξz<mp(k,z).

Moreover, there are r < m and k0,...,kr < m such that V{ξ(ks): s < τ}eY and

Vs<rVp<m-.R(ks,p). It follows that Vs<rVp<mQh - p(ks,p). But then, by (3), Qh

- V(ξ(ks): s < r}, contradicting the fact that Y is monoconsistent with Q. This proves

(2).

We may assume that if R*(V{η(ks): s < r},m), then r < m and ks < m for s < r. But

then (*) follows at once from (2). Finally, the fact that ξ(x) numerates X in T follows
from (*), since Th(Q) e Y
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Next let ξ(x) be such that

(4) Qh ξ(x) ̂  Vu(σ(ξ,u) -* Ξz<up(x,z)).

Then ξ(x) is Πj and has the desired properties; details are left to the reader. *

(b) Let ξ(x) be the formula defined by (4) and let ξ'(x) :=

3z(p(x,z) Λ Vu<z-σ(ξ,u)).

The verification that ξ(x) and ξ'(x) are as claimed should now be easy.

Lemma 2 (b) can also be obtained as an easy consequence of Theorem 5, below.

Theorem 3. Let X be any r.e. set. There is then a Πj (Σ^ formula η(x) which numer-

ates X in T and is independent on Xc over T.

Proof. By Theorem 2.9, there is a Γ^ (Σ^ formula μ(x) which is independent (on N)
over T. Let

Y = U{Th(T + (μf(k)(k): k < n & fe2"+1}): neN}.

Then Y is r.e. and monoconsistent with Q. Let ξ(x) be the Γ^ (Σj) formula given by
Lemma 2 (a). Let η(x) := ξ(x) v μ(x).

If keX, then Qh η(k). To see that η(x) is independent on Xc, suppose, for

example, that kg, kl7 k2/ k3e Xc are distinct and that
Th η(ko) v η(k!) v

Then

T + -,μ(ko) + -μ(kx) + μ(k2) + μ(k3)h ξ(ko) v
contrary to the choice of ξ(x).

In Chapter 4 Theorem 3 will be used to construct not irredundantly axiomatiz-

able theories (Theorem 4.7).

§2. Types of independence. By a type (of independence) we understand a consistent

r.e. set F of propositional formulas P in the propositional variables pn, ne N, closed

under tautological consequence. Let <φk: k<ω > be a sequence of sentences. Let

P(<φk: k<ω >) be obtained from P by replacing pk by φk for each k. If ξ(x) is a for-

mula, let P(ξ) = P(<ξ(k): k<ω >). <φk: k<ω > is of type F over T if

F = {P: Th P(<φk: k<ω >)}.

ξ(x) is of type F over T if this is true of <ξ(k): k<ω >.

Theorem 4. For each type F, there is a primitive recursive sequence <φk: k<ω > of

B! sentences of type F over T.

Proof. In what follows p£ is pk, if i = 0, and ^pk, if i = 1. Let s be a sequence of O's

and 1's, s = <i0,...,ik>. Then Ps is p^o Λ...Λ p^k. Assuming that (p0,...,(pk have been

defined, we define φs in a similar manner.

We now define φ0, (Pi, 92/--- It will be clear that the sentences φk are B1 and that
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the sequence <φ :̂ k<ω > is primitive recursive. In addition to this it is sufficient to

guarantee that for every k and every s = <io,...,ik>/

(1) F + Ps is consistent iff T + φs is consistent.

Without loss of generality we may assume that p0e F. Let φ0 := 0 = 0. Then (1) holds

for k = 0. Suppose (1) holds for k = n. Let

X0

S = {m: (PS -> pm)E F}, X* = {m: (P* -> -pm)e F}.

Next let ξs(x) be a Σl formula defined as in the proof of Theorem 2 with X0 and Xl

replaced by XQ and X^ and T replaced by T + φs. Then

(2) if F + Ps is consistent, then XQ and Xf are disjoint,

(3) if T + φs is consistent and XQ and X^ are disjoint, then

X* = {m: T + φsh ξs(m)}, X* = {m: T + φ*h -ξs(m)}.

Let s0,...,sq be all sequences of O's and Γs of length n+1. Finally, set

Ψn+l := (ΦS°A ξsj/n+l)) v-v (ΨS(1 Λ ξsq(
n+1))

Then

(4) T

To complete the induction, we now have to show that

(5) F + PSΛ pn+1 is consistent iff T + φsΛ φn+1 is consistent,

(6) F + PSΛ ~"pn+i is consistent iff T + φsΛ ~"9n+i is consistent.

To prove (5), suppose first F + PSΛ pn+1 is consistent. Then n+lg Xj . Moreover, F +

Ps is consistent and so, by (2), XQ and X^ are disjoint and, by the inductive assump-

tion, T + φs is consistent. It follows, by (3), that T + φsM - ξs(n+l) and so, by (4), T

+ φsΛ φn+1 is consistent.

Next suppose T + φsΛ φn+1 is consistent. Then F + Ps is consistent. Hence, by (2),

(3), (4), n+l£ Xf and so F + PSΛ pn+1 is consistent.

This proves (5). The proof of (6) is similar.

From Theorem 4 and Fact 10 (b) we get:

Corollary 1. Suppose PAH T. Then for each type F, there is a Δ2 formula of type F

overT

Suppose T is Σ1-sound, ξ(x) is Σl7 and ξ(x) is of type F over T. Then F is positively

prime (p.p.) in the sense that for all propositional variables Pn0/-/Pnk/ if PΠQ v v

pnkE F, there is an i < k such that pn.E F. (A formula P is p.p. if the set of tautologi-

cal consequences of P is p.p.) We now prove that, for extensions of PA, the converse

of this is true.

Theorem 5. Suppose PAH T. Then for each p.p. type F, there is a Σl formula of type

F over T.

The proof of Theorem 5 is different from the other proofs in this book. We shall

have to rely on the reader's ability to formalize (fairly simple) intuitive arguments

in PA (or willingness to believe that these arguments can be so formalized). It will



§2. Types of independence 47

be essential to distinguish between the claims (i): for every k, PA proves: ...k... and

(ii): PA proves: for every k, ...k... Here (ii) is the stronger claim; it may very well be

the case that (i) is true and (ii) is false.

We are going to define a certain primitive recursive function f(k,m,n); the details

of the definition will be crucial. The (inductive) definition of the function f(k,m,n)

is given in the metalanguage and the task of formalizing this definition is left to the
reader.

The numbers 0,1 will be thought of as the truth-values falsity and truth, respec-

tively. A function tG2N can then be regarded as a truth-value assignement: t

assigns truth to pj iff t(i) = 1. We always assume that t(i) = 0 for all but finitely many

i. Thus, t is essentially a finite object and can be coded by, and treated as, a natural

number. t[P] is the truth-value assigned by t to the formula P; for example, t[pj =

t(i)
By induction on the length of P, it is easy to show that for every P,

(1) PA proves: if for every i such that pj occurs in P, ξ(i) iff t(i) = 1, then P(ξ)

ifft[P] = l.
Suppose g, he 2N. Then g precedes h in the lexiographic ordering if g Φ h and g(k)

< h(k), where k is the least number such that g(k) Φ h(k). We shall also use the fol-

lowing partial ordering of 2N: g « h iff g(k) < h(k) for all k.

Lemma 3. (a) Suppose F is p.p. Then there is a primitive recursive function Q(s)

such that (i) F is tautologically equivalent to (Q(s): se N}, (ii) for every s, Q(s) is p.p.,

(iii) PA proves: for all s, s7, if s < s7, then Q(s') -> Q(s) is a tautology (we may assume

that Q(0) is a tautology), (iv) PA proves: for all i, s, if pj occurs in Q(s), then i < s.

(b) If P is p.p. and consistent, then there is a «-least t such that t[P] = 1.

(c) Let ts be the «-least t such that t[Q(s)] = 1. For every s, ts « ts+1.

Proof, (a) There is a primitive recursive function QQ(S) such that F = (Qo(s): seN}.

Let Qι(s,n) be the conjunction of the set of tautological consequences of Λ{Q0(s'):
s'< s} which contain no propositional variables other than pi for i < n. Next let r(s)

= max{n<s: Qι(s,n) is p.p.}. Finally, let Q(s) = Q1(s,r(s)). Then Q(s) is primitive

recursive and (i) - (iv) are satisfied. *

(b) Let t0,...,tn be all assignments t such that t[P] = 1 and t(i) = 0 for every PJ not

in P. Let p ,̂...,?̂  be all propositional variables pj such that P —> pj is a tautology.

Let t'(i) = 1 iff ie {i0,-,im}. Then t'« tk for k < n. Suppose t'[P] = 0. Then for every k

< n, there is a jk£ {io,...,im} such that tk(jk) = 1. But then P —» pj v...v p; is a tautol-

ogy and so the same is true of P -> PJ for some k < n, a contradiction. Thus, t'[P]

= 1. *

(c) This is clear, since, by (a) (iii), ts+1[Q(s)] = 1.
Proof of Theorem 5. Let f(s,m,i) be the primitive recursive function defined below;

m will always be assumed to be a formula η(x), the value of f(s,m,i), when m is not

a formula, is irrelevant and we may set f(s,m,i) = 0. Now let ξ(x) be such that
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(2) PAh ξ(x) <-> 3z(f(z,ξ,x) = 1)

and let h(s,i) = f(s,ξ,i). Also, let hs be such that for all i,

hs(i) = h(s,i).
hs(i) may be thought of as the truth-value assigned to pi at stage s. It will be clear

from the definition of f that for fixed η and i, f(s,η,i) is nondecreasing in s. Thus,

informally, ξ(i) is true iff the truth-value eventually assigned to pj is 1.

Our goal is to define f in such a way that the following two claims can be estab-

lished; Q(s) is as in Lemma 3 (a).

Claim 1. For every s, PAh (Q(s))(ξ).

Claim 2. For every P, if Th P(ξ), then Pe F.

By Lemma 3 (a) (i), Theorem 5 follows from Claims 1 and 2.

Cases 1.1 and 2 of the definition of f are designed to ensure the validity of Claim

2: If Th P(ξ) and, for a suitable s, Q(s) -> P is not a tautology, Case 1.1 applies at

Stage s+1 and so hs+1[P] = 0. Also Case 2 applies at all later stages and so hs/ = hs+1,

whence hs,[P] = 0, for all s'> s. This is provable in PA. It follows, by (1), that PAh

-«P(ξ), contradicting the assumption that Th P(ξ).

We now define f(s,η,i) and at the same time an auxiliary function g(s,η) as fol-

lows:

Stage 0. f(0,η,i) = g(0,η) = 0.

Stage s+1. Case 1. g(s,η) = 0.

Case 1.1. s = <P,m>, m is a proof of P(η) in T, and there is a t such that

(3) t[Q(s)] = 1,

(4) t[P] = 0,
(5) f(s,η,i) < t(i) for i < s.

Let t7 be the lexicographically least such t. Set g(s+l,η) = 1 and

Case 1.2. Not Case 1.1 and there is a t such that (5) holds and

(6) t[Q(s+l)] = 1.

Let t' be the lexicographically least such t. Set g(s+l,η) = 0 and

f(s+l,η,i) = f (i).

Case 1.3. Otherwise. Set g(s+l,η) = 0 and

Case 2. g(s,η) > 0. Set g(s+l,η) = 1 and

Inspection of the above definition in conjunction with Lemma 3 (a) (iv) shows that

hs(i) = 0 whenever i > s; in fact, this can easily be proved in PA, in other words:

(7) PA proves: for all i and s, if i > s, then hs(i) = 0.

Furthermore,

(8) if s<s', thenh s«h s,.

For s' = s+1, this can be seen by inspection; the full result follows by induction.

Using (7), the proof of (8) can be formalized in PA and so we have

(9) PA proves: for all s, s7, if s < s7, then hs « hs/.
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Next we show that

(10) for every s, g(s,ξ) = 0; in other words, if η := ξ, Case 1.1 never applies.

Suppose not and let s7 be the least number such that g(s',ξ) = 1. Then Case 1.1

applies at Stage s'. Thus, s7-! = <P,m>, m is a proof of P(ξ) in T, whence

(11) Th P(ξ),

and hs/[P] = 0. Let V = hs,. For η := ξ Case 2 now applies at every s > s' and so hs =

t' for every s > s'. By (8), hs « V for s < s'. It follows that t'(i) = 1 iff there is an s such

thath(s,i)=l.

Using (9), this argument can be formalized in PA and so

PAh Ξz(h(z,x) = 1) <-> t'(x) = 1.

But then, by (2), PAh ξ(x) <-> t'(x) = 1 and so, by (1), PAh P(ξ) <-> t'[P] = 1. But PAh

t'[P] = 0. It follows that PAh -tP(ξ), contradicting (11). This proves (10).

We now show that for all s,

(12) hs = ts,

where ts is as in Lemma 3 (c). Since Q(0) is a tautology, this holds for s = 0. Suppose

(12) holds for s. Then, by Lemma 3 (c), hs « t
s+1. Since ts+1[Q(s+l)] = 1, either Case

1.1, Case 1.2 or Case 2 applies at s+1. By (8), Cases 1.1 and 2 don't and so Case 1.2

does. Also, the lexicographically least t' mentioned in Case 1.2 with η := ξ is ts+1. It

follows that hs+1 = ts+1. This proves (12).

From (7) and (12) it follows that

(13) for every s, PA proves: hs = ts.

Next we show that

(14) for every s, PA proves: for every s'> s, hs/[Q(s)] = 1.

Argue in PA: "For s'= s we have hs/ = ts, by (13), and so hs/[Q(s)] = 1. Suppose s'>

s and the statement holds for s'. If Case 1.3 or Case 2 applies at s'+l, then

hs/+1 = hs/ and so, by the inductive assumption, hs/+1[Q(s)] = 1. If Case 1.1 or Case

1.2 applies at s'+l, then hs,+1[Q(s')] = 1 or hs/+1[Q(s'+l)] = 1 and so, by Lemma 3
(a) (iii), hs/+1[Q(s)] = 1. Now the desired conclusion follows by induction." (Since

this argument takes place in PA, Cases 1.1 and 2 cannot be ruled out.) This proves

(14).

Proof of Claim 1. Fix s. Argue in PA: "By (2) and (9), there is an s'> s such that for

every i < s, hs,(i) = 1 iff ξ(i). By (14), hs/[Q(s)] = 1. By Lemma 3 (a) (iv), no p{ with i

> s occurs in Q(s). Thus, by (1), (Q(s))(ξ)."φ

Proof of Claim 2. Let m be a proof of P(ξ) in T. Let s = <P,m>. By Lemma 3 (a) (i),

it is sufficient to show that Q(s) —> P is a tautology. Suppose not. Let t be such that

t[Q(s)] = 1 and t[P] = 0. Then ts « t. By (13), hs = ts and so hs « t. But then Case 1.1

applies at s+1 and so g(s+l,ξ) = 1, contrary to (10). Thus, Q(s) —> P is a tautology.

Finally, Q(s)e F and so Pe F. +

This concludes the proof of Theorem 5.

For PAH T, Theorems 1, 2, 3 are, of course, special cases of Theorem 5.
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Exercises for Chapter 3.

1. Suppose QH T0H Tx. Show that for every r.e. set, there is a Σx formula which

numerates X in both TQ and T^.

2. We write SHpT to mean that S is a proper subtheory of T.

(a) Suppose QH lΌHpIV Let XQ and Xl be r.e. sets such that XQ c Xχ. Show that

there is a formula ξ(x) numerating \ in Ti7 i = 0,1. [Hint: Let θ be such that TQ!^ θ

and ΊI\- θ. There exist a formula ξ1(x) numerating Xx in T0 and in Ί± and a formu-

la ξo(x) numerating XQ in T0 + -»θ. Let ξ(x) := ξ1(x) Λ (θ v ξo(x)).]

(b) Suppose QH T0Hp... HpTn. Let Xi/ i < n, be r.e. sets such that Xj c χ.+1 for i <

n. Show that there is a formula ξ(x) numerating Xj in T^ for i < n.

(c) Suppose QH T0 H Tj and suppose there is a formula σ(x) which numerates

Th(S) in S for every S such that T0H S H Tα. Show that Tα H T0. [Hint: Suppose Txh

θ and let φ be such that Qh φ -̂> -ισ(φvθ). Show that T0h ~ φ.]

(d) Suppose QH T0/ QH Tl7 and TQ and T^ are incomparable (with respect to H).

Let X0 and \ι be any two r.e. sets. Show that there is a formula ξ(x) which numer-

ates Xi in TJ, i = 0,1.

3. Suppose QH T0HpT1. Show that there is a formula ξ(x) such that for every recur-

sive function f, the set

{n: TQ|- ξ(n) & there is a proof p of ξ(n) in T1 such that ξ(n) has no proof <

f(p)inT0)

is infinite, in fact, nonrecursive (this improves Theorem 2.13). [Hint: Let X be an r.e.

nonrecursive set and let ξ(x) be a formula numerating X in TQ and N in T^.]

4. Let X0 and \ι be r.e. sets. Let ξ0(x) be a Σ^ formula numerating X0 in T. Show that

there is a Σ^ formula ξ1(x) numerating Xx in T such that ξ0(x) v ξχ(x) numerates X0

u Xι in T. (If n = 1 and T is Σ1-sound, this is trivial.) [Hint: Let p(x,y) be a PR for-

mula such that Ξyp(x,y) correctly numerates X± in T, let ξ(x) be such that

Qh ξ(k) ̂  3y(p(k,y) A Vz<y-Prfτ(ξ(k)vξ0(k),z)),

and let ξx(x) := ξ(x) v (Ξyp(x,y) Λ ξ0(x)).]

5. Suppose PAH T. Let X be any r.e. set. Show that there is a Γ formula ξ(x) numer-

ating X in T and such that for every Γ formula η(x), the theory T + {ξ(k) <-> η(k):

kg X} is consistent. (This improves Theorem 3.)

6. (a) Suppose PAH T and T is not Σ1-sound. Show that the sentences φk in Theorem

4 can be taken to be Δ^. [Hint: Use Lemma 1.3 (vi).]

(b) Suppose QH S. Show that there are primitive recursive enumerations φ0, <pι,

φ2/... and ψ0/ ψl7 ψ2,.. of all sentences such that the type of <φn: n<ω> over S is the

same as the type of <ψn: n<ω> over T.
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7. (a) Let pj(y), i = 0,1, be PR formulas. Let φ be such that

Qh φ <-> Ξy((Prfτ(-φ,y) v Po(y)) Λ Vz<y(-Prfτ(φ,z) Λ -p^z))).

Show that

Th φ iff 3y(p0(y) Λ Vz<y->p1(z)) is true,

Th ->φ iff 3z(p1(z) Λ Vy<z-«po(y)) is true,

(b) Obtain Rosser's theorem (Theorem 2.2), Theorem 2, and Exercises 2.21,2.22,

5.2 (a) as special cases of (a).

Notes for Chapter 3.

Theorems 1 and 2 are essentially due to Ehrenfeucht and Feferman (1960) and

Putnam and Smullyan (1960), respectively; the present proofs are due to

Shepherdson (1960). Lemmas 1 and 2 are due to Lindstrδm (1979), (1984a).

Theorem 4 follows from a result of Pour-El and Kripke (1967) restricted to the-

ories in LA (see Exercise 6 (b)); the proof is just an "effective" version of the proof

that every denumerable Boolean algebra is embeddable in every denumerable

atomless Boolean algebra. Theorem 5 is new; the proof is an adaption of a proof of

Solovay (1985); the result solves Problem 32 of Friedman (1975); an interesting spe-

cial case of Theorem 5 is proved in Montagna and Sorbi (1985).

Exercise 3 is due to di Paola (1975). Exercise 6 (b) is a result of Pour-El and

Kripke (1967) restricted to theories in LA. Exercise 7 (a) is the so called

Shepherdson-Smoryήski fixed point theorem (see Smoryήski (1980) and Hajek and

Pudlak (1993)); a more general result is proved in Smoryήski (1981a).




