
1. PRELIMINARIES

In this chapter we introduce the basic notation and terminology which will be used

throughout this book. We also state a number of basic Facts. These Facts will not be

proved; some of them are rather obvious (and easy to believe), others are substan-

tial and well-known theorems; further Facts will be stated when they are needed.

These Facts are sufficient for most of the proofs in this book; the chief exceptions

are the proofs of Theorems 3.5 and 6.4. Finally, we prove the very important fixed

point lemma (Lemma 1) and apply it to prove that Robinson's Arithmetic Q is

essentially undecidable (Theorem 2) and that in extensions of Q there are no

truth-definitions (Theorem 3).

The language LA of elementary arithmetic can be described as follows. The

alphabet consists of:

the propositional connectives: -•, Λ, v, —», <-̂ ,

the quantifiers: 5, V,

the equality symbol: =,

symbols used to form (individual) variables: v,',

parentheses: (,),

the arithmetical constants: 0, S, +, x.

(The intended interpretation of S is the successor function.) Thus, the alphabet is

finite. The variables of LA are the expressions v, V, v", etc. We write vn for v fol-

lowed by n occurrences of '. In most contexts x, y, z, u, v, w, possibly with sub-

scripts etc., will be used for variables. The terms, formulas, and sentences of LA are

defined as usual. Among the terms we distinguish the numerals 0, SO, SSO, SSSO,....

These will be written 0, 1, 2, .... Thus, we shall omit bars and other devices ordi-

narily used to indicate numerals (or Godel numbers) and use the same symbols for

natural numbers and for formal numerals. In most cases this will cause no trouble

as long as the symbols for formal variables are kept strictly apart from the symbols

for natural numbers (and numerals). For the latter we use k, m, n, p, q, r, s, possi-

bly with subscripts etc. and symbols for formulas (see below). N is the set of nat-

ural numbers.

For sentences and formulas of LA we use lower case Greek letters. Sentences

will be written as φ, ψ, θ, χ, etc. and formulas as α(x), β(x,y), γ(x), ξ(x), T^X .̂..̂ ),

p(x,x')/ τ(x), ξ, γ, etc. The variables displayed are almost always exactly the free

variables of the formula. ξ(y) is obtained from ξ(x) by replacing x by y, assumed not

to be free in ξ(x), and, possibly renaming bound variables in the usual way. ξ(k) is

obtained from ξ(x) by replacing x by the numeral k (or, if you prefer, by the numer-

al for the number k). This generalizes in the obvious way to substitutions involv-

ing more than one variable. We use := to denote equality between formulas.

By a theory T we understand a set of sentences (to be thought of as the (nonlog-

ical) axioms of T). (It would be inconvenient to identify a theory T with the set of
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its theorems, since quite often we need to know that there is a formula binumerat-

ing (defined below) (the set of axioms of) T.) Note that, although we shall mainly

be interested in theories that are reasonable from an arithmetical point of view,

such reasonableness is not part of the concept theory. T + φ is the theory obtained

from T by adding φ as a (new) axiom. T + X, where X is a set of sentences, is under-

stood similarly. We assume given a fixed complete deductive calculus PL for first

order logic. Referring to PL certain (finite) formal objects (sequences of sentences)

are proofs (in T). A proof is a proof of its last sentence. The sentence φ is provable in T,

Th φ, if there is a proof of φ in T. Th ξ(x1,...,xn), where x1,...,xn are all the free vari-

ables of ξ(x1,...,xn), is short for Th Vx1...xnξ(x1,...,xn). Th(T) is the set of theorems of,

i.e. sentences provable in, T. If X is a set of sentences, we write Th X or XH T to

mean that Th φ for every φe X. Thus, SH T means that S is a subtheory of T (T is an

extension of S). We write h φ for 0h φ, where 0 is the empty set. Thus, h φ means

that φ is provable in logic (PL).

N = (N, +, x, S, 0) is the standard model of arithmetic. A sentence φ is true if it

is true in N. A theory is true if all its axioms (and therefore, all its theorems) are true.

There are two (true) theories PA (Peano Arithmetic) and Q (Robinson's

Arithmetic) that will play a prominent role in what follows. Q is a finite theory; its

axioms are (we omit the initial universal quantifiers):

Ql Sx = Sy —» x = y,

Q2 -Ό = Sx,

Q3 -.0 = x -> 3y(x = Sy),
Q4 x + 0 = x,

Q5 x + Sy = S(x + y),

Q6 x x 0 = 0,

Q7 x x Sy = (x x y) + x.

We introduce the two-place predicates < and < by means of the definitions:

x < y =df 5z(z + x = y),
χ < y =df x ^ y Λ ~ χ = y

With our present simplified notation certain (harmless) ambiguities arise. For

example, 2 + 3 can be read as a numeral but also as an expression containing the

symbol +. In Fact 1 below we have indicated that the latter is the intended reading

by underscoring the relevant function symbol. But, of course, terms such as Sy, x +

y, x + 3, 4 x z, etc. are unambiguous. Also, with very few exceptions, it is, in view

of Fact 1, not important which way, say, 2 + 3 is understood.

Fact 1. The following formulas are provable in Q for all k, m, n,
(i) -i k = m for k Φ m,

(ii) k ± m = k + m,

(iii) k x m = k x m,

(iv) x < m — > x = 0vx = l v...v x = m,

(v) x < m v m < x.
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Q is a very weak theory. For example, the sentences Vx(0 + x = x), Vχ-<(x = Sx),

Vx(x < x), cannot be proved in Q.

The axioms of PA consist of the axioms of Q plus the (universal closures) of for-

mulas of the form

α(0) Λ Vx(α(x) -> cc(Sx)) -» Vxα(x).

(Here α(x) may contain free variables other than x.) This is the induction scheme and

is as close as we can get to the full (second order) induction axiom in first order

arithmetic.

From the induction scheme we can derive the least number principle: for every

formula α(x) as above,

PAh Ξxα(x) -> 5x(α(x) Λ Vy(y < x -> ->(x(y)).

Obviously, QH PA. In PA axiom Q3 is redundant. Vxy(x < y v y < x) is provable

in PA, but not in Q. In fact, this is sometimes the sole reason for writing "PAh"

rather than "Qh".

Godel proved that every primitive recursive function is definable in first order

arithmetic. Formalizing this proof, he proved that:

Fact 2. For each primitive recursive function f^ko,...,]^) there is a formula

δf(xo,...,xn,y) such that for all ko,...,!̂ ,

(i) Qh δfίV ^y) <r> y = fίVΛi)-
(ii) PAh δf(xo,...,xn,y) Λ δf(xo,...,xn,z) -> y = z,

(iii) PAh ayδf(x0,...,xn,y).

In Fact 2 (i) f(k0,...,kn) is, of course, a numeral, i.e. does not contain the symbol f.

A formula δ(xo,...,xn/y) sucn tnat f°Γ a^ ko/ /kn/
Thδ(V vkn,y)~y = f(k0 ..... kj

will be said to define f in T.

For (general) recursive functions we have the following weaker Fact (for Fact 3

(b), see below):

Fact 3. (a) For every (total) recursive function f̂ ko,...,!̂ ), there is a formula

δf(xo,...,xn,y) defining f in Q.

The formula p(x0,...,xn) numerates the relation R ,̂...,!̂ ) in the theory S if for all

kQ,..., kn (as usual "iff" is short for "if and only if"),

RίV vkJi f fShptko ..... kj.

Thus, ξ(x) numerates X in S if for every k,

keXif fShξ(k) .

p(x0,...,xn) Enumerates the relation R(ko,...,kn) in S if for all ko,...,!̂ ,

not R(ko,...,kn) iff Sh

In particular, ξ(x) binumerates X in S if for every k,
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keXiffShξ(k),

teXiffSh- ξ(k).
If a formula binumerates X (R) in S, it binumerates X (R) in every consistent exten-

sion of S.

If S is recursively enumerable (r.e.), any set (relation) numerated by some for-

mula in S is r.e. and any set (relation) binumerated by some formula in S is recur-

sive.
Fact 3 (a) has the following:

Corollary 1. (a) A set X (relation R) is recursive iff there is a formula binumerating

X (R) in Q.
(b) A set X (relation R) is r.e. iff there is a formula numerating X (R) in Q.

This corollary and most of those below in this chapter are easy consequences of the

relevant Facts; their proofs are, therefore, left to the reader.

Note that, in view of Corollary 1, we have the remarkable fact that any set X

(relation R) which is (bi)numerated by some formula in some r.e. theory, is

(bi)numerated by a (possibly different) formula already in Q.

We write 3x<yβ(x) for Ξx(x < y Λ β(x)) and Vx<yβ(x) for Vx(x < y -> β(x)).

Ξx<yβ(x) and Vx<yβ(x) are defined in a similar way. The initial quantifiers of these

formulas are bounded.

A formula is primitive recursive in the strict sense (SPR) if it is of the form

δf(x0,...,xn,0), where f is primitive recursive and δf(x0,...,xn,y) is as iR Fact 2. We
define the primitive recursive (PR) formulas to be the members of the least set F of

formulas containing the SPR formulas such that F is closed under propositional

connectives, bounded quantification, replacing variables by numerals, and if ξ is a

member of F and δf(x0,...,xn/y) is as in Fact 2 with f primitive recursive, then

Ξz(δf(xo,...,xn,z) Λ ξ) and Vz(δf(xo,...,xn,z) -» ξ) are members of F. (Every PR formu-

la is, provably in PA, equivalent to an SPR formula.)

Exactly which formulas turn out to be PR will depend on the details of the proof

of Fact 2. However, regardless of those details we have the following consequence

of Fact 2. A formula η(x) is decidable in T if for every k, Th η(k) or Th - η(k); and

similarly for formulas with more than one free varaible; a sentence φ is decidable in
T if either Th φ or Th ->φ.

Corollary 2. If p(xl/.../xn) is PR, then Qh pίk .̂..,]̂ ) iff p̂ ,...,]̂ ) is true. It follows
that

(i) every PR formula is decidable in Q,

(ii) a set X (relation R) is primitive recursive iff there is a PR formula binumer-
ating X (R) in Q.

A PR formula binumerating X (R) in Q will be called a PR Enumeration ofX (R). A
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numeration ofX is a formula numerating X in PA.

In what follows Corollary 2 will be applied without further mention.

Suppose PAH T. Then, by Fact 2, if f̂ ,...,!̂ ) is a primitive recursive function

and δf(x0/.../xn/y) is the corresponding formula, we can add the function symbol f
to the language of T and add

as a new axiom. (Thus, we shall be using the same function-symbol in the object

language as in the metalanguage.) The resulting theory S is then a conservative

extension of T in the sense that every sentence in the language of T provable in S is

provable already in T. Thus, we may assume that f is a symbol in the language of

T. Occasionally, the choice of the defining formula δf(xo,...,xn,y) is essential, e.g. in

the proof of Theorem 3.5, but most of the time it is not.

In particular, we shall use the function symbols <x,y> and (x)y for the primitive

recursive functions <k,m> and (k)m defined by:

<k,m> = 2kχ3m,

(k)m = the number n such that p^ divides k, but p^+1 doesn't if k > 0,

= 0 if k = 0.
(Here pm is the m1*1 prime number: p0 = 2, p^ = 3, etc.) The function (k)m will be

used to code finite sequences of natural numbers; namely, for each finite sequence

n0,..., n^ of natural numbers, there is a number n such that (n)j = nj for i < k.

The function (k)m can be used to transform an inductive definition into an

explicit definition in PA in the following way. Suppose, for example, f(k) is defined

by:

f (0) = 0,
f(n+l) = g(f(n),n)ifneX,

= h(f(n))ifn*X.
Suppose g(k,m), h(k), and X are formally represented by g, h, and ξ(x). Let δ(x,y) :=

Ξz((z)0 = 0 Λ Vu<x(ξ((z)u) -» (z)u+1 = g((z)u/u)) A

Vu<x(- ξ((z)u) -> (z)u+1 = h((z)u)) A (z)x = y).

Then δ(x,y) defines f in PA and

PAh Vx5yVz(δ(x,z) <-> z = y).

Thus, we may introduce a function symbol f by means of the definition:

f(x) = y <-» δ(x,y).
It is then easy to see that the formalizations of the clauses of the definition of f (k)

become provable in PA:

PAh f(0) = 0,

PAh ξ(x) -» f(x+l) = g(f(x),x),

PAh - ξ(x) -> f(x+l) = h(f(x)).
We assume given a Godel numbering of the formal objects of LA (extensions of

LA obtained by adding symbols for certain functions) among them all proofs. Since

there is really no reason to distinguish between a formal object and its Godel num-

ber, we shall "identify" the two. (We do not really care exactly what the formulas,
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proofs etc. of a theory are; the only thing that matters is how they are related to one

another.) Thus, on the pages of this book you will find no formulas of LA, only "for-

mulas" referring to such formulas. (But the reader may, of course, still think of for-

mal objects as strings of symbols.)

Formulas and sentences being numbers, it follows that symbols for formulas

and sentences are (symbols for) numerals. Thus, for example, ξ(η(y)) makes per-

fectly good sense; it is the result of replacing x in ξ(x) by (the numeral for) η(y).

(Note that y is not free in ξ(η(y)).) ξ(η(k)) is obtained by first replacing y by k in

η(y), giving η(k), and then replacing x by η(k) in ξ(x).

The Gδdel numbering can be defined in such a way that everything, that should

be primitive recursive, is. In particular, the following is true (see also Fact 4 (d)

below):

Fact 4. (a) The function corresponding to concatenation is primitive recursive.

(b) The function corresponding to substitution of numerals for variables is

primitive recursive.

(c) The sets of formulas and sentences are primitive recursive.

By Fact 4 (a), -«φ, φ -> ψ, etc. are primitive recursive functions of φ and ψ and so we

may, and shall, use ->, —», etc. as formal symbols for these functions and write -ιχ,

x-»y, etc. for -ι(x), ->(x,y), etc.

As has already been mentioned, in many cases our (simplified) notation is not

unambiguous. For example, x = φ -» ψ can be read in three different ways. One of
these is eliminated by writing x = (φ—»ψ). But this formula is still ambiguous: does

it contain the function symbol ->, or doesn't it? The answer to this and similar

questions will always be clear from the context, when it matters. For example, we

are allowed to add the symbol f for an (arbitrary) primitive recursive function f to

the vocabulary of T only if we have assumed that PAH T, and then it doesn't real-

ly matter which way f(2+3), say, or φ-»ψ, occurring as a term, is understood. On

the other hand, terms such as f (x) or y-»φ are, of course, unambiguous.

In this book we shall be interested in r.e. theories only. In most contexts it is not

necessary to distinguish between deductively equivalent theories. Thus, we may

take advantage of the following result known as Craig's theorem.

Theorem 1. For any r.e. set X, there is a primitive recursive set Y such that
Y H h X .

Proof. If X = 0, this is trivial. Suppose X Φ 0. There is a primitive recursive func-

tion f such that X = (f(k): ke N}. For any sentence φ, let φ(°) := φ and φ(n+1) := φ(n) Λ
φ.LetY = {f(k)(k):keN}.

In view of Craig's theorem we may adopt the first of the following three con-
ventions; the other two are introduced to avoid needless repetition:
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Convention 1. All theories denoted by single (decorated) letters, S, S0/ T, T', A, B
etc. are primitive recursive.

Convention 2. All theories denoted by single (decorated) letters, S, S0, T. T', A, B,
etc. are consistent.

Convention 3. From now on until Chapter 8, T is an extension of Q, QH T.

If a theory is written as S, S', S0, etc. this is meant to indicate that, unless the con-

trary is explicitly assumed, the fact that this theory is formalized in LA is really

irrelevant.

We now define the arithmetical hierarchy of formulas (sentences) of L^, in other

words, the sets 1^ and Πn in the following way. 2^ and Πn are the least sets con-
taining PR, closed under Λ, v, and bounded quantification and such that (i) ̂  u

Πn C Σ -̂L n Πn+1, (ii) if ξ is Σn (Πn), then -ξ is Πn (ΣJ, (iii) if ξ0 is ̂  (Πn) and ξx

is Πn (ΣJ, then ξ0 -* ξα is Πn (ΣJ, (iv) if ξ is 1^ (Πn) and δf(x0,...,xn,y) is as in Fact 2,

then Ξz(δf(x0,..vXn/z) Λ ξ) and VzίδfCxo/.-vXn/2) -» ξ) are 1^ (Πn), (v) 1^ is closed
under existential quantification, and (vi) Πn is closed under universal quantifica-

tion. It follows that Σ0 = Π0 = PR. Bn is the set of Boolean combinations of T^ for-

mulas. Let Φ be either 1^ or Πn or Bn. Then Φτ = {ξ: Ξηe Φ: Th ξ <-> η}. A formula
is Δ£ if it is Πn and Σ^ or 1^ and Π ;̂ ̂  = Δ£A.

In what follows Γ is either Σn+1 or Πn+1 and Γ+ is either Σn or Πn. Γ
d, the dual

of Γ, is Σn, if Γ is Πn, and Πn, if Γ is Σ^ In writing Σn, Πn, Δ^, or Bn we almost always
omit the (obvious) assumption that n > 0.

The arithmetical hierarchy generalizes to formulas containing new symbols for

primitive recursive functions in the obvious way: if ξ(x) is Γ+ and ĝ ,...,̂ ) is

primitive recursive, then ξ(g(xo,...,xn)) is Γ+. In particular, Γ+ is closed under

Vx<f(x0,...,xn) and 3x<f(xo,...,xn).

From the definition of Σ^ and Πn and Fact 4 (a), (b), (c) we get:

Fact 4. (d) The sets Σn and Πn are primitive recursive.

Fact 5. (a) For each Σn+1 formula (sentence) σ, we can effectively find a Πn formu-

la π(x) such that PAh σ <-> Ξxπ(x).

(b) For each Πn+1 formula (sentence) π, we can effectively find a Σj^ formula σ(x)

such that PAh π <-> Vxσ(x).

By Fact 5, if we are working in an extension of PA, we can always assume that any

Σn+1 formula (sentence) is of the form 3xπ(x), where π(x) is Πn and that any Πn+1

formula (sentence) is of the form Vxσ(x), where σ(x) is Σn. Also note that it follows

from Fact 5 that for each Σn+1 formula σ(xo,.-.,Xk-i) there is a PR formula

X - / ' ' ) such that
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PAh σίxo^.vXk-i) <-» 3y0Vy1...Qynp(x0/.../Xk-i/yo/ vyn)/
where Q is Ξ or V according as n is even or odd. Similarly, for each Πn+1 formula

π(xo,...,Xk_ι), there is a PR formula p(xo/-/Xk-i/yo/-/yn)
 such that

PAh πίxo/ .vXk-i) <-> Vyoayi QynP(^> vXk-l'yo> 'Yn)/
where Q is V or 5 according as n is even or odd. (This includes the case k = 0, in

which case σ and π are sentences.)

Fact 3 (a) can be improved as follows:

Fact 3. (b) The formula δf(xo,...,xn/y) of Fact 3 (a) can be taken to be Σ ̂

Corollary 1 can now be improved as follows.

Corollary 3. For every recursive set X (relation R) there is a ΣI formula and, there-

fore, a Π1 formula binumerating X (R) in Q.

(b) For every r.e. set X (relation R) there are a Σ1 formula and a HI formula

numerating X (R) in Q.

A theory T is T-sound if every Γ sentence provable in T is true.

For every r.e. set X, there is a primitive recursive relation R(k,m) such that X =

{k: 5mR(k,m)}. Thus, from Corollary 2 (ii), we get the following:

Corollary 4. Suppose T is Σ1-sound. Then for every r.e. set X, there is a Σ1 formula

numerating X in T.

In Chapter 3 it will be shown that the assumption that T is Σ^-sound can be omit-

ted (Theorem 3.1).

A function f(ko,...,kn) is provably recursive in T if there is a ΣI formula

δfίxQ,...̂ ^) such that

(i) Th δrfV /kn/y) ~ y = f(ko,...,kn).
(ii) Th δf(xo,...,xn,y) Λ δf(x0,...,xn,z) -> y = z,

(iii) Th 3yδf(x0/...,xn/y).
(In (i) fίko,...,!̂ ) is, of course, a numeral.) Thus, all primitive recursive functions are

provably recursive in PA.

Suppose (i), (ii), (iii) are true. Then we may add the function symbol f to the
language of T and add

f(xo/-/*n) = 7 <-» δf(xo,...,xn/y)
as a new axiom, where δf(x0,...,xn,y) is as above. The resulting theory is then a con-
servative extension of T.

Suppose α(x) and β(y) are Σn+1 and f(k0,...,kn) is provably recursive in T. Then

(1) Ξx(α(x) Λ Vy^f(x0/.../xn)β(y))

is not (necessarily) Σn+l'/ it is, however, Σ^+1, since it is, provably in T, equivalent
to
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Ξxz(α(x) Λ δf(x0,..vXn/z) A Vy<zβ(y)).
Similarly, if α(x) is Σn+1 and β(y) is Πn+1, then

(2) Vx(α(x) -> 3y<f(x0,..,Xn)β(y))
is Π^+1/ since it is, provably in T, equivalent to

Vxz(α(x) Λ δf(xo,...,xn/z) -» Ξy<zβ(y)).

(The reason why we don't extend the sets of I^+l and Πn+1 to comprise the for-

mulas (1) and (2), respectively, is that Σn+1 and Πn+1 would then be nonrecursive

(see Fact 4 (d)).

By Fact 4 (b), there is a primitive recursive function Sbst^πvn) such that if n

is a formula, then Sbst1(k,m,n) is the result of replacing vk in that formula by the

numeral for the number m. Thus, if n is ξ(vk), then Sbst1(k,m,ξ(vk)) := ξ(m). Let

Sbst2(k0,m0,k1,m1,n) = Sbst1(k0,m0,Sbst1(k1,m1,n)).

By Fact 2, there are formulas Subst1(x,y,z,u) and Subst2(xo/yo/xι/yι/z/u) such that

Qh Subst^kjiϊvξίvfcXu) <-> u = ξ(m),
Qh Subst2(k0,m0,k1,m1,η(vk(),vkl),u) <-> u = rKmQ,!̂ ).

As already mentioned, we may in any extension of PA introduce the correspond-

ing function symbols Sbs^ and Sbst2.

If vk is the only free variable of ξ, we write ξ(x) for Sbst1(k,x,ξ). In writing, for

example, η(x, y) we assume that there are k and m such that η := η(vk,vm) and that

η(x, y) := Sbst2(k,x,m,y,η). Note that, although x is not free in, say, ξ(η(x)), it is free

inξ(η(x)).

Given a formula σ(z), let

Prfσ(χ,y)
be a formula whose intuitive meaning is: "there is a v such that (y)v = x, (y)u = 0

for all u > v, and for every u < v, either (y)u is a logical axiom, satisfies σ(z), or is

obtained from formulas (y)w with w < u using one of the (logical) rules of deriva-

tion"; in other words "y is a proof of the sentence x from the set of sentences satis-

fying σ(z)". (Thus, if there are nonsentences "satisfying σ(z)", they are simply dis-

regarded.) The fact that there is a formula Prfσ(x,y) with the desired properties (see

below) follows from Facts 2 (i) and 4 (and the details of the formalization of pred-

icate logic.) If σ(z) is Γ+, then Prfσ(x,y) is Γ+.

Let

Prσ(x) := ayPrfσ(x,y),

Conσ := -Prσ(l),

where 1 := ~Ό = 0. Thus, the intuitive meaning of Prσ(x) is: "the sentence x is prov-

able from the set of sentences satisfying σ(z)" and Conσ intuitively says: "the set of

sentences satisfying σ(z) is consistent". If σ(z) is Z ,̂ then Prσ(x) is I^+l' anc* Conσ

is Πn+1.

For any formula σ(x), let

(σ I y)(x) := σ(x) Λ x < y,

(σ + y)(x) := σ(x) v x = y.
In what follows we shall use Prfs(x,y), Prfs+z(x,y), PrfS|z(x,y), Prs(x), Cons, etc. to
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denote (ambiguously) any formula Prfσ(x,y)/ Prfσ+z(x,y), Prfσ | z(x,y), Prσ(x), Conσ/

etc. where σ(x) is a PR binumeration of S. If S = 0, we assume that σ(x) := -»c = x;

if S is finite and nonempty, S = {φo, ,φn}/then σ(x):= x = Φθ v v x = Φn

Fact 6. h Vx(σ(x) -> σ'(x)) -> Vy(Prσ(y) -> Prσ/(y)). Consequently

h Vx(σ(x) -> σ'(x)) -> (Conσ, -» Conσ).

Fact 7. Suppose σ(x) numerates S in T.

(a) If p is a proof of φ in S, then Th Prfσ(φ,p).

(b) If Sh φ, then Th Prσ(φ).

(c) Suppose PAH T. Let α(xo,...,xn-l) be any formula whose free variables are

XO/-/ xn-l If Sh Ot(xo/-/Xn_i), then Th Pr^V-A-i))-
(d) If σ(x) binumerates S in T and p is not a proof of φ in S, then Th ->Prfσ(φ,p).

Fact 8. Let σ(x) be any formula,

(i) PAh Prσ(x) A Prσ(x-»y) -» Prσ(y),

(ii) PAh Prσ+y(z) <-> Prσ(y->z),

(iii) PAhPrσ(x)^ayPrσ|y(x).

Corollary 5. Let σ(x) be any formula.

(i) PAhPrσ(β(x))^Prσ(Ξxβ(x)),

(ii) PAhPrσ(Vxβ(x))^Prσ(β(x)),

(iii) PAh Prσ(x) A Prσ(-x) -> -Conσ/

(iv) PAh Prσ(-ιχ) 4^ -«Conσ+x and PAh Prσ(x) ̂  - Conσ+^x,

(v) if PAH T, σ(x) numerates S in T, and Sh γ(x) -> δ(x), then Th Prσ(γ(x)) -̂

Prσ(δ(x)),

(vi) if PAH T, σ(x) numerates S in T, and Sh φ -> ψ, then Th Prσ(φ) -^ Prσ(ψ).

All true Σ^ sentences are provable in Q; in fact, this is provable in PA; in other

words, Q is Σ^-complete provably in PA:

Fact 9. Suppose φ and δ(x0,...,xn_ι) are Σ1.
(a) If φ true, then Qh φ.

(b) PAh δ(x0/.../xn.1) -> PrQίδίxo,...,^));
in particular, PAh φ -» Prg(φ).

By Fact 9 (a), if ψ is Γ^ and T + ψ is consistent, then ψ is true.

Corollary 6. Suppose σ(x) numerates an extension of Q in PA.

(a) If φ is a Σl sentence, then

PAh φ -> Prσ(φ).

(b) If σ(x) is Σl and τ(x) is a numeration of T (in PA), then
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PAhPrσ(φ)^Prτ(Prσ(φ));

in particular, PAh Prσ(φ) -» PrQ(Prσ(φ)).

The following conditions (cf. Fact 7 (b), Fact 8 (i), and Corollary 6 (b)) are known

as the Bernays-Lδb provability conditions (for PrT(x)).

(BLi) if Th φ, then PAh Prτ(φ),

(BLii) PAh Prτ(φ) Λ Prτ(φ-»ψ) -^ Prτ(ψ),

(BLiii) PAh Prτ(φ) -> Prτ(Prτ(φ)).

The construction of "self-referential" sentences and formulas will play a decisive

role in what follows. Such constructions are possible in virtue of the following

result, the fixed point lemma; we list a number of special cases; a completely gen-

eral formulation would be needlessly complicated, φ is a fixed point of ξ(x) in T if

Th φ ̂  ξ(φ).

Lemma 1. (a) For any Γ+ formula γ(x), we can effectively find a Γ+ sentence φ such

that

Qh φ <-> γ(φ).
(b) For any Γ+ formula γ(x,y), we can effectively find a Γ+ formula ξ(x) such that

Qhξ(x)<->γ(x,ξ).

(c) For any Γ+ formulas Yo(*/y) and Yι(x,y), we can effectively find Γ+ sentences φ0

and q>! such that

Qh φ0 <-» Y0((po,<Pi),

Qh φα <-> Yi((p0,<Pi).
(d) For every Γ+ formula γ(x,y), we can effectively find a Γ+ formula ξ(x) such that

for every k,

Qhξ(k)<->γ(k,ξ(k)).

(e) Suppose PAH T. For every Γ+ formula γ(x,y), we can effectively find a Γ+ for-

mula ξ(x) such that

PAhξ(x)^γ(x,ξ(x)).

Proof. In what follows x is vm and y is vn.

(a) Let

δ(x) := Ξzβubstj(m,x,x,z) Λ γ(z)).

We have
Qh Subst^nxδΛz) <-> z = δ(δ).

It follows that

Qhδ(δ)^γ(δ(δ)).

Thus, φ := δ(δ) is as desired. Φ

(b) Let
η(x,y) := ΞzίSubst^n^^z) Λ γ(x,z)).
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We have
Qh SubstxOvη r^z) <-> z = η(x/η).

It follows that

Qh η(x,η) <-> γ(x,η(x,η)).

Thus, ξ(x) := η(x,η) is as desired. *

(c) For i = 0, 1, let

δi(x,y) := az0z1(Subst2(m/x,n/y/x,z0) Λ Subst2(m,x,n,y,y,z1) Λ J

We have
Qh Subst2(m,δ0/n,δ1,δ0,z0) <-» z0 =

Qh Subst2(m,δ0/n,δ1/δ1,z1) <-» zα =

It follows that

Qh δotδoA) ~ γo(δθ(δ(>δι)>δι(δθA))'
Qh δjίδoA) <->γL(δ0(δ0/δ1)/δ1(δ0/δ1)).

Thus, φ0 := δgίδo/δ!) and φ^ := δ1(δ0/δ1) are as desired.

(d) Let
η(x,y) := Ξz(Subst2(m,x/n,y,y/z) Λ γ(x,z)).

We have
Qh Subst2(m,k,n^^,z) <-> z = η(k,η).

It follows that

Thus, ξ(x) := η(x,η) is as desired. 4

(e) Let
η(x,y) := γ(x,Sbst2(m/x,n,y,y)).

We have

PAh Sbst2(m,x,n,η,η) = η(x,η).

It follows that

PAh η(x,η) <-» γ(x,η(x,η)).

Thus, ξ(x) := η(x,η) is as desired.

The cases listed in the above formulation of the fixed point lemma do not

exhaust the possibilities of self-reference. (This should be clear from the proof.)

However, applications of self-reference (in what follows) not covered by these

examples can be obtained by straightforward generalization.

For example, let γ(x,y) be any formula and suppose we want to construct a sen-

tence θ such that

Qh θ <-» γ(θ,- θ).

This can be done as follows. There is a (PR) formula v(x,y) such that for every φ,

Qh v(φ,y) o y = -«φ.

Let δ(x) := 3y(v(x,y) Λ γ(x,y)). By the fixed point lemma, there is a sentence θ such

that Qh θ <-» δ(θ). Clearly θ is as desired.

From this point on the fixed point lemma will be used without further mention.

The phrase "let φ be such that Qh φ «-> ξ(φ)", where ξ(x) is Γ+, is short for "let φ be

a (Γ+) sentence such that Qh φ <-̂  ξ(φ)" and the same applies mutatis mutandis to
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all similar phrases.

Applying the fixed point lemma we now prove two basic and very important

theorems.

A theory S is decidable if Th(S) is recursive, otherwise undecidable. S is essentially

undecidable if S and all its consistent extensions are undecidable.

Theorem 2. Q is essentially undecidable.

This follows at once from Corollary 1 (a) and:

Lemma 2. There is no formula binumerating Th(T) in T.

Proof. Suppose τ(x) binumerates Th(T) in T. Let φ be such that

(1) Qh φ <-» ιτ(φ).

If Th φ, then Th τ(φ) and so, by (1), Th ->φ. But then T is inconsistent, contrary to

Convention 2. It follows that TM φ. Since τ(x) binumerates Th(T) in T, this implies

that Th ->τ(φ) and so, by (1), Th φ, a contradiction.

Let U be any, not necessarily r.e., consistent extension of Q. By a truth-definition

for U we understand a formula υ(x) such that for every sentence φ,

(tr) Uh φ ̂  υ(φ).

The following result is known as the Tarski, or Gδdel-Tarski, theorem.

Theorem 3. There is no truth-definition for U.

Proof. The proof is almost the same as that of Lemma 2. Suppose υ(x) is a

truth-definition for U. Let φ be such that

Qh φ <-> -«υ(φ).

This together with (tr) implies that U is inconsistent, contrary to assumption.

The proof of Theorem 3 is a formal version of the so called liar paradox. In the

latter one considers a sentence saying of itself that it isn't true:

(*) (*) isn't true.

(*) is both true and not true, a contradiction. Thus, a sentence saying, what (*)

seems to say, cannot exist.

Let M be any model of Q. The set X of natural numbers is defined in M by the

formula ξ(x) if

X = {k: ξ(k) is true in M}.

X is definable in M if there is a formula defining X in M. Applying Theorem 3 to the

set of sentences true in M we get the following:

Corollary 7. Suppose M is a model of Q. The set of sentences true in M is not

definable in M; in particular, this is true of N.
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Thus, there is no full truth-definition in arithmetic. We do, however, have the fol-

lowing partial positive fact. A partial truth-definition for Γ sentences in T is a for-

mula Trr(x) such that for every Γ sentence φ,

Th φ <-> Trr(φ).

Let Γ(x) be a "natural" PR binumeration of the set of Γ sentences (cf . Fact 4 (d)). We

(may) assume that if Γ c Γ', then

PAh Γ(x) -> Γ'(x).

Fact 10. (a) There is a Γ formula Satr(x,y) with the following properties:

(i) For every Γ formula γ(x),

PAh γ(x) <-» Satr(x,γ).

(ii) Let Trr(x) := Satr(0,x). Then for every Γ formula γ(x),

PAhγ(x)^TrΓ(γ(x))

and so for every Γ sentence φ,

PAh φ ̂  Trr(φ).

(iii) PAh Γd(x) Λ Γ(y) Λ Trrd(x) Λ Trr(x->y) -> Trr(y).

(b) There is a \^+ι formula Satgn(x,y) such that for every Bn formula β(x),

PAh β(x)

Fact 10 (a) (i), (ii) can be used to justify self-referential constructions such as the

following one. Let γ(x,y) be any Γ formula. There is then a Γ formula ξ(x) such that

PAhξ(k)<-+ξ(k+l)vγ(k,ξ).

Indeed, this is equivalent to

PAhξ(k)^TrΓ(ξ(k+l))vγ(k,ξ).

Applying Fact 10 (a), we can now show that the arithmetical hierarchy, per-

taining to formulas of LA/ is proper; for the corresponding result for sentences, see

Corollary 2.5.

Theorem 4. Suppose PAH T. There is a Γ formula which is not Π1'1.

Proof. Let γ(x) := Satr(x,x). Suppose η(x) is Γ1 and Th η(x) <-* γ(x). -ιη(x) is Γ. Thus,

Th -ιη(x) <r+ Satr(x,- η) and so Th - η(- η) <-» γ(--η). But also Th η(-^η) <-̂  γ(-ιη). It

follows that Th -ΊΊ(- η) 4-> η(- η). But then T is inconsistent, contrary to Convention
2.

In terms of the partial truth-definitions we can formulate the following:

Fact 11. For every Γ,

PAh Vx(Γ(x) Λ Pr0(x) -> Trr(x)).

Let X I k = {ne X: n < k}. (Formulas such as Prx ( k(x) are then ambiguous, but the

ambiguity is harmless.) A theory T is reflexive if Th Conτ ( k for every k. T is essen-

tially reflexive if every extension of T (in the same language) is reflexive.
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Corollary 8. PA is essentially reflexive.

Proof. Suppose PAH T. Let k be arbitrary and let Γ be such that -^ΛTI k is Γ. By Fact

10 (a) (ii) and Fact 11, Th Pr0(-ΆT I k) -> --AT I k and so Th -1Pr0(--AT I k). But

then, by Corollary 5 (iv), Th Conτ | k, as desired.

From Fact 6 and Corollaries 5 (iv) and 8 we get:

Corollary 9. Suppose PAH T.

(a) If τ(x) binumerates T in T, then Th Conτj ̂  for every k.

(b) For all k and φ, Th PrT ik(φ) -^ φ.

Corollary 8 will be of crucial importance, especially in Chapters 6 and 7. But it

should be observed that, although many results proved in the following pages for

extensions of PA do depend on Corollary 8, others, for example, most of those of

Chapter 2 and all results of Chapter 5, do not. The latter results generalize to (pos-

sibly finitely) axiomatized, consistent extensions of PA, not (necessarily) formal-

ized in LA

The following elementary observations are occasionally useful.

Lemma 3. Let

π := Vx(α(x) -> 3y<xβ(y)), θ := Vy(β(y) -» 3x<yα(x)),

σ := 3x(α(x) A Vy<x-β(y)), χ := Ξy(β(y) A Vx<y-α(x)).

Then

(i) PAh π v θ,

(ii) PAh-(σAχ),

(iii) PAh (π A θ) -» Vχ- α(x),

(iv) PAh Ξxα(x) -> (σ v χ),

(v) PAh σ <-> (Ξxα(x) A θ),

(vi) PAh 3xα(x) -> (χ <-> - σ).

Proof, (i) Argue in PA: "Suppose -iπ and ->θ. Let z and u be such that α(z),

-«3y<zβ(y), β(u), -Gy<uα(y). Then -«u < z and ->z < u, impossible. Thus, π v θ." This

proves (i).

(ii) follows from (i).

(iii) Argue in PA: "Suppose π, θ, and 3xα(x). By the least number principle,

there is a smallest z such that α(z). Since π holds, there is a u < z such that β(u). But

then, by θ, there is a v < u such that α(v). It follows that v < z, a contradiction."

This proves (iii).

(iv) follows from (iii).

(v) follows from (i) and (iii).

(vi) follows from (ii) and (iv).
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Corollary 10. Suppose α(x) and β(y) are PR. Let θ be as in Lemma 3.

(a) If Ξxα(x) and Vyβ(y) are true, then PAh θ.

(b) PAh (Ξxα(x) A Vy-β(y)) -> PrPA(θ).

Proof. Let π be as in Lemma 3.
(a) If 5xα(x) and Vχ- β(x) are true, so is -«π. Since - π is Σlx it follows that PAh

-iπ. But then, by Lemma 3 (i), PAh θ. *

(b) h (5xα(x) Λ Vy-<β(y)) -> - π. Since -«π is Σl7 we have PAh ->π -> PrPA(-«π), by

Fact 9 (b). By Lemma 3 (i), PAh - π -> θ. By (BLi) and (BLii), we get PAh PrPA(- π)

-> PrPA(θ). Putting these together we get the desired conclusion.

For the concepts and results of (elementary) recursion theory used in this book

we refer to Soare (1987). A set is Π^ (Σ°) if it is defined in N by a Πn (ΣJ formula.

X is a complete Π ° (Σ°) set if X is Π ° (Σ°) and for every Π ° (Σ°) set Y, there is a recur-

sive function f(k) such that for every k, kE Y iff f(k)e X. No complete Π £ (Σ°) set is

Σ° (π£). Complete Π° (Σ°) sets exist. If T is true, Theorem 4 follows directly from

the fact that for each n > 0, there is a Γl£ (Σ°) set which isn't Σ£ (π£).

The following notions will be needed in Chapter 7. A partially ordered set L =

(L, <) is a lattice if any two members a, b of L have a least upper bound (l.u.b.) a u b

and a greatest lower bound (g.l.b.) a n b. Thus, a u b < c i f f a < c and b < c; similar-

ly, c < a n b iff c < a and c < b. It follows that a < b iff a n b = a iff a u b = b. L is

distributive if for all a, b, ce L,

a n (b u c) = (a n b) u (a n c);

or equivalently,

a u (b n c) = (a u b) n (a u c).

The inequalities

(a n b) u (a n c) < a n (b u c),

a u (b n c) < (a u b) n (a u c)
hold in all lattices.

Suppose L has a minimal (maximal) element OL (IL). If a n b = 0^ and a u b =

1L, then b is a complement of a (and a a complement of b). If L is distributive, each

a has at most one complement. If b = max{c: a n c = 0L}, then b is the pseudocom-
plement (p.c.) of a.

Exercises for Chapter 1Exercises for Chapter 1.

1. Improve Lemma 2 by showing that if U is any consistent extension of Q, not nec-

essarily r.e., there is no formula numerating N - Th(U) in U.

2. (a) Let Y be any r.e. set of formulas decidable in T. Show that there is a recursive

set X such that no member of Y binumerates X in T.

(b) Suppose PAH T. Show that every Δα formula is decidable in T. Conclude that
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there is a recursive set which is not binumerated by any Δj formula in T (compare

Corollary 3 (a)).

3. (a) Suppose T is Σ1-sound. Show that not every recursive function is provably

recursive in T (compare Exercise 2.28 (b)). [Hint: Let δ0(x,y), δ1(x,y),... be an effec-

tive enumeration of all Σ^ formulas δ(x,y) provably in T defining (total) functions,

i.e. such that

(tot) Th VxΞyVz(δ(x,z) <-» z = y).

For each m, let fm(k) be the recursive function defined by δm(x,y) in T. The func-

tion g(k) = fk(k)+1 is recursive.]

(b) Suppose PAH T. Show that if T is not Σ1-sound, then every recursive func-

tion is provably recursive in T. (Thus, the restriction to Σ^-sound theories in (a) is

essential.)

(c) Show that for each recursive function f(k), there is a formula δ(x,y) defining

f in T and such that (tot) holds. (Thus, the restriction to Σ^ formulas in the defini-

tion of "provably recursive" is essential.)

4. Show that there is no formula α(x) such that for all φ, ψ,

(i) Th α(φ) -> φ,

(ii) Th α(α(φ)->φ),
(iii) if h φ, then Th α(φ),

(iv) Th α(φ) and Th α(φ-»ψ), then Th α(ψ).

(This improves the Godel-Tarski theorem; see also Exercise 4.4.) [Hint: Let χ :=

AQ. Let φ be such that

Qh φ <-> ~ια(χ->φ).

It follows that

i- (α(χ->φ) -> (χ -»φ)) -> (χ -> φ)
Show that Th φ and Th - φ.]

5. Suppose PAH T.

(a) Show that Trr(x) is not Π1^ (compare Theorem 4).

(b) Show that there is a Δn+1 formula which is not B^ (compare Theorem 4).

6. (a) Show that if T is Σj^-sound, then T is Πn+1-sound.

(b) Suppose PAH T and T is true. Let φ be such that

PAh φ <* 3z^(z) A Prτ+φ(z) Λ -Tr^z)).

(These sentences will reappear in Chapter 5.) Thus, φ "says" that T + φ is not

Σn-sound. φ is Σn+1. Show that φ is false. Conclude that Σj^-soundness does not

imply Σn+1-soundness.
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Notes for Chapter 1.
The background material on formal arithmetic and Godel numberings presup-

posed in this book can be found in several textbooks, for example, Kleene (1952a),

Mendelson (1987), Smoryήski (1985), Kaye (1991), Boolos (1979), (1993), Hajek and

Pudlak (1993). We follow Feferman (1960) in identifying formal expressions with

their Godel numbers. Facts 2 and 4 are due to Godel (1931). When, somewhat later,

the recursive functions were defined, the proof of Fact 3 presented no new diffi-

culties. For proofs of these Facts and Fact 1, see any one of the textbooks just men-

tioned. The terms "numerate" and "binumerate" are due to Feferman (1960).

Theorem 1 is due to Craig (1953). The exact definitions of PR, Σ^, Πn/ ̂  vary from

one author to another, depending on the intended applications; for example, other

authors often use ΔQ to denote the set of bounded formulas, i.e. formulas all of

whose quantifiers are bounded (cf. e.g. Kaye (1991) and Hajek and Pudlak (1993)).

The present definitions have the advantage that the concepts are easy to work with

(in the present setting) and that the sets PR, Σ^ Πn are primitive recursive (Fact 4

(d)) (Δ^ n > 0, is not recursive; see Exercise 2.4 (d)). The formulas Prfσ(x,y), Prσ(x),

Conσ were introduced by Feferman (1960). Fact 9 is due to Feferman (1960). The

Bernays-Lδb provability conditions are due to Lob (1955), simplifying the original

conditions due to Bernays (cf. Hubert and Bernays (1939)). Part (a) of the fixed

point lemma is implicit in Godel (1931); it was first stated explicitly by Carnap

(1934) (see also Godel (1934)). The more general versions (b) - (e) were subse-

quently obtained by Ehrenfeucht and Feferman (1960) and Montague (1962).

Lemma 2 and Theorem 2 first appeared in Tarski, Mostowski, Robinson (1953); for

a stronger result, see Exercise 2.3. Theorem 3 was first published by Tarski (1933)

(see also Godel (1934)). The application of (partial) truth-definitions goes back to

Hubert and Bernays (1934,1939); a full proof of Fact 10 is given in Kaye (1991). For

a slightly different proof of Theorem 4 and a related result, see Exercise 5. Fact 11

is essentially due to Kreisel and Wang (1955) (see also Mostowski (1952a)); for a

sketch of a proof of a related result, which can easily be turned into a proof of Fact

11, see Kaye (1991), p. 140. Corollary 8 is due to Mostowski (1952a).

Exercise 4 is due to Montague (1963).




