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Abstract. We argue that the models that are relevant to computer sci-
ence are recursive and that Recursive Model Theory deserves being stud-
ied systematically, with at least the same vigor as Finite Model Theory
has been. We study the status of some fundamental theorems from the
classical model theory in this context and establish failure of several of
them, including (generalized) Completeness, Compactness, Beth's Defin-
ability, Craig's Interpolation, and Lyndon's Lemma.

1 Introduction

Classical Model Theory deals with all models. If, for whatever reason, the class of
models is restricted, this may potentially change model-theoretical laws that we
take for granted. Take, for instance, the central for logic notion of truth. There
may be sentences that are uniformly true in all the models of a certain class, but
refutable in models not in the considered class. Hence, restricting the class of
models may expand the class of true sentences. Conversely, the class of satisfiable
sentences may shrink. If this actually happens, the equivalence between Model
Theory and Proof Theory implied by Gδdel's Completeness Theorem discontin-
ues to hold, although in a specific situation a remedy can possibly be found by
changing the axiomatization.

Recently, the Model Theory of finite models (those with finite universes) has
been intensively investigated. The main motivation for Finite Model Theory has
been the fact that, in several computer science applications, notably in databases,
the models are often finite, and many issues in the theory of databases can be
studied in the context of Finite Model Theory. Surprisingly or not, Finite Model
Theory looks very much different from its classical counterpart.

The author is generally interested in Logic in Computer Science, and while
finite models often are relevant to Computer Science, without question, not all
the models that show up in CS applications are finite. Even in databases which
have long been the Finite Model Theory refuge, infinite models not only show
up, but actually move towards the central stage. In other CS playgrounds, say, in
verification, finite models have never had any noticeable fraction of the market.

* Abstract of Plenary Talk given at Logic Colloquium'95, Haifa, Israel.
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Having said this, it is on the other hand the author's conviction that con-
sidering arbitrary models is irrelevant, as far as Computer Science is concerned.
By way of example, suppose we knew that a constraint was going to be uni-
versally satisfied for all the databases over countable domains. Would it be a
sufficient evidence to altogether eliminate this constraint from the list of con-
straints? My answer is "yes", because all the databases that a computer can
handle are countable. Moreover, they are recursive, or constructive.

Of course, computer scientists do play with non-recursive structures. For
example, a series of papers has appeared recently that deal with and estab-
lish interesting results about constraint databases over o-minimal and quasi o-
minimal domains—a diverse family that includes several recursive structures, but
at the same time includes such monstrous structures as the reals—see [PVV95,
BDLW96, ST96]). The strength of these results is in providing uniform tech-
niques for a wide class of domains, recursive and non-recursive alike, however,
at the end it should not be forgotten that reals can not be represented inside
a computer. In my view, "databases over the reals" can be used as a figure of
speech, but should not be confused with real databases that are organized over
strings, integers, and other recursive domains.

Generally, recursive models have been studied for decades. But the question,
"what Logic would look like if we had recursive models only?", has never been,

to the best of the author's knowledge, systematically addressed before. In this
paper, we consider several central results of Classical Model Theory:

- GόdePs Completeness Theorem

— Compactness Theorem

- Craig's Interpolation Theorem

- Beth's Definability Theorem

- Lyndon's Lemma on Monotonicity

from this viewpoint, and show that they all fail over recursive models—the situa-
tion remarkably similar to that with finite models. This indicates that Recursive
Model Theory deserves being studied systematically, with at least the same vigor
as the theory of finite models has been.

I wish to point the reader's attention to another paper in Recursive Model
Theory [HH96] where Harel and Hirst (independently of this paper) show failure
of Compactness and Completeness, and also prove several other results, including
a very nice asymptotic law for recursive models.

Finally, a few words about the techniques used in this paper. We start off by
pulling together several results about nonstandard models of Peano Arithmetic
that jointly imply finite axiomatizability of the standard model N of arithmetic
in the class of recursive models. This result is used as instrumental in refuting
several of the aforementioned classical results in the context of recursive models.
Of them the only one that requires a technically involved argument is Lyndon's
Lemma. Generally, we further develop the technique introduced in [Sto95] for
refuting Lyndon's Lemma over finite models. This requires substantial changes,
but at the end, the proof turns out to be even a bit simpler.
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2 Preliminaries

2.1 Recursive models

A model is called recursive iff it is isomorphic to a model over the natural
numbers (or an initial segment thereof) with all the signature functions and
predicates defined by recursive functions.

For example, every finite model is recursive. There are, however, infinite
recursive models, some of them well known: the standard model N of Peano
Arithmetic, or rational numbers with equality, + and x. Recursive models should
not, however, be confused with models with decidable theories, as these two
notions are independent. Indeed, the theory of real numbers with +, x , 0 , l is
decidable, but the model is not recursive by virtue of its uncountability; on the
other hand, the aforementioned standard model of arithmetic, while recursive,
is undecidable.

2.2 Tennenbaum's Theorem and generalizations

The goal of this subsection is to pull together several results jointly implying
finite axiomatizability of N, in the class of recursive models. As is well known,
Tennenbaum [Ten59] showed that the standard model of arithmetic is the only
recursive model of Peano Arithmetic PA. However, PA is not finitely axiomati-
zable. Second however, McAloon [McA82] extended the result by showing that
N continues to be the only recursive model of /Z\o, and, by implication, of IΣnι

for any n. IX denotes a restricted version of PA with the induction axiom applied
to X-formulas only.

Now, although the question of finite axiomatizability of IΔ0 continues to
be open, it is known that IΣn, for n ^ 1, is finitely axiomatizable—see, e.g.,
Exercise 10.4 in [Kay91]. Hence:

Theorem 1. The standard model N of Peano Arithmetic is finitely axiomatizable
in the class of recursive models.

Fix a finite axiomatization A of N—for example, a finite axiomatization of IΣ\.

2.3 Monotone formulas

The classical result by Roger Lyndon [Lyn59] is that any first order formula,
monotone in a certain predicate, is equivalent to some formula of the same
signature that is positive in the predicate. Apart from the fact that the lemma
is used in proofs of Lyndon Interpolation Theorem, it reflects a very interesting
logical phenomenon and is hence extremely interesting by itself.

By definition, a formula is positive in a predicate symbol iff, syntactically,
every occurrence of this predicate symbol in the formula is under an even number
of negations.
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Monotonicity of a formula in a predicate is, on the other hand, a semantical
property. Namely, a formula φ(P, x) with free variables x is monotone in a
predicate symbol P iff for every model M, tuple a, and every extension Q D PM,

M \= <^(PM,a) implies M f

The "every model" refers to every model of the class we consider. The standard
definition means "every possible model" , but now we are interested in recursive
models only.

All the same, a formula positive in a predicate symbol is necessarily monotone
in this symbol. In the other direction, over all models Lyndon's Lemma says
that every monotone formula is equivalent to a positive formula. To show that
Lyndon's Lemma fails over recursive models we will need to construct a formula
monotone in a predicate symbol over all recursive models, but not equivalent,
over recursive models, to any positive formula.

3 Classical Theorems in Recursive Models

The goal of this section is to look at several important classical results about
first order logic and to clarify their status in the recursive model theory.

To begin with, several classical theorems are syntactical by nature, and their
status does not depend on a particular class of models being considered. A good
example is the Prenex Normal Form.

Several other results, however, directly relate to the class of models, and
it makes a perfect sense to inquire as to their status. Surprisingly or not, we
establish here failure of several such results.

Theorem 2 No GόdePs Completeness. In recursive models, first order truth
is not recursively axiomatizable.

PROOF: By Theorem 1, N is finitely axiomatizable. If the truth over recursive
models were recursively axiomatizable, then so would be arithmetical truth. But,
by GδdeΓs Incompleteness Theorem, it is not. Q.E.D.

Theorems No Compactness. Compactness Theorem fails over recursive mod-
els.

In other words, there exists a set of first order sentences whose every finite
subset has a recursive model, while the set itself does not have a recursive model.

PROOF: Recall that A is the finite axiomatization from Theorem 1. Consider
the arithmetical signature plus an additional constant symbol oo. Let ε/-, for
A r £ { 0 , l , 2 , . . . } , b e the following sentence of this signature:

.4Λoo > k.

The oo > k is an obvious abbreviation. Then the set
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does not have a recursive model. However, every finite subset of Ξ is satisfied in
the standard model when oc is interpreted as a large enough number (greater
than all the ks in the sentences). Q.E.D.

Let us now formulate Craig's Interpolation Theorem and Beth's Definability
Theorem that we are going to refute next:

Theorem 4 Craig's Interpolation Theorem. Letφ, ψ be two sentences, such
that φ \= ψ. There exists a sentence δ, such that:

1. φ\=δ

2. δ (= ψ, and
3. any relation, or function symbol, occurring in S (except possibly for equality)

does also occur in both φ, and ψ

This sentence 6 is often called an interpolant of <£>, ψ.
Consider a signature ί2, and an extra predicate symbol R (£ Ω. Let φ(R) be

a sentence over the signature Ω(J{R}. We say that φ(R) defines the predicate R
implicitly iff for any model M of the signature Ω there exists a unique interpre-
tation RM of the predicate Λ, such that the sentence φ(R) is valid in M under
this interpretation of R.

Theorem 5 Beth's Definability Theorem. Let Ω be a signature, R (£ Ω be
a new predicate symbol of an arity k, and let a sentence φ(R] over the signature
Ω U{H} define the predicate R implicitly. There exists a formula ψ(x\ , #2, > #fc)
over the signature Ω such that

φ(R) \= VxιVίC2 . Vic* ( R ( x ι , X 2 , . . . , xk) < — > φ(xljx2, . . . , xk)) .

In other words, over all models implicit definability does not increase the
power of first order logic in defining predicates. It will also be useful to have in
mind the following "modern" proof of Beth's Definability Theorem: essentially,
it demonstrates the well known fact that for any reasonable class of models, and
any reasonable logic, the interpolation property implies the definability property.
PROOF OF THEOREM 5: Since φ(R) defines R implicitly, by definition, we have
(for the signature Ω(J{R, R'}, where R1 is yet another new predicate symbol of
the same arity k):

φ(R) Λ φ(R'} \= VzιV* 2 . . . Vxk(R(xι , *2, - . . ,**)—> Λ'(*ι , *2, . - - , **))-

Let us enrich the signature with the additional constants (0-ary function sym-
bols) cι,c2, . . . , c/j . Now,

φ(R) Λ φ(R') \= Λ(cι,C2, . . . , C Λ ) — > Λ'(cι,C2, . . . , c^), or, in other words,

φ(R) Λ Λ(cι , c2, . . . , ck) N φ(R'} — > Rf(cι , c2, . . . , ck).

By Craig's Interpolation Theorem, there exists an interpolant V>( c ι> C2, ,
over the signature ί?(J{cι, C2, . . . , c^} (but without R, R'), such that:
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2 , . . . , c f c ) , and
2. ^(ci , c2, . . . , cfc) μ p(Λ') — > Λ'(cι , c2, . . . , c fc)

Now, the sentence 1 refers to the models of the signature Ω (J{.R, ci, 02, . . . , c^},
while 2 does to ones of Ω\J{R', ci, 02, . . . , c^}. As any model of the former sig-
nature is also a model of the latter, if we interpret R' as R, we finally have:

- φ(R] Λ Λ ( c ι , c 2 , . . . , c * ) (= V > ( c ι , c 2 , . . . , C f c ) , and

in the signature ί^yjΛ, ci, c2, . . . , c*), or

- φ(R) \= Λ(c ι ,c 2 , . . . ,c Λ ) — >• ^(cι ,c 2 , . . . ,c f c ) , and

Combining these two assertions, we have:

|= Λ(c ι ,c 2 , . . . ,c f c ) < — >• ^ ( c i , c 2 , . . . , c j b ) , or, further,

|= VzιVz2 . . .Vxfc(Λ( j? ι ,a : 2 , . . . , a : f e ) ^ — >• ψ(xι, x2, . . . ,

for the signature i?|J{#}. Q.JB.D.

The situation changes dramatically over all recursive models:

Theorem 6 No Beth's Definability. Beth 's Definability Theorem fails for re-
cursive models.

Specifically, there exist a signature Ω, and a sentence φ(P) in the signature
Ω(J{P}, where P is a unary predicate symbol not in Ω, such that:

1. in every recursive model M of the signature Ω, φ(P) is satisfied for one and
only one unary predicate PM substituted for P

2. there exists a recursive model M of the signature Ω such that for any formula
ψ(x) in the signature Ω with one free variable x:

MPφ({a£ \M\ : φ(m)})

PROOF: The set of all true arithmetical sentences is implicitly definable in
arithmetic (see, e.g., [Rog67]). Let Ω be the arithmetical signature +, x, <, 0, 1,
and let T(P) implicitly defines the set of numbers of true arithmetical sentences.
This set, however, is not explicitly definable in arithmetic [Rog67].

To finish the proof, define the required φ(P) as follows:

μ Λ T ( P ) ) V ( - Λ Λ ( V z ) ( P ( z ) — > false)),

where, again, A is the axiomatization from Theorem 1.
Observe that φ(P) defines the set of numbers of true arithmetical sentences

in the standard model, and an empty set otherwise. Q.E.D.

Now, let us refute Craig's Interpolation Theorem.
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Theorem 7 No Craig's Interpolation. Craig's Interpolation fails over recur-
sive models.

In other words, there exist two sentences φ, φ such that φ \= ψ over all
recursive models, but no interpolant sentence S exists such that:

1. φ \= S over all recursive models
2. δ \= φ over all recursive models, and

3. any relation, or function symbol, occurring in S (except possibly for equality)
does also occur in both φ, and ψ

PROOF: A closer look at our proof of Theorem 5 reveals that, if Craig's Inter-
polation Theorem (Theorem 4) held over recursive models, we would be able to
prove Beth's Definability Theorem over recursive models as well. But we already

know that the latter fails for recursive models. Q.E.D.

4 Failure of Lyndon's Lemma

Finally, we are going to refute Lyndon's Lemma. Our method of refutation builds

on the technique developed in [Sto95] for finite models. There, the author in-
troduced Positive Pebble Games and proved that they capture "preservation"
under positive formulas. Independently, similar games (together with one direc-
tion of proof of the Theorem 9) were introduced in [McC95].3 Let us recall the

definitions from [Sto95].

4.1 Positive preservation and pebble games

Definitions positive n-preservation. Let A, B be two models of a certain

relational signature Ω = Δ (J<9, Δ and Θ be disjoint, and let a = αi, 0 2 , . . ., flfc,

b = 61,62, , bk be elements of \A\, |ΰ|, respectively.
We say that (A, a) is Θ-positively n-preservable by (J3,b), iff any first order

θ-positive formula φ(x\^ #2, , Xk) of quantifier depth n with k free variables
a?ι, #2, , %k that is true in A under #ι, x < ± , . . . , x^ :— αi, a^,..., α/c, is also true

in B under x\, x z,..., x^ := &ι, & 2 j 5 bk
If k — 0, we will simply say that A is Θ-positively n-preservable by B.

Let Ω — A (J Θ be a relational signature, A and Θ be disjoint, and let A, B

be two models of the signature. Let a = αi, 0 2 , . . . , < Z Λ , b = 6χ, 6 2 , . . . , 6/e be
elements of \A\, \B\, respectively. Consider the following game of two players on
the pair {(A, a), (5,b)}, called n-positive pebble game, for n > 0.

Each player initially has n pebbles, numbered 1, 2 , . . . , n. In the first step of
the game, the first player, whom we will call Spoiler, chooses a model among
A,B, and places his pebble with number 1 onto some element of the model.

3 An anonymous referee has suggested that the idea of "positive pebble games" might
have been known to certain model theorists in some form.
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Then the second player, whom we will call Duplicator, takes the other model,
and places his pebble with number 1 onto some element of this model.

After (r — l)-th step of the game, for 1 < r < n, each player retains the
pebbles numbered r, r -f 1 , . . . , n, while the pebbles numbered 1, 2 , . . . , r — 1 are
somehow placed onto elements of the models A, B. Then in the r-th step of the
game, again, the first player chooses a model among A, B, and places his pebble
r onto some element of the model. Then the second player takes the other model,
and places his pebble r onto some element of this model.

The n-positive pebble game ends after its rc-th step. After the game ends,
each of the models A, B has pebbles numbered 1, 2 , . . . , n placed somehow onto
its elements. Let a^+i, a/e+2, , a/e+n be the elements of A covered with, respec-
tively, pebbles numbered 1, 2 , . . . , n, and let 6^+1,6&+2, . . . , δ/e+n be the elements
of B covered with, respectively, pebbles numbered 1 , 2 , . . . , n.

Let A! be the substructure of A generated with αi, 0 2 , . . . , α/c+n, and let B1

be the substructure of B generated with &ι, 6 2 , . . . , 6/c+n
By definition, the second player, Duplicator, wins the game, if the mapping

Q*i »-> 6f, for i = 1, 2 , . . . , k -f w, is correctly defined and this mapping is:

1. an isomorphism of Z^-reducts of A' and B1

2. a homomorphism of (9-reduct of A1 onto (9-reduct of B1.

Otherwise the first player, Spoiler, wins the game.

Theorem9. Let A, B be two models of a finite relational signature Ω = Δ\JΘ
(with or without constants), A and θ be disjoint, and let a. — α ι , α 2 , . . . , α & ,
b = 6χ, 6 2 , . . . , bk be elements of \A\, \B\, respectively.

(A, a) 25 θ-positively n-preservαble by (5,b), iff Duplicator has a winning
strategy in the n-positive pebble game on the pair {(Λ,a), (#,b)).

4.2 Rotated grids

The goal of this subsection is to define the class of recursive models that is going
to be instrumental in refuting Lyndon's Lemma. These structures will be called
Rotated Grids of Finite Height, or simply Rotated Grids.

First, let's attempt an informal explanation. Imagine a grid on points (i, j)
on the integer surface, with two unary functions—North and West—connecting
(ί, j) with ( i , j+1) and (i— 1, j), respectively. In the grid structure, there is going
to be a binary relation H which is the union of the graphs of the two functions.

Now, rotate this grid 45 degrees clockwise, draw two parallel horizontal lines,
and cut off every thing above the upper, and below the lower line. This constitutes
an informal definition of a rotated grid.

Additionally, the second binary relation, <, is defined in a rotated grid as
the transitive closure of H. If < is a proper subset of the transitive closure of
H, the result is called a rotated undergήd.

On the side, in the rotated (under)grids we will have the standard model
of arithmetic (with -f, x ,0 ,1 and ^—distinguished from <), whose elements—
natural numbers—are distinguished from the pairs by a unary predicate TV.
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These two parts of the models are going to be related by a binary relation == that
connects all the points of a horizontal level in an (under) grid to the "number"
of this level. There are finitely many levels.

Formally, the non-arithmetical part of an (under)grid of k levels is defined
as the collection of elements:

with the binary predicate H defined as follows:

((ι, j),(/,m)) eH iff / = i-f l Λ ( j = m V j + l = m).

Notice that, for technical convenience, the first coordinate of a tuple numbers the
level — this is different from the informal explanation attempted above, although
the structure continues to be precisely the same.

The relation Ξ connecting the grid part with N is defined as follows:

The intention of this relation = is to make the finiteness of the height of grids
axiomatizable.

Finally, a rotated undergrid of height k is called canonical iff adding the pair
((0, 0), (fc, 0)) to its relation H makes it a rotated grid.

Theorem 10. For any n, a rotated grid of height 2n+2 is positively n-preservable
by its canonical undergrid.

PROOF: Due to Theorem 9, it suffices to demonstrate a winning strategy for the
second player in the positive n-game played in the rotated grid and its canonical
undergrid.

First, in the arithmetical part, the games is played by replicating all the
moves, while in the non-arithmetical part (in the grids), the moves will at least
preserve the levels. Because of the definition of the relation ΞΞ, specifics of the
pebble positions within the arithmetical part become irrelevant to winning the
game, and we can henceforth concentrate on the grid parts only.

On the grids, Duplicator starts from drawing an imaginary line cutting the
two grids into two parts. This line is drawn through the points (0, — 2n+1) and
(2n+2,2n+1). The part of the grid on or at the left from the line will be called
left, and the other part will be called right.

Generally, any move of Spoiler in the right part of either of the grids is
answered by replicating. In the left part, when Spoiler pebbles an element (z, j)
in the grid, Duplicator answers by pebbling (i, j-f 1) in the undergrid. Conversely,
when Spoiler pebbles ( i , j ) in the undergrid, duplicator answers (i, j — I) in the
grid. At the step k of the game, Duplicator moves the imaginary line 2n+1~/e

steps left or right, as follows:

- if the last move was in the left part, move the line to the right
- if the last move was in the right part, move the line to the left
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("left" and "right" here refer to changing the second coordinate).
It is easy to see by induction, that the distance from the imaginary line to

the closest pebble is, after the fcth step, at least 2n~k. Hence, between right and
left pebbles, the relation H is impossible.

Observe, that although the line moves throughout the game, a pebble once
attributed to the left (right) part, continues to be in this part. Therefore, sepa-
rately, the positions of the left (right) pebbles in the two structures are isomor-
phic. To show that Duplicator wins the game, it then suffices to show that, if in
the grid, I, r are two pebbled elements from the left and right parts, respectively,
and r < -£,4 then in the undergrid, the corresponding pebbled elements r',11 are
in the same relation r1 < t1.

Indeed, let t = (ht,vt),r — (hr,vr). r < t implies hr < hi and vr < vt. By
definition,^' — (ht, vt+l), r' = (hr, vr). Taking into account that (hi, vr+ht — hr)
is, by definition, in the right part, we can conclude that VL + \ < vr + hi — hr.
Hence, r1 < t'. Q.E.D.

4.3 Monotone separation of rotated grids

A binary relation < defined in a set U is called cyclic, iff there exist elements
ei, e 2 , . . . , en £ [7, n > 0, such that e\ < e2 < < en < e\. < is called acyclic
iff it is not cyclic.

An acyclic relation < in a set U is called downward infinite iff there exist
infinitely many elements {ei}^=_001 such that < e_ 2 < e_ι < e0. An acyclic
< is called downward finite iff it is not downward infinite.

To begin with, let's axiomatize a class of models of the rotated grids' signature
where H is an acyclic downward finite relation in N (not all such models though).
This class will include rotated (under)grids. In what follows, AN is the axiom
system A from Theorem 1, specialized to the predicate TV. Consider the following
list of axioms:

AN (I)
Vx £ N3\n e N(x ΞΞ n) (2)

\/xy £ NVnm G N ( H ( x , y ) f \ x = n/\y = m —»m = n + 1) (3)

Obviously, in the recursive models of this axiom system, H is acyclic and down-
ward finite. For the rest of the section, consider only recursive models of this
axiom system.

The following is a variation of the technique used in [Sto95].
In the grid structure, α is called an immediate predecessor of 6, iff #(α,ό),

and a predecessor of 6, iff α is an immediate predecessor of either 6, or one of its
predecessors. Similarly, we can define the notion of <-predecessor. The following
formula β(x) with one free variable x asserts that if b < x, a is an immediate
predecessor of 6, and c < 6, then c < x and c < b:

-ιTV(ar) Λ Vyzu g N ( H ( z , y)/\u<z/\y<x —> z < x Λ z < y).

4 Notice that, by the definition of the imaginary line, t < r is impossible.
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The following formula a(x] asserts the property β for x and for all its <-
predecessors:

In the above formulas, u < v abbreviates u = v V u < v. Note that it is different
from the arithmetical comparison ^ defined in N . An important property implied
by a is observed in the following:

Lemma 11. Assume both the relations H and < are acyclic and downward fi-
nite.

//, for an element e, ct(e), then the relation < restricted to the set of H-
predecessors of e together with e itself, extends the transitive closure of H on
this set.

PROOF: Clearly, < extends H. By induction, assume that if (α, b) £ TC(H) and
the difference in the levels of a and 6 is smaller than Ar, then the lemma holds.

Take (α, 6) £ TC(H) with the level difference k. Take an element c such that
(α, c) £ TC(H), H(c, b). Since, by induction, β(b) and α < c, we have α < 6.

Q.E.D.

Informally, our axioms for < are organized into two groups — positive and
negative — whose disjunction constitutes the axiomatization. The positive part
is very simple, it asserts that < is transitive and contains the transitive closure
of # in N:

V x y ( £ N ( H ( x , y ) — > x < y) (4)

Vxyz £ N(x < y Λ y < z — > x < z) (5)

For example, the rotated grids are going to be accepted because of this positive
part alone.

The negative part accepts models where the relation < is "weird". One
example is when the relation disagrees with the level numbers, but, more impor-
tantly, when the following situation occurs:

- all the immediate predecessors of a certain α satisfy α
- a certain b < a

— for no immediate predecessor c of α, c < b

In this situation, it is guaranteed that 6 is not a predecessor of α (in the sense
of H), still it is smaller than α, hence, the model is not an undergrid! Here are
the negative axioms:

3xy £ N3nm £ N(x = n/\y = m/\m<^n/\x<y) (6)

3xy <£ N(x < y Λ Vu £ N(H(u, y) — > a(u}) Λ ^3z £ N(H(z, y) Λ z < x)) (7)

The formal proof consists of a few lemmas:

Lemma 12. The conjunction of the negative axioms is monotone in <.
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PROOF: If Axiom 6 is satisfied once, it is going to be satisfied in any extension
of <. So the interesting case is when Axiom 6 is not satisfied for <, but Axiom 7
is satisfied, say, 6, a witness the axiom. Extend < arbitrarily. Again, assume
Axiom 6 is not satisfied in the extension, hence < is downward finite.

Call an element e sound (with respect to the current definition of <) iff all
its predecessors are sound, and for any element /, / < e iff / is a predecessor
of e. Observe that all the elements at the level 1 are sound in the extension, and
that soundness of an element implies the property α.

Observe that by Lemma 11, < extends the transitive closure of H on the
set of //-predecessors of a (because a holds for all the immediate predecessors
of α). The same remains true in the extension. Therefore, if 6, a do not witness
Axiom 7 anymore, among the predecessors of a there is going to be an element
a' which is not sound, but its all predecessors are sound. Hence, there exists a
6' such that b' < a1, but b' <£ c for any immediate predecessor c of a'.

These b' < a1 will now witness Axiom 7 in the extension.

Clearly, our proof relies on the downward finiteness of H.

Q.E.D.

Lemma 13. //< strictly extends the transitive closure of H, one of the negative
axioms is satisfied.

PROOF: Again, Axiom 6 is the trivial case. If the extension, however, does not
satisfy Axiom 6, there is going to be an element which is not sound with all its
predecessors being sound, which finishes the proof as in the case of Lemma 12.

Q.E.D.

Finally, our axiomatization is going to be:

Axiom 1 Λ Λ Axiom 3Λ

(Axiom 4 Λ Axiom 5 V Axiom 6 Λ Axiom 7)

Clearly, this axiomatization accepts every rotated grid, but does not accept any
rotated undergrid. Combining this with Lemmas 12, 13, and Theorem 10, we
finally have:

Theorem 14. There exist a signature Ω and a sentence μ in this signature such
that:

- μ is monotone in a predicate symbol P £ Ω over the class of recursive models
of the signature Ω

- mu is not equivalent, over the class of recursive models of the signature, to
any formula π in the signature Ω positive in the predicate symbol P
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5 Conclusion

There are many natural problems related to Recursive Model Theory whose sta-
tus needs to be resolved. One fascinating open problem that we want to specif-
ically attract public attention to is, whether an analogue of Gurevich-Shelah
Theorem holds for recursive models. Recall that, although Lyndon's Lemma
fails over finite models, the fixpoints of positive and monotone formulas over
finite models were shown to be the same (see [GS86]). Likewise, the fixpoints
continue to be the same in the standard model of arithmetic (and in some even
more powerful recursive structures), even though the status of Lyndon's Lemma
there continues to be open (see [Dou87]).

The Beth definability theorem as used in this paper sometimes is called the
"weak Beth definability theorem", while the "Beth definability theorem" is used
to refer to the version of the theorem in which "one and only one" is replaced
to "at most one". Clearly, this relaxed version is refuted by this paper as well.
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