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Abstract. We show the consistency of ZFC + "there is no NWD-
ultrafilter on u>", which means: for every non-principal ultrafilter T> on
the set of natural numbers, there is a function / from the set of natural
numbers to the reals, such that for every nowhere dense set A of reals,
{n : f ( n ) £ A} £ T>. This answers a question of van Douwen, which was
put in more general context by Baumgartner.

0 Introduction

We prove here the consistency of "there is no NWD-ultrafilter on ω" (non-
principal, of course). This answers a question of van Douwen [vD81] which ap-
pears as question 31 of [B6]. Baumgartner [B6] considers the question which he
dealt more generally with J-ultrafilter where

Definition!. 1. An ultrafilter T>, say on ω, is called a J-ultrafilter where J is
an ideal on some set X (to which all singletons belong, to avoid trivialities)
z/for every function / : ω —>• X for some A £ Ί) we have f" (A) £ J.

2. The NWD-ultrafilters are the J-ultrafilters for

J — {B C Q : B is nowhere dense}

(Q is the set of all rationale; we will use an equivalent version, see 22).

This is also relevant for the consistency of "every (non-trivial) c.c.c. σ-centered
forcing notion adds a Cohen real", see [Sh:F151].

The most natural approach to a proof of the consistency of "there is no
NWD-ultrafilter" was to generalize the proof of CON(there is no P-point) (see
[Sh b, VI, §4] or [Sh f, VI, §4]), but I (and probably others) have not seen how.

We use an idea taken from [Sh 407], which is to replace the given maximal
ideal / on ω by a quotient; moreover, we allow ourselves to change the quotient.

The research partially supported by "Basic Research Foundation" of the Israel
Academy of Sciences and Humanities. Publication 594.
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In fact, the forcing here is simpler than the one in [Sh 407]. A related work is
Goldstern, Shelah [GoSh 388].

We similarly may consider the consistency of "no α-ultrafilter" for limit a <
ωι (see [B6] for definition and discussion of α-ultrafilters). This question and the
problems of preservation of ultrafilters and distinguishing existence properties
of ultrafilters will be dealt with in a subsequent work [Sh:F187].

In §3 we note that any ultrafilter with property M (see Definition 25) is an
NWD-ultrafilter, hence it is consistent that there is no ultrafilter (on ω) with
property M.

I would like to thank James Baumgartner for arousing my interest in the
questions on NWD-ultrafilters and α-ultrafilters and Benedikt on asking about
the property M as well as Shmuel Lifches for corrections, the participants of my
seminar in logic in Madison Spring'96 for hearing it, and Andrzej Roslanowski
for corrections and introducing the improvements from the lecture to the paper.

1 The basic forcing

In Definition 3 below we define the forcing notion Q} h which will be the one
used in the proof of the main result 24. The other forcing notion defined below,
Q/ Λ, is a relative of Qj h. Various properties are much easier to check for Q| Λ,
but unfortunately it does not do the job. The reader interested in the main result
of the paper only may concentrate on Q} h.

Definition2. Let / be an ideal on ω containing the family [ω]<α; of finite
subsets of ω.

1. We say that an equivalence relation E is an I-equivalence relation if:
(a) dom(E') C ω,
(b) u;\dom(£) E /,
(c) each /£-equivalence class is in /.

2. For /-equivalence relations EΊ, EΊ we write E\ < EΊ if
(i) dom(£2) Cdom(£ι),
(ii) EI \ dom(£r

2) refines E2,
(iii) dom(/?2) is the union of a family of E\-equivalence classes.

Definitions. Let / be an ideal on ω to which all finite subsets of ω belong and
let h : ω —>• ω be a non-decreasing function. Let t E {1,2}. We define a forcing
notion Qj Λ (if h(n) — n we may omit it) intended to add (yf : i < h(n), n < ω),
yf E { — 1,1}. We use x? as variables.

1. P E Q^)Λ if and only ifp=(H,E,A) = (H?, E?, A?) and
(a) E is an /-equivalence relation on dom(E') C ω,
(b) A = {n E άom(E) : n = mm(n/E)},
(c) if t — 1, then H is a function with range C { — 1,1} and domain

B{ - {x? : i < h(n) and n E ω \ dom(E) or
n e dom(E) and i E [h(min(n/E}), A(n))},
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(d) if 1 = 2, then
(a) H is a function on dom(H) — B\ U B%, where

BP

2= {x? : m G ω, A? Π (m + 1) = 0, f < Λ(m)} and
Bl = {x? : m G dom(£?) \ A*> or m <£ dom(£?) but AP Π m ^ 0,

(β) for z^ G Sg, #«*) is a function of the variables
[x] : (n, j) G Wp(m,i)} to {-1,1}, where

iϋp(m) - Wp(ra,i) = {(l,j) :leApCMn and j

for n G Λp we stipulate /^(s?) = x? and
(7) /f t Bl is a function to {-1, 1).

(e) if ί = 2 and x? G B§, n* = min(n/^) < n and ̂  G {-1,1} for
m G Ap (Ί n*, ι < Λ(m) and ̂  G {-1, 1} for j < h(n*) then for some

y?* G {-1, 1} for j < ft(n*) we have

When it can not cause any confusion, or we mean "for both ί — 1 and ί — 2" ,
we omit the superscript ί.

2. Defining functions like R(xf}, xf G ^3 (when I = 2), we may allow to
use dummy variables. In particular, if Hp(x™) is —1,1 we identify it with
constant functions with this value.

3. We say that a function / : {x™ : τ < /ι(n), n < ω} — >• { — 1, 1} satisfies a
condition p G Q/ h if:

(a) /«) = HP(X?) when xn

{ G B\ and ί = 1, or x? G 5ξ and t = 2,

(b) /«) = ̂ «)(. . . , f(x?), . . .)(mj)6-P(n,o when 1 = 2 and < G B§,

(c) /«) = f(x™m(n/EP]) when I = 1, n G dom(^) and i < /ι(min(n/^)).

4. The partial order <=<Q^ is defined by p < q if and only if:

(a) EP < E*,
(β) every function / : {x™ : i < ft(n), n < ω)} — >• { — 1,1} satisfying g

satisfies p.

Proposition^ (Qj Λ, <Q* ) is α partial order.

Remark. We may reformulate the definition of the partial orders <Q* , making
*̂- /, /»

ί/zera perhaps more direct. Thus, in particular, if p, q G Q/> Λ ί/ierz p <QI ςf z/

oπ/y z/ the demand (a) of 3(4) holds and

(/?)* for each xf G £?:
(i) 2/x^ G β? ί/ie
(ii) i f n G dom(£;p) \ dom(^), i < h(mm(n/E*>))

then H«(x?) - H«(xΓn(n/EP)),
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(iii) ifn E dom(Eq) \ A*>, mm(n/E^) > mm(n/Eq) and

Λ(min(n/£?*)) < t < h(mm(n/E*)) then H<*(x?) = H<*(x™n(n/EP}).

The corresponding reformulation for the forcing notion Q/ ^ is more complicated,
but it should be clear too.

One may wonder why we have h in the definition of Qj Λ and we do not fix
that e.g. h(n] = n. This is to be able to describe nicely what is the forcing notion
Qj h below a condition p like. The point is that Qj h\{q : q > p] is like Q* h but
we replace / by its quotient and we change the function h. More precisely:

Proposition 5. If p E Qj Λ and v4p = {n^ : k < ω}, n/c < n^+i, h* : cj —>• α; zs

Λ*(fc) = h(nk) andΓ = {BCω: \J (nk/E) E /} then Ql

t h \ [q : p <Qί fc

isomorphic to Qj* h*.

PROOF Natural.

Definition 6. We define a Q/^-name η = (ηn : n < ω) by:
ηn is a sequence of length h(n) of members of { — 1, 1} such that

(i) - 1 <^ (5p E GQ/ι ,)(#*(*?) - 1).

[Note that in both cases ί - 1 and t - 2, if Hp(x?) - 1, x? E dom(/fp) and
g > p then ^(^n) = χ ; remember 3(2).]

Proposition 7.

1. Ifn<ω, A ^ Π ( n - f 1) = 0 then p Ih % =

2. For eαc/i n < ω the set {p E Q/,Λ : AP?Ί (n + 1) = 0} zs dense in

5. //p E Q/,Λ and a C A? is finite or at least \J (n/Ep) E /, and
n£α

/ : {x? : i < h(n) and n E a} — > {-1, 1},

then /or some unique q which we denote by pW , we have:

(a) p < q E Q/ |Λ,
(b) E* = EP \\J{n/EP:neA\a},
(c) for n E α, i < Λ(n) w e /lαt e Hq(x?} is /«).

PROOF Straight.

Definitions.

1. p <n q (in Q/ | A) if p < q and:

k€Ap b\ApΓ\k\<n ^> Ar E Aq.
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2. p <* q ifp < q and:

Ar G Λp & μp Π k\ < n => * G ̂  fc

3 P<£ q ιfp<n+ι q and:

n > 0 => p <; g and dom(£9) = dom(£?).

4. For a finite set u C ω we let var(u) = {x™ : i < ft(n), n G u).

Proposition 9.

•ί Ifp < <7> u 25 α ./ϊmίe initial segment of Ap and Aq Π u = 0, then /or some
unique f : {a?? : i < h(n) and n G u} — )• { — 1, 1} we /zαt e p < pW < q
(where p^ is from 7(3)).

2. If p G Qj Λ απcί u 25 α /zπzίe initial segment of Λp then

(*)ι / G ^ar(u){-l, 1} imp/ies p < p[/] απdf

^ Ih « (Vn G u)(Vi

(*)2 ίAe set {pW : / e var(u){-l, 1}} is predense above p (in Ql

I)h).

3. <n is a partial order on Qj h, and p <n+ι q => P <n Q- Similarly for <*

and <®

^ if P G Q/ /i, u Z5 a finite initial segment of Ap , |u| = n and

f : {x7} : i < h(n) and n G u} — > {-1, 1} and p^ < q G Qj>h,

then for some r £ Qj Λ w e /zaυe p <* r < g, r^l — g.

5. 7/p G Q/^, u is a /ίnzίe initial segment of Ap , |u| = n + 1 and

/ : {x" : i < Λ(n) and n G u} — »> {-1, 1} and p[/] < g,

then /or some r G Q/ Λ we have p <® r < q and r^ — q.

PROOF
1) Define / : {x? : i < h(n) and n G u} — > {-1, 1} by:

/(a:?) is the constant value of Hq(x?}

(it is a constant function by 3(l)(e), 3(l)(f(7))).
2) By 7 and 9(1).
3) Check.
4) First let us define the required condition r in the case ί — 1. So we let

dom(£r) = U (n/
n£u

Er — { (ΉI, ^2) - n\ Eq n^ or for some n G u we have: {ni, 712} C (n/Ep))} ,
Ar = u U Aq
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(note that if m Eq π2 then m £ u). Next, for x? G #ϊ (where B[ is given by
3(l)(e)) we define

H«(x?) if n $ U fc/£p and z? G dom(ff^),

p ? ) if n G \Jk/E*> and a?? G dom(^).

It should be clear that r - (Hr , Er , Ar) G Q/> Λ is as required.
If t = 2 then we define r in a similar manner, but we have to be more careful

defining the function Hr . Thus Er and Ar are defined as above, BT

Ί, B% and
wr(m,i) for xf G 55 are given by 3(l)(f). Note that Br

2 = B§ and B£ C βg.
Next we define:

if <* G 5£ then #'(*;*) = #P(*Γ)>
if z™ G B5, m Π Ar C u then #Γ(zΠ
if zf* G BI and min(dom(^)) < m then

Note that if (fe ;, j;) G wp(m, ΐ) \ tι;Γ(m, i), x? G 55 then Ar ; G Ap \ (u U Aq) and
wq(k'J') Q wr(m,i).
5) Like the proof of (4). Let n* - max(u). Put dom(£Γ) = dom(Ep) and
declare that HI Er n^ if one of the following occurs:

(a) for some n G u\{n*} we have \n\,n^\ C (n/Ep), or
(b) n\ Eq n2 (so n G u => -m Ep HI), or
(c) {711,712} C 5, where

5 1ί n*/^p U | { m / ^ : m G dom(J5p) \ dom(^), min(m/£?p) > n*}.

We let Ar =u(Jλq (in fact Λr is defined from Er). Finally the function Hr is
defined exactly in the same manner as in (4) above (for ί — 2).

Corollary 10. If p G Q/ Λ, n < u απcί r zs α Qj h~name of an ordinal, then

ί/zere are u, g anrf a = (a/ : / G var(u){-l, 1}} swcΛ ί/iαί:

(a) P <*nq G Q5 ,7

(b) u = {^E^ : K n A * | < n},
(c) /or / G var(u){-l, 1} we have qW |h V = α/",
(d) g Ih "r G {αy : / G var(«){-l, 1}}" (which zs a finite set).

PROOF Let k = Π 2hW. Let { / / : < < k} enumerate var(u){-l, 1}. By
^€u

induction on ί < k define r^, a/t such that:

r0 = p, r, <* r / 1 € Q , lh "r - α ' .

The induction step is by 9(4). Now q = rk and (af : f G var(u){-l, 1}) are as
required.
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Corollary 11. If I = 2 then in 10(a) we may require p <® q £ Q^ Λ.

PROOF Similar: just use 9(5) instead of 9(4).

Definition 12. Let / be an ideal on ω containing [ω]<^ω and let E be an
/-equivalence relation.

1. We define a game GMj(E) between two players. The game lasts ω moves.
In the nth move the first player chooses an /-equivalence relation E^ such
that

E\ = E, [ n > 0 => El^<E^

and the second player chooses an /-equivalence relation E% such that
E\ < E%. In the end, the second player wins if

|J{dom(^) \ dom(£i+1) : n € ω} 6 /

(otherwise the first player wins).
2. For a countable elementary submodel N of (Ή(χ), £, <*) such that

/, E £ Λf we define a game GM^(E) in a similar manner as GMj(E), but
we demand additionally that the relations played by both players are from
TV (i.e. E\,El e N for n E ω).

Proposition 13.

1. Assume that I is a maximal (non-principal) ideal on ω and E is an I-
equivalence relation. Then the game GMj(E) is not determined. Moreover,
for each countable N -< (7£(χ), G, <*) such that /, E E N the game GM^(E)
is not determined.

2. For the conclusion of (1) it is enough to assume that P(ω)/I [= ccc.

PROOF 1) As each player can imitate the other's strategy.
2) Easy, too, and will not be used in this paper.

Proposition 14.

1. Let p E Q/ /j. Suppose that the first player has no winning strategy in
GMj(Ep). Then in the following game Player I has no winning strategy:

in the nth move,
Player I chooses a Qj h-name τn of an ordinal and

Player II chooses pn,un, wn such that: wn is a set of < Y[ 2hW ordi-
t£Un

nals, P<Pn <n Pn+ι, Pn <n+ι Pn+i; un a finite initial segment of Apn

with n elements and pn Ih αrn E u>n", moreover

f e var(un)|_1 ? ̂  ^ p[f]
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In the end, the second player wins if for some q > p we have

q\\r " ( V n e w ) ( Γ n € t ι ; n ) "-

We can let Player II choose kn < ω and demand \un\ < kn, and in the end
Player II wins if\immf(kn : n < ω) < ω or there is q as above.

2. Let p G Q/ h and let N be a countable elementary submodel of (Ή(χ), G, <*)

such that p, /, h G N. If the first player has no winning strategy in GM^ (Ep)
then Player I has no winning strategy in the game like above but with restric-
tion that τn,pn G N.

PROOF 1) As in [Sh 407, 1.11, p.436].
Let Sip be a strategy for Player I in the game from 14. We shall define a strategy
St for the first player in GMf(Ep) during which the first player, on a side, plays
a play of the game from 14, using Stp, with (pt : I < ω) and he also chooses
(qt :^<u;).

Then, as St cannot be a winning strategy in GMj(E), in some play in which
the first player uses his strategy St he loses, and then (pt : ί < ω) will have an
upper bound as required.

In the nth move (so E\,E\, qt,pι,uι, wι for ί < n are defined), the first player
in addition to choosing E^ chooses gn,Pn,un, such that:

(a) p = p.i < q0 = po, Pn € Qf;/l, qn £ Q^Λ,

(b) Pn <n Pn+1 € QfΛ,

(c) u0 is 0,
(d) un+1 = un U {min(A<?»+1 \un)}, so |un+ι| = n+ 1,
(e) E% = EP, J5£+1 = EP» \ (dom(£*Ό \ U

(f ) qn is defined as follows:
(/0) if n = 0 then E«» = E$,
(/i) if n > 0 then dom(^-) = dom^*-1) and x Eqn y if and only if

either x E% y,
or for some k G un_ι we have #, y G k/Epn~l '
or x, y G (dom(^) \ dom(E*)) U mm(dom(E2

n)) / E% ,
(/2) JY9n is such that pn_ι < gn,

(g) Pn <n 9n + l <^ + l Pn + 1, Pn <n + l ^n + 1 (so pn <n + l Pn + l),

(h) if / G var(un)|_1? !j. then p[/l forces a vajue to Γn

In the first move, when n = 0, the first player plays E$ — Ep (as the rules
of the game require, according to (e)). The second player answers choosing an
/-equivalence relation E% > E§. Now, on a side, Player I starts to play the game
of 14 using his strategy Stp. The strategy says him to play a name TQ of an
ordinal. He defines g0 by (f) (so q G Q/ Λ is a condition stronger than p and

such that Eq° = EQ) and chooses a condition po > Qo deciding the value of the
name r0, say pQ Ih r0 = a. He pretends that the second player answered (in the
game of 14) by: p0) u0 = 0, tt o = {&}- Next, in the play of GMj(Ep), he plays
j&J = Ep° as declared in (e).



313

Now suppose that we are at the (n -f- l)th stage of the play of GMι(Ep), the
first player has played E^+1 already and on a side he has played the play of
the game 14 as defined by (a)-(h) and Stp (so in particular he has defined a
condition pn and E£+I = Epn\(dom(Epn) \ |J i/Epn) and un is the set of

i£un

the first n elements of Λpn). The second player plays an /-equivalence relation
^n+i > ^n+i Now the first player chooses (on a side, pretending to play in the
game of 14): a name rn+ι given by the strategy Stp, a condition qn+ι E Q/ j Λ

determined by (f) (check that (g) is satisfied), un+ι as in (d) and a condition
Pn+i G Q/ Λ satisfying (g), (h) (the last exists by 10). Note that, by (g) and 9,
the condition pn+ι determines a suitable set u>n+ι Thus, Player I pretends that
his opponent in the game of 14 played pn+ι,un+ι, wn+ι and he passes to the
actual game GMj(Ep). Here he plays E^+2 defined by (e).

The strategy St described above cannot be the winning one. Consequently,
there is a play in GMj(Ep) in which Player I uses St, but he looses. Dur-
ing the play he constructed a sequence ((pn , un, wn) : n £ ω) of legal moves
of Player II in the game of 14 against the strategy Stp. Let Eq = lim Epn

n<ω
(i.e. dom(Eq) = p| dom(Elpn), x Eq y if and only if for every large enough n,

n<ω

x Epn y) and let H q ( x f ) will be Hpn(xf) for any large enough n (it is eventually
constant). It follows from the demand (g) that E^-equivalence classes are in /.
Moreover, dom(E£+1) \dom(E%+1) C k/Eq, where k is the (n + l)th member of
Aq. Therefore

ω \ dom(Eq) = ω \ f| dom(Ep") C

ω \ dom(Ep°) U \J{dom(E*) \ dom(^+1) : n G ω} G /

(remember, Player I lost in GMι(Ep)). Now it should be clear that q G Q/ h

and it is stronger than every pn (even pn <* q). Hence Player II wins the
corresponding play of 14, showing that Stp is not a winning strategy.

2) The same proof.

Proposition 15. If in 14 we assume t — 2 and demand pn <® pn+\ instead
pn <n Pn+i then Player II has a winning strategy.

PROOF Using 11, the second player can find suitable conditions pn (in the
game of 14) such that pn <^+1 pn+ι But note that the partial orders <® have
the fusion property, so the sequence (pn : n < ω) will have an upper bound in

Q

Remark. We could have used <® also in [Sh 407].
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Definition 16 see [Sh:f, VI, 2.12, A-F].

1. A forcing notion P has the PP-property if:
(®PJP) for every η £ ωω from Vp and a strictly increasing x £ ωω Π V there

is a closed subtree T C <ωω such that:
(α) 77 G lim(T), i.e. (Vn < ω)(η \ n G T),
(β) T Γ\nω is finite for each n < ω,
(7) for arbitrarily large n there are k, and n < z(0) < j(0) < i(l) <

j ( l ) < . . . < i(fc) < j ( k ] < ω and for each t < k, there are m(ί) < ω
and ι^'°, . . . , 77*>™(£) G Γ ΓV Wω such that j(*) > x(i(*) + m(t)) and

(Vi/ G TΠ j^ω)(3l < k)(3m < m(£))(τ/'m < i/).

2. We say that a forcing notion IP has the strong PP-property if
(ΘsPP) for every function g : ω — > V from Vp there exist a set B G

[u/P° Π V and a sequence (wn : n G 5} G V such that for each n £ B

\wn\ < n and #(n) £ ιyn.

Remark. Of course, if a proper forcing notion has the strong PP-property then
it has the PP-property.

Conclusion 17 Assume that for each p G Qj h and for each countable N -^
C^(x)> €, <*) such that p,I,h G N, the first player has no winning strategy in
GM^(Ep) (e.g. if I is a maximal ideal). Then

(*) Qj h is proper, a-proper, strongly a -proper for every a < ω\, is ωω-bounding
and it has the PP-property, even the strong PP-property.

By [Sh:f, VI, 2.12] we know

Theorem 18. Suppose that (!Pt ,Q. : j < α,i < α) is a countable support itera-

tion such that

H~PJ "Q is proper and has the P P -property? .

Then Pα has the PP-property.

2 NWD ultrafilters

A subset A of the set Q of rationale is nowhere dense (NWD) if its closure (in
Q) has empty interior. Remember that the rationale are equipped with the order
topology and both "closure" and "interior" refer to this topology. Of course, as
Q is dense in the real line, we may consider these operations on the real line
and get the same notion of nowhere dense sets. For technical reasons, in forcing
considerations we prefer to work with ω2 instead of the real line. So naturally
we want to replace rationals by ^ω2. But what are nowhere dense subsets of
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then? (One may worry about the way we "embed" <ω<2 into ω2.) Note
that we have a natural lexicographical ordering <tx of <^Lΰfl\

η <tx v if and only if
either there is t < ω such that η\ί — v\t and η(£) < ι/(ί)

or 77~{1) < v
or v (Q) < η.

Clearly (^^2, <tx] is a linear dense order without end-points (and consequently
it is order-isomorphic to the rationale). Now, we may talk about nowhere dense
subsets of ̂  ω 2 looking at this ordering only, but we may relate this notion to
the topology of ω2 as well.

Proposition 19. For a set A C <α;2 the following conditions are equivalent:

1. A is nowhere dense,
2. (Viy G <u;2)(Ξ*/ G <ω2)[η < v & (Vp G <u;2)(z/ < p => p <£ A ) ] ,
3. the set

A* d= {ηeω2: (Vn G ω)(3v G AX^n < i/)}

Z5 nowhere dense (in the product topology ofω2),
4. there is a sequence (ηn : n < ω) such that for each n < ω

(i)n ηn - [n,tn) — > 2 for some ln > n and

5. there is a sequence (ηn : n < ω) such that for each n < ω condition (i)n (see
above) holds and
(ii); (Vi/ G n2)({p G <ωϊ : i/ U ηn < p} Π A - 0),

6. ί/zere are 5 G [ω] ° and (ηn : n G 5} si/cΛ that for each n £ B the conditions
(i)n, (ii)n aί>oί;e are satisfied.

PROOF 1. => 2. Suppose A C <u;2 is nowhere dense but for some
sequence η G ^^2, for every z/ G 2 extending 17 there is p G A such that
v<p. Look at the interval (?7~{0), τΓXl))<<s (of (<u;2, </*)). We claim that A
is dense in this interval. Why? Suppose

Assume ig(rfo) < ^(^*) Take ί̂  == ^*^{0). By the definition of the order
we have then

ηo <tx ^^(0) <tχ v~(l) <ίx ηl and η < i/.

By our assumption we find p G A such that ^(0, 1} < p. Then

* {̂0) <tx p <tx ι/"Xl) and hence p G (ηl,ηΐ)<tx

Similarly if ^(i/J) <
2. => 3. Should be clear if you remember that sets

[ι/] d ={ιje ω 2 : ι / < » / } (fo Γ I /6 < u ! 2)
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constitute the basis of the topology of ω2.
3. => 4. Suppose A* is nowhere dense in ω2. Let n < ω. Considering

all elements of 271 build (e.g. inductively) a function 77* : [n,t*n) — > 2 such that

n < i*n andn

This means that for each v £ 2n the set {p £ A : Z^TJ* < p} is finite (otherwise
use Kόnig lemma to construct an element of A* in [V ">£]). Taking sufficiently
large ίn > £„ and extending r?* to τ?n with domain [n,£n) we get that (Vp E

Λ)(ηn ^ p) (as required).
4. => 5. =ί> 6. Read the conditions.
6. =ϊ 1. Let 5, (77™ : n £ J3) be as in 6. Suppose IΌ,IΊ £ <α;2,

^o <^ *Ί Assume tg(v$) < tg(vι) = m. Take any n E B \ (m + I) and let
, . . . , 0}~77n We know that no element of A extends v. But this implies

that the interval (z/^{0), ̂ {1))<<J; is disjoint from A (and is contained in the

interval (JΌ>*Ί)<* X ) Similarly if lg(vι) < £g(vo)-

Lemma 20. Let n,k* < ω. Assume that vk = (i/* : n < i < ik) for k < k* < ω,
n < ik < ω, v* E U [* J')2 and tί̂  C [ W , Ϊ Λ ) , |^A:| > k* and:

if k < k*, mi < m2 are in Wk then maxdom(^ι) < rn^.

Lastly let

z(*) = max{supdom(z/f) -f 1 : k < k* and i E (n,^)}.

Then we can find p E tn'ί(*))2 suc/z that:

PROOF By induction on k* (for all possible other parameters). For /?* = 0, 1
it is trivial.
Let n£ = min(iί fe) and n\ — τrim(wk \ (n^ -f 1)). Let ί < k* be with minimal n\.
Apply the induction hypothesis with n\ , vk — (v* :n\ < i < ik) for k < Ar* , k φ t
and (wk \ n\ : k < k*,k ^ i) here standing for n, vk for k < fc*, (u;Λ : k < k*)

there and get pi E [n^'(*))2. Note that ̂  \ nj D wjb \ n\ has at least |ιyΛ| - 1
elements. Let p E Cn' l'(*))2 be such that pi C p and z/£

0 C p.
— nt —

Proposition 21. Assume that K Z5 α proper forcing notion with the PP-property.
Then

(φnwd) for every nowhere dense set AC ^ω2 in V1 there is a nowhere dense
set A* C <ωίl in V such that A C A*.
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PROOF Let A G Vm be a nowhere dense subset of <ω2. Thus, in VR, we can,
for each n < ω, choose vn G (J [n'^2 such that:

t>n

(Vi/ G n2)(Vp G <ωϊ)(v~vn <p => p£A).

So (z/n : n < u;) 6 Vκ is well defined. Next for each n we choose an integer
tn G (π,ω)> a sequence ηn G [n'^n^2 and a set wn C [n,in) such that:

- |tun | > n,
- (Vm G wn)(ι/m C /7n), so in particular (Vra G wn)(maxdom(ι/m) < in), and
— for any m\ < m2 from wn we have maxdom(z/mι) < 7712-

So w = (wn : n < ω), ή = (ηn : n < ω) G V1 are well defined.
Since M has the PP-property it is ^ω-bounding, and hence there is a strictly

increasing x G ωωΓ\V such that (Vn G ω)(ίn < x(n)) Applying the PP-property
of R to x and the function n ι-> (ηn, wn) we can find ({V^n : ί < kn) : n < ω) in
V and (((ii(n)Jt(n)) : t < kn) : n < ω) in V such that:

(a) 20 (n) < jQ(n) < ή(n) < jι(n) < . . . < ikrι(n) < jkn(n),
(b) jkn(n) < io(n + 1) for n < ω,
(c) x(it(n))<jt(n),
(d) V^n C {(»;,tι;) : η G [»^(Λ)^(Λ))2 and w C [i/(n), j/(n)), |u;| > i/(n)} for

^< Ar n , n < w ,
(e) | V 7 » | < ,(n),
(f) for every n < ω, for some ί < kn and (77, w) G V/1 we have w = u>^(n),

[Note that ^(n) corresponds to i(f) + m(^) in definition 16(1), so we do not
have m^(n) here.] Working in V, by 20, for each n < ω, t < kn there is /?" G
[» ί(n),j ί(n))2 such that:

(V(»/, «;) G V?*)(amι, m2 G w)(m2 = min(w \ (mi -f 1)) fc η \ [mi, m2) C pj).

Let /?n G tz'o(^). i'o("+i))2 be such that £ < kn => p1} C pn. As we have worked
in V, (pn :n <ω) £ V. Let

Clearly A* G V is as required.

Let us recall definition 1 reformulating it slightly for technical purposes. (Of
course, the two definitions are equivalent; see the discussion at the beginning of
this section.)

Definition 22. We say that a non-principal ultrafilter T> on ω is an NWD-
ultrafilter if for any sequence (ηn : n < ω) C ^^2 for some A G Ί) the set
{ηn : n G A} is nowhere dense in
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Lemma 23. Let V be a non-principal ultrafilter on ω and I be the dual ideal
(and h : ω — ϊ ω non- decreasing lim h(n) = oo). Then:

n — > co

1. in VQ''» we cannot extend V to an NWD-ultrafilter.
2. IfQ is a Q} h-name of a proper forcing notion with the PP-property, then

also in V®1**® we cannot extend T> to an NWD- ultra filter.

PROOF 1) Let ή — (ηn : n < ω) be the name defined in 6, but now we

interpret the value -1 as 0. So \\-"ηn £ /l(n)2" (for each n < ω). Clearly it is
enough to show that

(*) lh(Q)i " if X C ω and the set {ηn : n £ X} is nowhere dense

then there is Y £ Ί) disjoint from X" .

So suppose that r is a Qj Λ-name for a subset of ω and a condition p* £ Q} h

forces that {ηn : n £ r} is nowhere dense.

By 19, for some Qj ^-names v = (z/m : m < ω) we have

P* II" α^m £ I) tm'^2 and for every m < ω for no n £ r we have z/m C τ/n".

By 14 (or actually by its proof) without loss of generality:

for every n £ Λp , for some kn £ (n,mm(Ap \ (n + 1))), for every
/ : {zj1 : m £ Ap* Π (n + 1) and j < /ι(m)} — > {-1, 1}, the condition

p* forces a value to r Π Arn, and r Π Arn \ n φ 0.

[Why? Give a strategy to Player I in the game there for p* trying to force the
needed information, so for some such play Player II wins and replaces p* by q
from there.]
Again by 14 we may assume that

for every / : {xj1 : j < h(πι) and m £ A^ Π (n + I)} — » {-1, 1},

n £ Ap , for some &f we have

p* Ih αz/^ is an initial segment of y and tg(v*} = n + 1 " .

For n £ Ap* and / : {xf : j < h(m) and m £ Ap* Π (n + 1)} — >• {-1, 1} and

k £ A?* \ (n -h 1) let:

(a) /[*•?*] be the function with domain {xf : j < h(m) and m £ Ap* Π (Ar -h 1)}

extending / that is constantly 1 on dom(/^'p*^) \ dom(/),

(b) pf be an u -sequence (p*t : I < ω) such that for each k £ ^4^* \ (n -f 1) we

have pf \ (k + 1) = ϊ// [ f c > p Φ 1 f (fc + 1).
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Now, for every n £ Ap*, we can find p* £ <CJ2 such that for every function

/ : {x™ : j < h(m) and m £ A** Π (n + 1)} —> {-1,1}

for some ί(f) £ (Λ(n),w) we have pL.^ C p* (so l(f) < lg(p^)).

[Why? Let {fj : j < j(*)} list the possible /'s, and we chose by induction on
.7 < .?(*), P7 £ <α;2 such that p7 < p7"4"1, and p7"1"1 satisfies the requirement on

/j, e.g. po = (0,...^0), p7^1 - ft~PStg(pi)].

h(n]

Now choose by induction on ζ < ω, riζ £ Ap* such that riζ < n^+i, and
ςj < Λ(nc +ι). Without loss of generality |J (nζ/Ep*) £ 7. Then

either UJn/TiX : n £ Ap* and (Ξζ" < u;)(n2^ < n <
or I \{n/Ep* : n £ Ap* and (ΞC <

so by renaming the latter holds. (Again, it suffices that the ideal / is such that
the quotient algebra P(ω)/I satisfies the c.c.c.) Lastly we define a condition

dom(£Γ) = (J n2ζ/Ep*\J\J{n/Ep* : neAp* and
ζ<ω

n2ζ/Er = ( n 2 ζ / f F * ) V\J{m/Ep* : m £ A** Π (n2C+ι, π2C+2)}

(note that this defines correctly an /-equivalence relation Er], Ar — {n2ζ : C <
ω}. The function /ίr is defined by cases (interpreting the value 0 as —1, where
appears) :

#Γ(zf) = Hp^(xjl) if m £ (ω \dom(£P*)) and j < ή(m),
/^(x^) = Hp (xj1) if m £ dom(^Φ) and j £ [fc(min(m/£?*)),Λ(m))

ίfr(a?y*) - 1 if m £ dom(£;p*) and min(m/£?*) £ (n2C,n2C+ι]

and j < Λ(min(m/Sp*))
ffίxy1) = pϊ2ζ(j) if m £ dom(EP*) and mm(m/E**) £ (n2C+ι, n2C+2)

and j £ dom(p;2<) and j > h(n2ζ)

Hr(χV) = I otherwise (but xj1 £ dom(Fr)).

Now check that p* < r £ Q) Λ and for each n £ dom(£r) \ |J n2ζ/Ep* :
ζ<ω

r \\- " ηn violates the property of v and hence n £ r".

As dom(£;r) \ U n2ζ/Ep* £ P we have finished.
C<ω

2) Should be clear by (*) of the proof of 23(1) and 21.
However we will give an alternative proof of 23(2). We start as in the proof of
23(1): suppose some (p*, r*) £ Q) h * Q forces "F is an NWD-ultrafilter on ω



320

extending £>". As \\-uηn[G^ι J G / l ( n>2", for some (Q})Λ*Q)-name τ for a subset

of ω

(p*ιΓ*) IH " r G F and (Viy G <CJ2)(3i/ G <u;2)(τ? < i/ & (Vn G r)(-z/ < 5,,)) ".

So for some Q) Λ * Q-name v — (vn : n < ω)

(p*,r*) Ih " i// G (J [/J')2 and for no n G r we have vt C /7n".
je[i,ω)

So for some Qj h * Q-names c^, u?^

(p*, r*) Ih " w > dί > A ^ C [<,&), |̂ | > (4 Πs<n Λ(β))! and
[mi < m2 in υ;̂  =Φ maxdom(ι/mι) < m2]".

Let p* G GQI C Q} Λ and GQI generic over V. Now in V[GQI ], the forcing

notion Q[GQI ] is ^u -bounding (this follows from the PP-property) and also

Qj h is ^u -bounding.

Hence for some r' G Q[G ι̂ ] and strictly increasing x G ωω Π V we have:

r1 l h ( G ] " dn < a?(n) and m G ̂ n ^> dom(z/m) C [0,x(n))w.

In V[G0ι 1, by the property of Q, there are r**, r' < r** G QίG^i ] and a
^*-/,h ~ ~~~ ~ ^-/,/»

sequence ({^(n),j^(n)) : ̂  < Arn) : n < ω) such that

*Ό(n) < jo(n) < iι(n) < jι(n) < . . . < jkn(n) < t/(n + l),J4n) > ^(^(^))

and there are i/*^t = (^*^)tj : j G fc(n),,;'/(n))) for ^ < %t(n),ί < kn and

< ,̂ί = «Λίj :'^ e [^(n)V^'+i(n)) for t < ̂ (n)^< kn) such that

r** II-Q "{^(n)+j : j G [i/(n), j/(n))> is v*n^t and

(^^(n)+j : J € [t/(n) : j/(n))) is w^itt for some ί < it(n)n .

Back in V we have a Q} Λ-name r** and (((it(n),jι(n)) : £ < kn) : n < ω) and

((VnM : t < ^(n)} - t < kn,n < ω) and (« t̂ : f< t/(n)) : * < Ar n , n < ω) are
forced (by p*) to be as above.

By 14, increasing p*, we get

for every / : {x? : i < Λ(m),m G A?* Π (n + 1)} — )• {-1,1}, n G A?*,

the condition p* forces a value to

(((iί(m},jt(rn)} : i < km) : m < n),

(PnΛί : « J / W , < < * n > ,

{Vm,^ : *<^( n )^<*»)

moreover, without loss of generality

P* \ (n + 1)).
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Now by 20, without loss of generality for each n £ Ap* we can find a function
ρn from [ra,min(Ap* \ (n + 1))] to { — 1,1} such that:

if / : {xf : i < A(m), m £ A?* Π (n + 1)} —> {-1,1}, n £ A?*

then (p* 7 , r**) forces that pn extends some v^.

Now we continue as in the proof of 23(1).

3 The consistency proof

Theorem 24. Assume CH and §{Ί<ω2.cf(Ί}=ωι}.
Then there is an ^2~cc proper forcing notion P of cardinality ft 2 such that

Ihp " there are no NWD-ultrafilters on ω ".

PROOF Define a countable support iteration (P, ,Q. : i < ω 2 , j < ω^) of

proper forcing notions and sequences {!>; : i < ω2} and (77* : i < ω2) such that

for each i < ω2:

1. Ί?i is a P2— name for a non-principal ultrafilter on ω,
2. Q. is a P;- name for a proper forcing notion of size HI with the PP-property,

3. rf is a P, * Q.-name for a function from ω to ^^2,

4. lhp>Q. "if X C u> and the set {ηl

n : n £ X} C <u;2 is nowhere dense then

there is Y £ T>i disjoint from X" ,
5. if V is a P^-name for an ultrafilter on ω then the set

{i < ω2 : cf(i) = ωi & !><

is stationary.

Let us first argue that if we succeed with the construction then, in VPα/2, we will
have

2*° = N2 + "there is no NWD-ultrafilter on ωn .

Why? As each Q. is (a name) for a proper forcing notion of size KI, the limit
P^ is a proper forcing notion with a dense subset of size ^2 and satisfying the
^2~cc. Since P^2 is proper, each subset of ω (in Vrα;2) has a canonical countable
name (i.e. a name which is a sequence of countable antichains; every condition in
the nth antichain decides if the integer n is in the set or not; of course we do not
require that the antichains are maximal). Hence lhp w 2N° < H2 (remember that
we have assumed V ^CH). Moreover, by 18 + 21 we know that Pω2 satisfies
(Θnwd) of 21, i.e.

lhpu / 2 "each nowhere dense subset of ̂ ω2 can be covered

by a nowhere dense subset of <CJ2 from V".

Now suppose that V is a P^-name for an ultrafilter on ω. By the fifth require-

ment, we find i < ω2 such that X>t = V\P(ω)vVi (and cf(t') = ωι). Since P^2

satisfies (0nwd), we have
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2 "if X C ω and the set {rfn : n E X} C <ω*2 is nowhere dense then there

is an element of V\P(ω)v*1 disjoint from X"

[Why? Cover {η^ : n E X] by a nowhere dense set A C ̂ 2 from V and look

at the set X0 = {n E ω : rfn E A}. Clearly X0 E Vr'*^ and X C XQ. Applying

the fourth clause to X0 we find Y E Vi = 1>\P(ω}v*1 such that Y Π XQ = 0.

Then y Π X = 0 too.]
But this means that, in VPu;2) the function rf exemplifies that V is not an NWD

ultrafilter (remember V\P(ω)v l C V}. Moreover, as CH implies the existence
of NWD-ultrafilters, we conclude that actually Ihp^ 2*° = N2.

Let us describe how one can carry out the construction. Each Q. will be

Qj h for some increasing function h E ωω (e.g. h(n) — n) and a (IP,— name for

a) maximal non-principal ideal Ii on ω. By 22, 17 we know that Qj. Λ satisfies

the demands (2)-(4) for the ultrafilter Vi dual to /,- and the function ff as in
the proof of 22. Thus, what we have to do is to say what are the names Vι. To
choose them we will use the assumption of Q{Ί<ω2 .cf('y)=ωl}' In the process of
building the iteration we choose an enumeration {(pi,Γi) : 2 < ^2} °f all pairs
(p,τ] such that p is a condition in Pω2 (in its standard dense subset of size ^2)
and τ is a canonical (countable) Fω2-name for a subset of ω. We require that
Pi E Pi and rt is a P,— name (of course, it is done by a classical bookkeeping
argument). Note that each subset of P(ω) from VPu;2 has a name which may be
interpreted as a subset X of ω2: if i G X then pi forces that r» is in our set. Now

we may describe how we choose the names Vι. By ^{Ί<ω2:cΐ(-y)=ωι} we have a
sequence (Xi : i < ω^ & cf (i) = ω\) such that

(i) Xi C i for each i £ 0^2, cf(i) = α i,

(ii) if X C u;2 then the set

{2 E ̂ 2 : cf (0 — ̂ i & Xi = A" Π i}

is stationary.

Arriving at stage i < ω2, cf(z') = ω\ we look at the set Xi. We ask if it codes a
Pt— name for an ultrafilter on ω (i.e. we look at {(pa, Ta) ' ® G Xi} which may be
interpreted as a P,— name for a subset of P(ω)). If yes, then we take this name as
Vi. In all remaining cases we take whatever we wish, we may even not define the
name ήl (note: this leaves us a lot of freedom and one may use this to get some
additional properties of the final model) . So why we may be sure that the fifth
requirement is satisfied? Suppose that we have a Pα;2-name for an ultrafilter on
ω. This name can be thought of as a subset X of ω ̂ . If i < ω2 is sufficiently
closed then X Π i is a Pt— name for an ultrafilter on ω which is the restriction of
V to VF t. So we have a club C C ω2 such that for each i E C, if cf (i) = ω\ the
X Π i is of this type. By (ii) the set

S d= {i < ω2 : i E C & cf (i) = ωl & Xi = X Π i}
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is stationary. But easily, for each i £ 5, the name T>i has been chosen in such a
way that X>2 — V\P(ω), so we are done.

We note that this implies that there is also no ultrafilter with property M. This
was asked by Benedikt in [Bn].

Definition 25. A non-principal ultrafilter V on ω has the M-property (or prop-
erty M) if:

if for some real ε > 0, for n < ω we have a tree Tn C ^ωfl such that
μ(lim(Tn)) >ε
then (3AeV)( f| lim(Γn) ^ 0)

n£A

(where μ stands for the Lebesgue measure on ωΐ).

Proposition 26. If a non-principal ultrafilter Ί> on ω is not NWD, then Ί) does
not have the property M .

PROOF Let

Sf = {TίV-2 : T C <α;2, Ta tree not containing a cone, //(lim(T)) > ε}

(note that S| is a set of trees not a set of nodes) and let Sε = (J Sf .
i

Now let tι -<< /2 if: *ι £ 5|χ, t2 E S|3, 4 < f2 and *ι = * 2 Π / l ^2. So 5ε is a tree
with LJ levels, each level is finite. As Ί) is not NWD, we can find ηε

n £ lim(5ε)
for n < ω such that:

if A £ Ί) then {r/ε : n £ A} is somewhere dense.

Now let Tε

n C <u;2 be a tree such that (Tε Π ̂ 2 : £ < ω) = ηε

n . We claim that:

(T^ : n < u;) exemplifies X> does not have the M-property.

Clearly T^ is a tree of the right type, in particular

μ(lim(Tn')) = inf{|Γn

ε Π^2|/2^ : t < ω} > ε.

So assume A ξ ^ Ί ) and we are going to prove that p| lim(Tε) is empty. We know
n£A

that {ηε

n : n £ A} is somewhere dense, so there is f < ω and ΐ* £ 5|Φ such that:

Γ <ί<ω &r -« £5J ^> (3n

Now ^ ̂  — *• is > ε (so 5| was defined). So we choose I > f, such that:

if i/ 6 *2, i/ t Γ £ Γ
then ^ = {p £ tfl : p \ I* £ t* and p ̂  i/} £ S| ,
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hence there is n — n^ £ A such that t^ appears in ηε

n . Now clearly

Π lim(ΪS) 5 Π MΓ'J

< ί , : ι / e ' 2 , ι / r * e < * } } = 0,

finishing the proof.

Conclusion 27 In the universe Vru(2 from 24, there is no (non-principal) ul-
trafilter (on ω) with property M.

Concluding Remarks 28 We may consider some variants of Qj Λ.
In definition 3 we have dom(Hp) is as in 3(1) but: HP\B1[ gives constants

(not functions) and for xf £ B\\B\, letting n = miτι(m/Ep) the function
Hp(x™) depends just on {x™ : j < i}. Moreover, it is such that changing the
value of x1} changes the value, so Hp(x™) = x™ x / £ m ( # o , . . . ,#™_ι). Call this

A second variant is when we demand the functions /£m(#o, - , ̂ Γ-i) °̂ ̂ e

constant, call it Q/ Λ.
Both have the properties proved Qj h. In particular, in the end of the proof

of 9(5), we should change: Hr(x™) is defined exactly as in the proof of 9(4)
except that when i < h(n*), k = mm(m/Ep), k £ άom(Eq), k £ u (so m , A r , n *
are Er-equivalent) we let Hr(x^) = Hq(x™) x f(x™ ) x x™ (the first two are
constant), so Hr(x™) is computed as before using this value.
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