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Abstract. We prove that no infinite linear order can be interpreted
without parameters in any structure of the form B x B, and describe
applications of this result in recursion theory.

1 Squares

We are interested structures A which fail to satisfy the following property.

(ILOP) It is possible to interpret an infinite linear order
in A without parameters.

The abbreviation stands for Infinite Linear Order Property. Interpretations of a
structure C in a structure A are studied in [Ho 93]. In brief, an interpretation
is a way to encode C into A using a finite collection of first-order formulas in
the language of A as a decoding key. Elements of C are represented by tuples of
a fixed length m of elements of B, modulo some definable equivalence relation.
For the special case of an interpretation of a reflexive linear order Q in A, it
is enough to consider a decoding key consisting of a single formula φ(x, I/), also
written as ~x <Q y. Here Έ, y are tuples of variables of length ra, and, in A, the
formula defines a linear pre-ordering on the domain {x : Έ <Q of}. For instance,
(Q, <) can be interpreted in the ring Z using the formula

(z,w) <Q (z'V) = ψ<(l^w)^ψ<(l^w'}

* The second author was supported under NSF-grant DMS-9500983
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where ψ<(x,y) expresses in the language of rings that x < y (which is possible
using Lagranges Theorem: an integer is nonnegative if and only if it is the sum
of 4 squared integers).

We write ~x <Q y for Έ <Q y Λ y <£Q x and ΞQ for the equivalence relation
on m-tuples

{x,y :X<Q y <Q x}

The fact that (ILOP) holds via a fixed decoding key can be expressed by an
infinite collection of first-order sentences saying for each n that in the interpreted
linear order there is a chain of length n. Therefore, (ILOP) only depends on the
theory of A.

Recall that we are interested in structures where (ILOP) fails. A weaker
property than (ILOP) is the strict order property ([Ho 93], p. 317) of a structure
A: some formula φ(x, y) defines a partial order with arbitrarily long finite chains
in A. Even the weaker strict order property implies that the theory of A is
unstable. However, the converse implication fails to hold: The random graph for
instance has an unstable theory, but does not satisfy the strict order property.
The random partial order (i.e. the Fraisse limit in the sense of [Ho 94] of the
class of finite partial orders) or the random distributive lattice obviously have
the strict order property, but still fail to satisfy (ILOP).

In asking whether (ILOP) holds via some given decoding key, it is safe to
assume that ,_ _ ^ _Ί λrn{x : x <Q x} - Λm

because else one can form a new equivalence class {x : ~x ^Q ~x\ and put it at the
beginning of an extended definable linear order, modifying <Q in the appropriate
way.

The product C x D of structures C, D for the same language is defined in
the expected way ([Ho 93]). We some times call structures of the form C x C
squares.

Theorem 1. It is not possible to interpret an infinite linear order Q in a struc-
ture of the form A x A without parameters.

Proof. Let B = A x A. The proof is by contradiction. Suppose that an inter-
pretation of an inf inite linear order in B is given so that {x : ~x <Q ~x} = Bm.
Since a decoding key uses only finitely many symbols, we can assume that the
language of A has a finite signature. To make the argument clearer, we will first
assume that ra = 1. We make use of the following fact. Suppose <Q is a definable
linear order on a structure C such that the domain {x : x <Q x} equals C. If an
automorphism π of C exchanges u and v, then u =Q v. This is because

n <Q v => π(u) <Q π(v) => v <Q u. (1)

Clearly B can be interpreted in A. Thus "<Q" can be viewed both as a
definable binary relation on B and as a definable 4-ary relation on A. Moreover
the statement "<g defines an infinite linear order" is a statement about Th(A).
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We claim that the following 6-type in the language of A is consistent with
Th(A):

(a) (a?o,ί/o) <Q (#1,2/1) <Q (# j , * / 2 )
(b) The collection of first order -statements expressing that, for each i,j,

0 < i < j < 2, ( x i , y, , Xj, y.j) realize the same 4-type.

The statements in (b) are of 1 he form

/0,^2, 2/2) ^> vK^ι> 2/ ι>^2, 2/2),

for any formula φ with four free variables. They also imply that the same 2- type
is realized by any pair (#,-, y, ), 0 < 2 < 2.

To prove the consistency of the 6-type with Th(A), we apply Ramseys Theo-
rem as in the construction of Ehrenfeucht-Mostowski models. Since Q is infinite,
we can suppose that there is an infinite ascending chain

(α oΛ)) <Q ( α ι , & ι ) <Q . . .

in Q (if there is an infinite descending chain, one can argue similarly). Given
finitely many formulas φ^ (k — 0, . . . , ? ? — 1) in 4 free variables, we assign one
of 2n possible colours to an unordered pair {(α;, 6;), (αj, bj)} (i < j) depending
on which formulas ψk(a>i, 6;, «•/, bj) hold. Then any homogeneous (in the sense of
Ramsey) set of cardinality 3 shows the consistency of Th(A),

(xQ,yu) <Q ( a ? ι , 2 / ι ) <Q (^2,2/2)

and the statements in (b) determined by a formula φ^ (k = 0, . . . , n — 1). Thus
the 6-type is consistent with Tlι(A).

Now, by standard results from model theory we can choose a countable
ω-homogeneous model A of Th(A) such that, elements

(αoΛO <Q ( α ι , f r ι ) <Q (02,^2)

realize the 6-type above. We w i l l derive a contradiction. We need the following
fact: If two pairs (α, b) and (af , //) realize the same 2-type in A, then

(«,//) Ξ Q ( α ' , & ) . (2)

For let a be an automorphism of A mapping α to a' and b to b1 . Let S be
the automorphism of B :— A x A mapping a pair ( x , y ) to (y, x). Then, the

automorphism of B

exchanges (α,67) and ( b , a ' } .
Applying fact (1), we can conclude that (α,6x) ΞQ (6,α'), and applying the

same fact to S alone, (α', 6) =Q (6, a'}. So, by the transitivity of ΞQ,

(α,6 ;)=Q ( a ' , b ) .
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We apply (2) two times to obtain the desired contradiction. First, 00,61

and αo,62 realize the same 2-type in A since they are the projections to the
first and fourth components of the 4-types of 00,60,01,61 an(^ °f αo,δo, 02, 62?
respectively. Thus (0-0,61) ΞQ (00,62). Also, α0,62 and 01,62 realize the same
2-type, so (00,62) =Q (01,62)- Now, by transitivity,

(α 0,όι) ΞQ (αι,62).

However, since A is ω -homogeneous, again by our definition of the 6-type, we
can choose an automorphism β of A such that β(bi) = δ, +ι (i = 0, 1). Then,

since (Id^,/?) is an automorphism of B, (09,60) <Q (αι,6ι) implies that

(αo,6ι) <Q (αι,62),

a contradiction.
We now adapt the argument to the case that m = 2. Then, by obvious

notational changes the general case can be obtained. Note that <Q now is a
4-ary relation on B, which can be viewed as an 8-ary relation on A via

(#o, 2/0,^0,^0) <Q (sι,2/ι,zι, MI) in A

& ( ( # o , 2 / o ) , ( 2 o , w o ) ) <Q ((*ι,2/ι),(*ι,u>ι)) in B

Fact (1) is used in a modified form: If an automorphism π of C (a structure like
B) exchanges u with v and p with q, then (tt,p) ΞQ ( v , q ) .

The following 12- type in the language of A is consistent with Th(A):

(a') (x0, 2/o, ZQ,WQ) <Q ( » ι , 2 / ι , z ι , ί i > ι ) <Q (^2,2/2,^2,^2)
(b') The collection of first order-statements expressing that, for each i j t / ,

0 < i < j < 2, (#/, Ίf/7;, ^ , Wi, Xj, y j , Zj , tϋj) realize the same 8-type.

The consistency of the 12-type with Th(A) is proved as before. Now let A be a
countable ω-homogeneous model of Th(A) such that the elements

(α 0 l 6 0 ,co,do) <Q (α,ι,6ι,cι,c/ι) <Q (α2, 62,c2, d2)

realize the 12-type. We derive a contradiction by applying the previous argument
simultaneously to the first and the second half of the quadruples. If two pairs
(α, 6, c, d) and (α7, 6X, r', d'} realize the same 4-type in A, then

(a,b',c,d')=Q(a',b,c',d).

For if a is an automorphism of A mapping (α, 6, c, d) to (α', &', c', cί'), and 5 is

as before, then 5 o (o , α"1) exchanges the pairs of elements of B ((α, 6'), (c, d1))
and ((6, α;), (d, c7)), and S exchanges the last pair of pairs with ((α', 6), (c', d)).

Now, by similar arguments as before,

(α 0,6ι , co,αΊ) Ξg (0-0,62,00,^2) =Q (αι,62,cι,d 2)

But we can also choose an automorphism β of A such that β(b{) — 6t +ι and
β(di) = di+ι(i - 0,1). Then (αo,6o,co,do) <Q («ι,6ι,cι,dι) implies that
(oo,6i,c 0 ,di) <Q (α-i ,6 2 ,cι,d 2 ), contradiction. 0^
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The statement of the theorem becomes false if one allows interpretations with
parameters. For instance, if B — N x N, consider a — (1,0) as a parameter. The
set of elements u in B which satisfy α u = u is definable from a and equals the
set of elements {(#,0) : x G ϊ ί), which is infinite and linearly ordered by <B.
The same example shows that the statement is false in general for structures
C x D, even if C, D are infinite: let C = (N, 0) and D = (N, 1).

2 Applications in recursion theory

In this section we give examples of structures arising naturally in recursion the-
ory which are squares and therefore fail to satisfy (ILOP). First we discuss the
relevance of (ILOP) in recursion theory. Examples of structures arising naturally
are the lattice £ of r.e. sets under inclusion and the structure TZj- of r.e. Tur-
ing degrees. The use of coding methods has been a very successful method of
analyzing those structures. For all structures, coding methods were first used to
prove the undecidability of the elementary theory. Stronger results were obtained
by giving a (natural) many-one reduction of true arithmetic, i.e. Th(N), to the
theory of the structure. Such a reduction shows that the theory is as complex
as possible, provided that the structure itself is arithmetical, which is the case
for £, 72.7- and many other structures occuring in recursion theory. However,
the existence of such a reduction does not mean that an interpretation of the
model N in the recursion theoretic structure can be given. Instead, to obtain
the reduction, some coding of copies of N with parameters p is developed. As a
next step, one finds a first-order correctness condition ψ(p) on parameter lists
which holds for some list, and always implies that the model coded using p is a
standard model. Then, existentially quantifying over correct lists p, one obtains
an interpretation of true arithmetic.

All theories we consider in t h i s section have the same computational complex-
ity. If one looks at the structures themselves rather than just at their theories,
finer distinctions emerge. In 7v.$ (the structure of r.e. many-one degrees) and in
7£τ, a further development of the coding methods allows one to find an interpre-
tation of N without parameters ([N95] and [NSSlta], respectively). Certainly this
implies (ILOP). However, for £, L. Harrington showed that even (ILOP) fails.
Harrington used ^-specific methods, thereby paving the way for further noncod-
ing and nondefinability results (see [HaNta]). Here we obtain Harringtons result
in a purely model theoretic way, since £ is a square. To see this, let 5 C ω be
any recursive infinite and coin f i n i t e set. Then the collection of subsets of S forms
a lattice isomorphic to £. Thus the map

X ^ (XΓ\R,XΠ(ω-R))

gives an isomorphism as required.
We now consider other structures from recursion theory where (ILOP) fails.

The major subset relation is defined as follows: for A, B £ £,

A Cm B & A Co* n Λ (VW)[B U W = ω =» A U W =* ω].
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Maass and Stob [MSt 83] proved that the interval [A, B]ε has the same structure
for any pair A, B such that A Cm B. This structure is denoted by ΛΊ. Thus,
M = [ A , B ] , where A Cm B. From the Maas-Stob result, it follows that M is
a distributive lattice with strong homogeneity properties: all nontrivial closed
intervals are isomorphic to the whole structure, and all nontrivial complemented
elements are automorphic within M. The undecidability of Th(Λ4) is proved in
[Ntal].

Theorem 2. M fails to satisfy (HOP).

Proof. Choose A C™ B. Clearly, B(JA is non-r.e. Then, by the O wings Splitting
Theorem (see [So87]), there is a splitting B — BI U BΊ into disjoint sets such
that Bi U A is non-r.e. for i — 1, 2. If d — A U #;, then A Cm Ci and hence, by
the Maass-Stob result, [A, d] = M. Now the map

(X £ [A, B]) gives an isomorphism M = M x M. So M fails to satisfy (ILOP).

0
Note that the arguments above also work for the quotient lattices modulo finite
differences £* and .Λ/Γ.
Question. As mentioned in the introduction, the random graph, random partial
order, and the random distributive lattice fail to satisfy (ILOP). On the other
hand, (Q,<) certainly satisfies (ILOP). It would be interesting to find a crite-
rion when a countable structure A such that Th(A) is ω-categorical and has
quantifier elimination satisfies (ILOP) (see also [Ho93], p. 350). m
Acknoledgement. The question answered by Theorem 1.1 arose in discussions
between L. Harrington and the second author.
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