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Abstract. This paper is concerned with the construction of intervals of
computably enumerable degrees in which the lattice Ms (see Figure 1)
cannot be embedded. Actually, we construct intervals Z of computably
enumerable degrees without any weak critical triples (this implies that
Ms cannot be embedded in Ί, , see Section 2) . Our strongest result is
that there is a Iow2 computably enumerable degree e such that there are
no weak critical triples in either of the intervals [0,e] or [e, O'].

1 Introduction

A set of natural numbers is computably (or recursively) enumerable if it is the

range of a function computed by a Turing machine. We say one set of natural

numbers, A, is Turing computable from another, 5, if there is a Turing ma-

chine, which using an oracle for B, computes A. Equivalence classes under this
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reduction are called Turing degrees or just degrees. In this paper we will restrict
our attention to those degrees which contain a computably enumerable set; the
computably enumerable degrees.

The computably enumerable degrees form an upper semilattice, 7£. Despite
the fact that Ίi is not a lattice, there has been a long series of results each
demonstrating larger and larger classes of lattices that could be embedded into
7£. Examples include the results of [Lac72] and [ASL89]. On the other hand, in
[LSo80] it is shown that not every lattice can be embedded into K. Naturally,
understanding precisely which lattices can be embedded into 7£ is central to the
question of the decidability of the 5V theory of Ti. For instance, in the language
of {<}, one needs to demonstrate an algorithm that will decide which lattices
can be embedded into 7£ (or the nonexistence of such an algorithm).

In the present paper, our concern is the lattice M5 (see Figure 1), the modular
5 element lattice and its distribution in 7£. In [Lac72] it is shown that MS is
embeddable into 71. However, Lachlan's proof exhibited certain technical features
such as "continuous tracing" which had not been necessary in previous lattice
embedding theorems. Lachlan and Soare's proof that Ss (see Figure 2) is not
embeddable in some sense demonstrates that to embed MS requires such features
and furthermore these features can be incompatible with other lattice properties
such as simultaneously controlling the infima of a pair (or more) of degrees as
with HI Π Sί2 — as in Figure 2).

Fig. 1. The lattice M5

These observations led Lerman to conjecture that essentially the "Mδ phe-
nomenon" interacting with the infima was the only blockage to embeddability.
The central role of the "M5 phenomenon" was also demonstrated in [Dow90]
and [Wei88] where it was proved that there are initial segments of ΊZ into which
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Fig. 2. The lattice 58

MS cannot be embedded.
Actually, the Downey and Weinstein results were stated in terms of (weak)

critical triples (see Section 2 for a definition). Critical triples is a lattice theoretic
condition which reflects the need for "continuous tracing" in the construction of
such a triple. These results as well as [CDo93] demonstrate that embedding of
critical triples and the structure of 7£ interact in very interesting ways.

Indeed, embeddings of nondistributive lattices is closely tied to the structure
of 11. For instance, following the work in [DLe], it is shown in [ASF96] that the
degrees which are tops of N$ (see Figure 3) are precisely the "noncontiguous"
degrees which are not "locally distributive" in 7£.

We remark that recently in [LLe] it is shown that there are lattices without
critical triples which are not embeddable into 7£. But despite the fact that critical
triples do not completely capture the nonembeddability picture, it is obvious that
their definition plays a central role in our understanding of embeddings into 7£.

Critical triples and nondistributive lattices also seem to have a connection
with a natural operator on the Turing degrees called the jump operator. Infor-
mally the jump of a set of natural numbers X, X1', is the set of numbers e such
that the eth Turing machine (under some standard indexing of all Turing ma-
chines) with an oracle for X halts with input e. We use the jump operator to
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Fig. 3. The lattice N$

define jump classes: sets of degrees which have the same nth jump for some n.
For example, Low2 is the collection of all computably enumerable Turing degrees
d whose double jump is as low as possible, i.e. a11 = 0".

Now in [DSh96], it is demonstrated that if d is nonlow2 then one can embed
MS below d. The Ambos-Spies and Fejer result proves that if d is nonlow2 then
d is the top of an Λ/s . Because of these results one is led to believe that lattice
embeddings and the jump operator are deeply related.

In the back of our minds when we began this project we hoped to show that
the Iow2 degrees are definable in the computably enumerable Turing degrees
(in the language of partial orders) via embedding properties of MS. There are
techniques for working with Iow2 computably enumerable degrees [SS191, DSh95]
and nonlow2 computably enumerable degrees [DSh96]. Downey and Shore used
these techniques to show that a computably enumerable it degree d is Iow2 iff d
has a minimal cover in the computably enumerable it degrees [DSh95] and hence
the Iow2 computably enumerable it degrees are definable in the computably
enumerable it degrees. Our plan was to use these techniques to show d is Iow2
iff there is a computably enumerable degree e such that the lattice MS cannot
be embedded into either [0, e] or [e, d].

We had reason to hope that we might be successful: [DSh96] had recently
shown that the lattice MS can be embedded below any nonlow2 computably
enumerable Turing degree and from [CDo93] we knew how to construct intervals
of computably enumerable degrees where it is impossible to embed MS. Hence,
we needed to first extend the Downey and Shore result to the following: If d is
nonlow2 and e is a Iow2 degree below d (and so d is nonlow2 relative to e), then
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the lattice MS can be embedded in the interval [e, d]. And second, improve the
techniques of Cholak and Downey to show that for each Iow2 degree d we could
find an e such that the lattice M5 cannot be embedded into the intervals [0,e]
and [e, d]. This would have given us a formula defining Iow2.

However, one of our results implies that there is a computably enumerable
degree e such that the lattice MS cannot be embedded into either [0, e] or [e, 0'].
Thus the proposed formula does not define the Iow2 computably enumerable
Turing degrees.

Before we turn to our own work we should note that [NSS] have recently
announced that the jump classes Lown and Highm are definable, for n > 2
and m > 1. Their methods however, rely on coding models of arithmetic and
analyzing the complexity of certain lattice like structures that can be coded
below a given degree. We should also mention that there have been at least
two other unsuccessful attempts to show that Low2 is "naturally" definable: one
by Leonhardi [Leoi 1994] and the other by Cooper and Yi [CYi]. For more of
a discussion of definability and computably enumerable degrees, the reader is
directed to Shore [Sho].

The rest of this paper is concerned with the construction of intervals of
computably enumerable degrees in which MS cannot be embedded. Actually,
we construct intervals X of computably enumerable degrees without any weak
critical triples (this implies MS cannot be embedded in Z). The definitions of
and the relationship between critical triples and weak critical triples (and the
lattice MS) are isolated in the next section.

The concept of a critical triple first arose implicitly in [ASL86] and [ASL89].In
[ASL89] it is shown that a finite lattice C can be embedded into K if there is
no (weak) critical triple a, bo and bi and no pair p and q in £ such that
bo < p Π q < bo U a. The concept of a critical triple was first explicitly isolated
in [Dow90]. In [Dow90], it is shown that there is a degree which does not bound
a critical triple. In [CDo93], this work was extended to show that if a < b are
degrees then there is a degree e such that a < e < b and there is no critical
triple in the interval [a,e]. The definition of a weak critical triple first appeared
in [Wei88] under the name of "pre 1-3-1". He showed that there is a degree
below which there is no weak critical triple. Our results further point out the
importance of critical triples and weak critical triples in our quest to know what
lattices can and cannot be embedded into intervals of computably enumerable
degrees.

Our results fall into two groups. The first group of results concerns degrees
which do not bound a weak critical triple. We show that every degree can be split
into two degrees neither of which bounds a weak critical triple. Hence, the class of
degrees which fail to bound a weak critical triple generates 7£. We also show that
there is a properly Iow2 degree with no weak critical triple below it. Therefore,
the result of Downey and Shore [DSh96] that the lattice M5 can be embedded
below any non-low2 degree is the best possible in terms of jump classes. These
results are presented in Section 4. The other group of results is presented in
Section 6 and concerns degrees above which there is no weak critical triple. We
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show there is an incomplete degree above which there is no weak critical triple.
In addition, we show there is a degree above and below which there is no weak
critical triple. By the above result of Downey and Shore such a degree must be

Iow2.
There are two different types of requirements that reflect the grouping of re-

sults: There are the requirements Λ/] which ensure that there is no weak critical
triple in the desired lower cone and there are requirements P^ which ensure that
there is no weak critical triple in the desired upper cone. Each Λ/] is a negative
requirement in that it restrains elements from entering the constructed set. The
requirements Λ/] are presented in Section 3. Each P) is an infinite positive re-
quirement; it may add infinitely many elements into the constructed set. The
requirements P) are presented in Section 5. The two types of requirements and
the strategies used to meet them are in a sense duals of each other.

Although demonstrating that there are no weak critical triples in some in-
terval is stronger than the corresponding result for critical triples, it is actually
easier to construct intervals of computably enumerable degrees without weak
critical triples than it is to construct intervals of computably enumerable degrees
without critical triples (at least, as this was done in [Dow90] and [CDo93]). Fix
a triple of computably enumerable degrees, a, bo and bi such that a U bo = a
U bi. To show, as in [Dow90] and [CDo93], that a, bo and bi is not a critical
triple a computably enumerable degree d is built such that d < bo, bi and if a
^ bo then d ^ a. Determining whether a is Turing reducible to bo is a ΣS ques-
tion and therefore it is not surprising that these arguments turn out to be 0"'
arguments. To show that a, b0 and bi is not a weak critical triple, we construct
a computably enumerable degree d such that d < b0, bi and b0 < d U a. As it
turns out, this can be done by a 0" argument. In terms of lattice embeddings,
however, the results are equivalent for, as we will see below, a lattice contains a
critical triple if and only if it contains a weak critical triple.

A question we tried to answer but could not is whether the lattice MS can be
embedded above every low degree. For more on this issue, the reader is directed
to Section 6.3. It is also open whether one can extend our result that there is
an incomplete degree which does not bound a weak critical triple to show such
a degree must exist above every nonlow2 degree.

Remark Notation. Our notation is standard and generally follows [Soa87] with
the following important exceptions: The use of a computation Φ(XS x ) is denoted

by ψs(x) and similarly for other Greek letters. We assume the uses of all func-
tionals not constructed by us to be nondecreasing in the stage, s, and increasing
in the argument, z, for each stage. Furthermore, if the underlying set involved
in a computation changes below the use of the computation at some stage s, we
will assume that computation diverges at stage s. For example, if we are given
Ψ and for some x and s, Ψs(Xs;x)± and Xs \ (φs(x) + 1) φ Xs+ι \ (ψs(x) + 1)
then tf^+i (Xs+ι x) t When the oracle of a functional is given as the join of sets
we assume the use to be computed separately on each set. To make life easier,
we will assume that X 0 Y 0 Z is defined as

{3x : x G X} U {3y + 1 : y <E Y} U {3* + 2 : z <Ξ Z}.
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All other joins are defined normally. When we choose a large number we mean
a number larger than any other number mentioned or used so far. For any of
the functionals (or parameters) which we are building, we will assume that if
the underlying set changes at some stage on the use (for this stage) then this
functional (or parameter) is undefined at this stage unless otherwise explicitly
defined. For example, if we are building Γ and for some x and s, ΓS(XS\ x)\. and
X* \ (~fs(x) 4- 1) Φ Xs+ι \ (Ίs(x) + 1) then unless we otherwise explicitly define

• .Γ,+ι(Λ",+ι;2ϊ), Γs+i(Xs+i;x)^. Otherwise, all parameters remain the same from
stage to stage unless explicitly redefined. We assume the reader is familiar with
0" arguments as in [Soa87].

2 Definitions and Examples

Definition 1. Let a, bo and bi be elements in any upper semilattice C (such as
the Turing degrees or the computably enumerable Turing degrees). We say that
a, bo and bi form a critical triple if a U bo = a U bi, bo ^ a and for d £ £, if
d < bo, bi then d < a.

Definition2. Let a, bo and bi be elements in any upper semilattice C. We say
that a, bo and bi form a weak critical triple if a U bo = a U bi, bo j£ a and for
d 6 £, if d < bo, bi then b0 £ d U a.

Any upper semilattice in which the lattice MS (for a diagram of the lattice
MS see Figure 1) can be embedded (as a lattice) contains a critical triple. If a,
bo and bi form a critical triple in some upper semilattice C then a, bo and bi
form a weak critical triple in £. In Figure 4, a weak critical triple a, bo and
bi is identified within a lattice. Within this lattice, a, bo and bi do not form
a critical triple but the elements a U (bo Π bi), bo and bi do. In fact, if a, b0

and bi form a weak critical in an upper semilattice C and bo Π bi exists (for
example, this must occur if £ is a lattice), then a U (bo Π bi), bo and bi form
a critical triple in £. On the other hand, it is possible to construct an infinite
upper semilattice which contains a weak critical triple but no critical triples.

As for 7£, it is unknown whether there exists an interval X such that there
is a weak critical triple in X but X does not contain a critical triple or whether
there exits an interval X such that there is a critical triple in X but M5 cannot
be embedded into X.

3 The requirements Λ/]

Our goal is to build a computably enumerable set E such that the following
requirements are met:
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aU(b 0

Fig. 4. A weak critical triple which is not a critical triple

If A(E) = A 0 £0 0 #ι and Φi(A 0 S?) = B<

then there exists a computably enumerable set D

and functionals 4, and Γ such that Λ/*

Δi(Bi) = D and Γ(A 0 D) = B0

where A and Φί (i = 0,1) are functionals and A, BQ and B\ are computably
enumerable sets. These six items, the requirement, the set D and the three
functionals Δi and Γ will later be indexed in some fashion by e; but for now,
we will drop the e. If we meet λf then either E does not bound the computably
enumerable sets A, BQ and B\ or the degrees represented by these sets do not
form a weak critical triple. (If BQ <τ A then the requirement can be easily met.)

We will need some auxiliary functions (at first it may seem that we are
generating more notation than needed but we will use all these functions later
in the construction):

L(s) = 2})

[Λ8(Es\z) = As Θ B0,s Θ Bιt,(z)]}
(3.1)

L(s) is the length of agreement function between Λ8(ES) and As 0 BQ)S Θ Bιt8

We use the convention that if As (Es y) = As 0 50,5 0 -^1,5 (2/) and E5 f λ5 (y) +
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does not change then no new numbers can enter As 0 B0 s φ BI s \ y + I. Let
{i,ί} = {0,l}.

{* : (Vy < x)[9it8(A8 Θ B?>,;y) = B, ,,(y)
( ' }

l*l(s) is the ^-correct length of agreement function between Φj ) 5 (A 5 ®Bj s) and
Bi,s. We will use these length of agreement functions to define, by induction, the
following length of agreement and use functions:

/"(*)= **'(«) (3.3)

If x < l°(s) let p°(A, x, s) = ψo,,(x)>
O / D \ i / \ j 0 / D \ V /P \ - î i x i s) — ΨQ s I *̂  / ano. p ( ±JQ x. s) ^— x.

/2$+1(s) = max{x : (Vj/ < x)[y < I 2 t ( s ) and

p2i(B1,y,S)<l'fl(S)}}

lfx< I2ί+1(s) let p2i+1(A,x,s) = ̂ ..(^(B!,*,*)),

p2i+1(B0,x,s) = Φι,t(p'"(Bl,x,a)) and (3.6)

/2ί+2(s) = max{a; : (Vy < x)[y < /2ί+1(s) and (3.7)

P

2ί+1(B0,y,s)<l*°(s)}}

lΐx< I2i+2(s) let p2i+2(A,x,s) = ψ0>s(P

2i+1(B0,x,s)),

p2<+2(flι, *,β) = ^0,,(p2i+1(B0,x,s)) and (3.8)

x<li(s), let p'(E, x,s) =

X,(3pί(B0,x,s) + l),\s(3pί(B1,x,s} + 2)

If x > /''(β) then for all X € {Λ, 50, Si, E},pi(X, x, β)t .
(3.10)

If for almost all stages 5, pl (X, x, s) | then let

/>1' (X, s) = limp^X, x, s ) , for X 6 {A, B0, 5ι, ̂ }-

If a? < /* (s) then we have an E"5-correct computation involving i+1 layers, that
nΨo,(A,®Blt8) \x + l = B0,s \x + l,Ψιt.(A,®BΌia) \ p°(J3ι, x,β) + l = BI,, f
p°(Bι, x, s) + 1, !P0|,(A, Θ BI,,) Γ Pl(BQ, x, β) + 1 = BI,, f ^(Bo, x, β) + 1, . . .
and p*(X, x,s) is the initial segment of the set X used in this computation, for
all X G {A, BQ, BI, £"}. Diagram 5 may be helpful at this point. If we preserve
Eg below p*(E^ x, s)-f 1 then the computations used in defining / z(s) > x will not
change and we will preserve Xs below ρl(X, x, s) + 1, for all X G {A B0, BI}.
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p3(B0,x,s)

Fig. 5. 4 layers

Associated with each number x will be another number i ( x ) . We should view
i(x) as the number of injuries Γ8(A8.® Ds]x) = 50)5(x) can sustain and still
ensure that Γ(A 0 D] x) = BΌ(x) (more on this later). The value of i(x) will be
determined before the construction. In fact, determining the value of i(x) will
play a large role in all of our proofs. We will assume that i(x) is a non-decreasing
function. We will define the length of agreement l ( s ) as

* : (Vy < x)[y (3.12)

If x < l ( s ) then let p(X,x,s) = p'^pf, z,s) and p(X,x) = ^(X.x). Think
of ρ(X, X) s) as the complete use function for x on X. We say a stage s is expan-
sionary iff 5 = 0 or t < s is the last expansionary stage and l ( s ) > l ( t ) .

If Λ(E) = A Θ BQ Θ Bi and fy(A Θ J%) = 5, then there will be infinitely
many expansionary stages. Hence, to meet λί it is enough to build a computably
enumerable set D and the functional ΔΪ and Γ such that if there are infinitely
many expansionary stages then Δi(Bi) = D and Γ(A Θ D) = BI. We will do
this by splitting M into infinitely many subrequirements, Λ/§:

If there are infinitely many stages s such that l ( s ) > x then

D; x) = So(«) and 4f (B, ) f (τ(^) + 1) = ΰ Γ (τ(*) + 1)-

Informally, the strategy to meet Λ/§ is first to redefine ΓS(AS 0 Ds\x) to
reflect any change in B0,s(x), if we can. If ΓS(AS 0 D5; x)^ B0yS(x) and for all
i G {0,1), ^-^(S.-^; %(x)) t then add 7,(x) to Ds+ι which will allow us to later
redefine Γ(A Θ D; x). Our goal is to prove that this works.

We will now present the formal details. We will have two additional param-
eters ex(s) and px(s)\ they will be used to keep track of which layer has been
"peeled away" with ex(s) € {0,1} indicating which side has changed and px(s)
at which layer.
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Action for Λ/§ at stage s + 1. Assume l(s + 1) > x (otherwise do nothing).
Let t < s + 1 be the last stage such that Γt(At 0 Dt\ x}\, and l ( t ) > a?, if such a
stage exists. Do the first of the following cases which applies:

Case 1 t does not exist.
Action Let d be large, define Γs+ι(As+ι 0 £)5+ι;x) = £?0)5+ι(z) with use

7,+ι(x) = d > p(A,x,s), and define A>+ι(#«>+ι; d) = 0 with use
ίif,(d) = p(5, ,x,s). For all 7,+ι(x - 1) < y < d, if A>(#t>; 2/) t then
define ^l )5+ι(J0, )5+ι; y) = Ds+ι(y) with use 0. If i(x) is even let
ex(s + 1) '= 1, otherwise let e*(s + 1) = 0. Let jr^s + 1) = i(a?) + 1.

Case 2 There is a stage t' such that t < ί' < s + 1 and either Case 3, 4 or 5
applies at stage t' for some Λ/|, where y < x.
Action Same as in Case 1.

Case 3 As+1 \ p(A,x,t) ± At \ p(A,x,t).
Action Do nothing.

Case 4 For i G {0,1}, and / = px(t) - 1, βίf,+1 f pl(Bi,x,t] ^ Bijt \ pl(Bi,x,t)

(hence A>+ι(£t>+ι;7tW) will diverge).
Action Add 7t(x) to D5+ι (by our convention this will cause Γ5+ι(A5+ι 0

D5+ι;x)t and will cause Case 2 to apply at the next possible stage).
Case 5 Currently never applies. Will be used in Section 5.
Case 6 For i = e*(t) and / = p*(t), BM+1 r pl(Bi,x,t] φ Bi)t \ pl(Bi,x,t)

(hence, by Equations (3.6) and (3.8), J5f>β+ι [ pf-l(Bi,x,t) ± Bitt \ ρl~l

(Bi,x,i) and therefore ,̂ )S+ι(5, )5+ι;7t(ίp)) would diverge except that we
now redefine it).
Action Let ex(s + 1) = ? and px(s + 1) = px(s) - 1. If ΓS(AS 0 Ds\ x) t

then define Γ5+ι(A5+ι 0 DsH.ι;x) = J50)5^ι(x) with use 7ί(x). Define

A',5+i(5»,5-fi;7t(^)) = 0 with large use. For ̂ t(x - 1) < y < ^t(x] and
j G {Q,l},letΔj)S+ι(Bj)S+ι]y) = Δj)t(Bjιt;y) with use ίj,t(y). For j = f,
let ^>+ι(BJ>+ι;7t(x)) = ̂ ^(^^^^xj) with use ί, ,t(7t(s))

Case 7 Otherwise.

Action If ΓS(AS 0 £>5;x)t then define Γ5+ι(A5+ι 0 D5+ι;x) = fl0,*+ι(a?)
with use 7t(x). For *γt(x - 1) < y < ^t(x) and j G {0,1}, let
4^+1(5,̂ +1; y) = Δjtt(Bjtt',y) with use Sjtt(y).

Remark Coordinating the action for different Λ/§. We will assume that at any
stage s we take the action needed for Λ/§, for x < 5, in increasing order. Hence
since i(x) is a nondecreasing function, 75(x) is nondecreasing as a function of s
and increasing as a function of x. Similarly for the use functions 7, ) S.

Definitions. If Cases 1 or 2 apply or s + 1 = 0 then we call s -f 1 a free-clear
stage. If Cases 3, 4 or 5 apply for some Λ/|, where y < x, we call s + 1 an almost
free-clear stage (assuming that there are infinitely many stages where l ( s ) > x,
the next such stage will be a free-clear stage).

Definition4. Let t be a free-clear stage. Let t1 be the next almost free-clear
stage or oo if there is none. We let s G /£ if either s = toτt<s<t' and
px(s) < px(s - 1) (i.e. Case 6 holds).
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Lemma 5. Let t be a free-clear stage. Suppose for all s £ /£, px(s) > 0. Then
(i) Foralll<px(s} and for all X G {Λ,B0,Bι,£}, ** \ (pl ( X , x , t ) + l) = Xt \
(pl (X, x, ί) -f 1) ffry induction on s, this implies that pl(X, x, s) = pl (X, x, t)).
(ii) Forl=p*(s) andi = e*(«), 5,-,, f (p'^ , M) + 1) = Bi,t \ (ff(Bi, x , t ) + 1)
(again, by induction, this implies that pl(Bi,x,s) = pl(Bi,x,i)).

Proof. By induction. Clearly the lemma holds for s — t. Let j = e^s — 1) = i.
Since 5 is in /* and p l ( B j , x , t ) = pl+1(Bj,x,t) (see Equations (3.6) and (3.8)),
for some k < /, Bjt8-ι \ (pk(B^ x , t ) + 1) / 5j)t f (fft(Bj, x , t ) + 1). Let Ar be
as small as possible. Suppose k < I. Then, by the layering and the induction
hypothesis, for some X £ {A, Bi},Xs \ (pk(X, x , t ) + 1) ± Xt \ (pk(X, x , t ) + 1).
So either Case 3 or 4 applies at stage s and hence s ^ /£. Hence k — I and (i)
holds. Bi,s \ ( p l ( B i , x , t ) + 1) = Bi)t \ (pl(Bi,x,i) + 1), otherwise s is an almost
free-clear stage.

We have just shown that, between (almost) free-clear stages, we only peel
back the layers one at a time with changes alternating between BQ and B\. The
idea of peeling back the layers is called the "top-down approach" in [Wei88]. We
say that it is possible to peel back (or away) the px(s)th layer of x at stage s.

It may be helpful to refer to Diagram 6 this point. This Diagram is a sub-
diagram of Diagram 5. The numbered areas show where the changes in these
sets must occur to peel back all 4 layers. The numbers refer to the sequence of
events; i.e. there must be a change in first region followed by a change in the
second, etc.

3 1

Fig. 6. Where the changes must occur, in the required order, to peel back all 4 layers

Lemma 6. Either Γ(A 0 D\ x) | and for all y < j ( x ) , Δi(Bi\y) | (i.e. the
functional are well-defined) or it is not the case that Λ(E) — A φ BQ φ BI and

Proof. By induction on x. We can assume that there are infinitely many stages
s where l(s) > x (otherwise we are done). Case 1 can only apply once. If Case
2 applies infinitely often then it is not the case that Λ(E) = AφBo 0 BI and
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Ψi(A Θ BΪ) — B{. Case 6 can apply at most i(x) — 2 times between stages where
Case 1 or 2 apply. Hence we can assume Case 7 applies almost always. Therefore
lims 7β(x) exists and Γ(A 0 D\ x) J,. Furthermore, for all 7(2? — 1) < y < 7(2?),
δi(y) =lim,ί, > β(j/) exists and Z\;(£

Lemma 7. Suppose Λ(E) = A® B0® BI and Φi(A Θ #;) = Bif there is a last
free-clear stage t and |/£| < i(x) + 1. TΛen Λ/§ is raeί.

Proof. By induction on x. By the above lemma, Γ(A Θ D; x) I and for all y <
7(2?), Λ (£i ;2/H Since 2 is the last free-clear stage, Γ(AΦD;2?) = Γt(At®Dt\x)
and for all j/ < 7(2?), Δi(Bi\y) = Δi}t(Bi^y).

Let s be the greatest stage in /£. By Lemma 5 and the above hypothesis,

Therefore B$,s(x) = BQJ(X) = BQ(X) (otherwise s is not the greatest stage in
/*). Hence Γ(A Θ D\ x) = Γt(At Θ Dt\ x) = B^t(x) = BQ(x).

Let 7(x — 1) < y < 7(0?) (by Remark 3, we know 7(2?) is an increasing
function). By the induction hypothesis, y can only enter D at some stage s iff
y — 7 ί/(x /), l(s) > x, and for both i, 4i jβ+ι(βi) ί+ι;y) t> for some x1 and t',
where t' < t (see Case 4 or 5). By stage t we will have to redefine Δi to reflect
this change in D with use 0. Hence Δi(Bi) \ (7(2?) -f 1) = D \ (7(2?-) + 1).

Corollary 8. Suppose for every free-clear stage t, |/£| < i(x) -f 1. T/zen Λ/§ is
meί.

Definition 9. Let s be a stage such that we act for Λ/§ as above at stage s and
let t be the greatest stage less than s such that we act for Λ/§ as above at stage
t (see Remark 3). Then s <Ξ Ix iff Et \ ( p ( E , x , t ) \ , +1) φ Es \ (p(E, x , t ) | -hi)
(if ί does not exist then s φ. Ix).

Corollary 10. If\Ix\ < i(x) + 1 ί/*en Λ/§ is met.

Proof. If s G Iχ then s £ Ix. (Note that the converse of the last statement does
not hold.)

Hence the easy way to met Λ/§ is to ensure that \IX\ < i(x) + 1. In this case
Λ/§ applies finite restraint. We will close this section with a few remarks:

Remark The priority ordering. We will always assume that Λ/§ has higher pri-
ority than Λ/f if and only if x < y.

Remark Initializing the strategy used for Λ/§ . We cannot initialize Λ/§ without
initializing Λ/f for all y. The strategies used by these requirements are all helping
construct the same sets and functionals. Hence we will only allow initialization
of all Λ/§ , in which case we can restart the construction of the needed sets and
functionals and redefine the function i(x). A requirement 72. will be allowed to
initialize (cancel) the Λ/§ 's iff 7£ has higher priority than Λ// (and hence all the
Λ/§'s, by the above remark).
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Remark Outcomes o/Λ/§. Λ/§ has i(x) + 2 outcomes which we will use when
needed. If Case 1, 3, 4 or 5 applies at stage s + 1 then this strategy has outcome
0 at stage s+ 1. Otherwise this strategy has outcome px(s + l) + l at stage s-j- 1.
The final outcome of the strategy is the liminf of the outcomes. Since our hope
is to meet Λ/§ , by Corollary 8, we can assume that p*(s) > 0, for all s. So if this
strategy has outcome 0, then Γ(A 0 D] x) t (the converse is not true).

Remark Stages. In one of the following proofs we will need to restrict the stages
that action for Λ/§ can take place to accessible stages (see Section 4.3). In another
we will need to restrict the action for Λ/§ to expansionary stages (see Section 6.2).
The above lemmas and discussion still hold true as long as we restrict all stages
used above to appropriate stages.

Remark Indexing. All the sets A, BQ and B\ and all the functionals Λ, ΦQ and Ψ\
should be indexed in some uniform fashion. Let e be an index for the sets A, BQ
and BI and the functionals A, ΨQ and $ι. The above requirement and everything
associated with it should be indexed by e. In particular, the subrequirement Λ/§
should be Λ^^ and i(x) should be ie(z)

4 Lower Cones

In this section we present three theorems. All of these theorems involve the
construction of a degree (s) which does not bound a weak critical triple. This
section is split into three subsection each containing a theorem and its proof.

4.1 Nonbounding

Theorem 11 [Wei88, Dow90] There is a noncomputable, computably enu-
merable degree e which does not bound a weak critical triple in the computably
enumerable degrees.

It is enough to build a computably enumerable set E which meets all the
requirements Λ/],§ and the requirements

We meet Ίl \ by using the following procedure:

Action for 7£] at stage s + 1. Do the first of the following cases which
applies:

Case 1 If there is no witness w for 7£] and EsΓ\We>s = 0, choose a large witness
w.

Case 2 If a witness w for 7J] exists, Es Π We,s = 0 and w E Wej8, add w to
ES+I. (If this case occurs then we say H] acts.)
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This requirement is positive; it wants to add elements to E. K \ acts at
most once. To initialize this strategy means to discard the current witness. This
strategy will met Tl] as long as it is not initialized infinitely often.

Choose some appropriate computable ω-ordering of all the requirements.
Given a requirement Λ/ί (§ we will let ie(x) be the number of positive requirements
of higher priority.

The Construction at stage s + 1. For the first s requirements take the
action described above (in order of increasing priority). For all e and x, if
ρs

e(E, x, s)4/ p*e(E, x, s — 1) then initialize all positive requirements which have
lower priority than Λ/] ,§.

Lemma 12. (i) \Ie,χ\ < 2e(x). Hence Λ/],§ is met. Furthermore, either ρe(E,x)
exists or for almost all s, pe (E, x, s) |.

(ii) 7£] is only initialized finitely often. Hence 7 ]̂ is met.

Proof. By induction on priority.
(i) By the above initialization, only those Ίlγ with higher priority can put

s into /e>;r and each one of these ie(x) requirements can act at most once. By
the induction hypothesis, there is a stage i by which all higher priority Έ,*\ι
which ever act have acted. If there is a stage s > t such that ρe(E, x, s) | then
pe(E,x) = pe(E,X,8).

(ii) Wait for a stage s where all higher priority 7^]/ which are going to act have
acted and for all higher priority N\,§ iΐρe(E, x) exists then pe(E, x) = ρe(E, x, s).
7£ | is never initialized after stage s.

4.2 Splitting

Clearly there are computably enumerable degrees which bound a weak critical
triple in the computably enumerable degrees. The next theorem implies that the
set of computably enumerable degrees which do not bound a weak critical triple
generates the computably enumerable degrees (under join) and so does not form
an ideal in the computably enumerable degrees.

Theorem 13. Every degree g is the join of two degrees e0 and βi neither of
which bound a weak critical triple in the computably enumerable degrees.

It is enough to build a pair of computably enumerable sets EQ and E\ and

a functional Θ such that the requirements J\f\ § (replace "E1" with "£j", for j £

{0,1}, and index everything with an additional superscript "j" in the discussion
in Section 3) are met and the requirements

Θ(EQ Θ E\\ y) = G(y) θy

are met. To meet <9y, we will use the following simple scheme: For all y, if
θs(E0ιS 0 Eιί8]y)^ Gs(y) then add some z < θ s ( y ) to one of the J5, 's. θy is a
positive requirement.
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Choose some appropriate computable ^-ordering of all the requirements such

that θy has higher priority than θz iff y < z. Assume Λ/'-," § is the Arth negative

requirement. Let z% be the least number such that <9Z* has lower priority than

A/i11"00 r . We define two functions p and p by induction as follows:

p(l)=ί(l) = 1, p(k + 1) = p(k) + p(k + 1), and

Let i£* (xk) = p(fc). We make no claims that this function is a tight bound on the
number of injuries. In the future we will drop the k from z* since the requirement
to which the z% refers will always be clear from the context.

The Construction at stage s -h 1. For the first s requirements take the

action described above (i.e for A/ί c) or below (i.e. for θy) in order of increasing
priority.

Action for θj at stage s + 1. Do the first of the following cases which
applies, if any:

Case 1 Suppose θ8(EQιS φ £?ι,,;y) t Then define θβ+ι(J5of*+ι Θ £ι f ί+r,2/) =
(7s+ι(y) with large use.

Case 2 Suppose θ5(£Ό,s Θ Eι,s',y) \>φ Gs(y}. Let A/ί § be the highest priority

negative requirement such that if p l ( E j , x , s ) \, then pl(Ej,x,s) > θ s ( y ) ,

where / = pj'*(s) - 1. If Λ/"] § exists, then add ^(^*) and θ,(y) to ̂ +1 (in

this case we say that AN § takes action for Θ). If Λ/ί c does not exist, then

addβ,(y) to£?J+1.

Clearly all the positive requirements are met. The following lemma shows
that the negative requirements are also met.

Lemma 14. Λ/π ? only takes action for Θ at most p(k) times, where ΛK o is the

kth negative requirement. \Pe^x\ < ij

e(x)- Hence jV-i r is met.

Proof. By induction on priority order. Assume pl

e(Ej , x, s) |, where / = p^>:Γ(x) — 1
and ^5(z) < pl

e(Ej,x,s) enters Ej at stage s. Then for all 2' > z and all stage
t > s, if 0(2/)4,, θ(z') > ^"^Ej^jβ). Unless some θt(z') later enters £j , where

z1 < z, AT-,' c will never take action for θ again. By induction, the higher priority
I 'S

negative requirements can only cause such a z' to later enter E j , Σk'<kP(h')
many times. There are z* — 1 many positive requirements which also could cause

such a z' to later enter Ej. Hence Equation 4.1 bounds the number of times A/*-, o

can take action.
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4.3 Nonlow nonbounding

Theorem 15. There is a nonlow computably enumerable degree e which does
not bound a weak critical triple in the computably enumerable degrees.

To show E is not low it is enough to build E and a set, WE, which is
computably enumerable in E, such that the following requirements are met:

w £ WE iff lim^>e(tt;,/) — 0, for some witness w. 7£-|

(If E is low then every set which is computably enumerable in E can be com-
putably approximated. Hence WE witnesses the fact that E is not low.) We
meet 7£] by using the following procedure:

Action for 7£] at stage s + 1. Do the first of the following cases which
applies, if any:

Case 1 A witness it; does not exist. Choose a large witness w and a large use

ueίg+ι(w) and let w £ Wβ+'ί"1 iff φejS(w,s) / 0. If φeίS(w,s) J, then let
/(s -f 1) = s + 1, otherwise let l(s + 1) = s.

Case 2 A witness iϋ exists, φetS(w,l(s)) = 0 and w £ WEs. Add ι/s(u>) to £"5+1,

add iϋ to W^1, let ue ) S+ι(w) be large and let /(s + 1) = l ( s ) + 1.
Case 3 A witness it; exists, ^>e>s(tt;,/(s)) = 1 and w; E WE'. Add u5(u;) to £"5-1-1,

remove u> from W^j*"1, let iίe,s+ι(w) be large and let l(s + 1) = l ( s ) -f 1.
Case 4 A witness w exists and φe^s(wj(s))],. Let l(s -f 1) = ί(s) + 1.

This is a positive requirement; it wants to add elements to E. H] can act
infinitely many times. We say this strategy has outcome 0 if Case 2 or 3 applies
infinitely often and outcome 1, otherwise. To initialize this strategy means to
discard the current witness. This strategy will meet 7£-| as long as it is not
initialized infinitely often.

We will meet all the negative requirements A/] }§ and all the positive require-
ments 7£ | by using a priority tree. Let T — {ω}<ω (the subtree of nodes which
are accessible at some stage will be a finitely branching tree). Choose some ap-
propriate computable ω-ordering of all the requirements Λ/] ( §. Assume A/]., §.. is

the kth negative requirement. Let iek(xk) = 22/c~1 (as always we make no claims
this bound is tight). All the nodes of length 2k will work on meeting Λ/] ,!,§,, using
the same strategy as described in Section 3. Each node, α, of length 2e -f 1 will
work on meeting 7£] using the above procedure on stages where a is accessible
with its own witness wa.

The Construction of E at stage s+1. By induction on k. Let /?5+ι)o = A.
Let β = /?5+ι,fc. There are two cases:

Case 1 Suppose \β\ — 2m. Use the above procedure for A/]^^. Let o be the
outcome of this strategy as determined in Remark 3. If k < s -f 1 then let
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Case 2 Suppose \β\ = 2m+l. Use the above procedure for 7£$ (using the witness
Wβ). If k < 5-f 1 then if either Case 2 or Case 3 applies (for the strategy based
at the node /?), let /?β+ι,*+ι = &+ι,fc~ϋ, otherwise let

Let /?5+ι = /?5+ι)5+ι. Initialize all nodes of odd length which are to the right of

Lemma 16. Lei / = liminf/35. For α// Ar,

(̂  For α// stages t, \llk}Xk\ < *e f c(#A;) Hence A/]^^ is raeί.
fii^ Lei a = f \ (2Ar-f 1). a is only initialized finitely often. Hence Tl\\ is met.

Proof. By induction on k.

(i) Let e = ek and x = xk. We say a injures Λ/],§ at stage s + 1 if s -f 1 is not

an almost free-clear stage, s + 1 is not a free-clear stage, us(wa) < />g(#, x,s)
and us(wa) enters E at stage s + 1, where / = p* (s) — 1. Let tf < s + 1 be the
last free-clear stage and t1 < i be the last almost free-clear stage (let t' — ί,
if such a stage does not exist). At stage t1 all a such that |α| > 2Ar, |α| is odd
and a(2k) φ 0 are initialized. Hence no such a can injure Λ/ίj. If α is such that
|α| > 2Ar, |α| is odd and a (2k) = 0 then α can only act at almost free-clear
stages for λ/\£. Hence no such a can injure A/] }§. Therefore if a injures A/]}§ at
stage 5 + 1, |α| < 2k and a cannot injure again Λ/]^ until after the next almost

free-clear stage (its use is too large). There are less than 22fe~1 such nodes.
(ii) Clear.

5 The requirement 7*)

For X G {A, Bo, Si}, lei X = X ® E. Let E = #. Our goal is to build a
computably enumerable set E such that the following requirements are met:

If Λ(E) = A®BQ®BI and Ψi(A Θ BΊ) = B{

then there exists a computably enumerable set D

and functionals Δi and Γ such that P

Δi(Bi) = D and f(A®D) = 50

where yl and ϊ?i are functionals and A, BQ and BI are computably enumerable
sets. If we meet P then the degrees represented by these three sets do not form
a weak critical triple.

P is the dual of M under the operation of hatting. Hence we can use the dual
of the strategy used for Λf to meet P and the dual of everything in Section 3
applies to the requirement P. As in Section 3, we split P into infinitely many
subrequirements:



35

If there are infinitely many stages s such that l(s) > x then

Γ(A® D\x) = B0(x) and &($>) \ (j(x) + 1) = D \ (7(3) + 1). §

The strategy for P§ is the dual of the strategy used for Λ/§ with two additional
features. First, there is a restraint function rx(s). fx(s) will be controlled by the
negative requirements and at each stage will be determined before the strategy
for P§ acts. rx(s) will be a nondecreasing function (in s). (Initially, rx(0) — 0.)
Second, Case 5 now reads:

Case 5 For i = e*(<) and / = j5*(ί), fl. ,,+ι \ p f ( B i t x 9 t ) ± Bitt \ p f ( B i , x , t ) and

Action Add Sϊ)S(x) to E8+ι and 7t(x) to Ds+ι (by our convention this will

make Δϊ)8 (B^, x) f, Γs+ι(As+ι Θ-Ds+ι x) t and will cause Case 2 to apply
at the next possible stage).

By Definition 3, we know if Case 5 applies at stage s + 1, then s -f 1 is an
almost free-clear stage. Case 5 adds numbers to E. In fact, this strategy may
add infinitely many numbers into E. Hence this strategy is an infinite positive
strategy (this makes sense since the dual of a negative strategy should be a
positive strategy). Using the dual of the arguments in Section 3, one can prove:

Lemma 17 The Dual of Corollary 8. Suppose for every free-clear stage t,

Vl\ <^(χ) + 1 τhen P§ is met

A word of caution: Since E = K, we cannot control |/£| (|/a;|) Hence while
Lemma 17 (the dual of Lemma 10) holds we cannot ensure that the hypothesis
holds. We need some other way to ensure that P§ is met.

Definition 18. Let t be a free-clear stage. Let tf^be the next almost free-clear
stage or oo if there is no such stage. We let s £ Λίj. iff either s = toτt<s<t'
and fx(s) > rx(s— 1) (since rx(s) is nondecreasing in s, these are the only stages
at which the value of rx (s) changes) .

Lemma 19. Suppose for every free- clear stage t, \Rl.\ < \i(x) — 1.

Then I/* I <l(x) and so P§ is met.

Proof. First note there cannot be three stages, s0, $ι and $2, such that
t < s0 < si < «2 < t1, SQ 6 R^, s\ £ /£, s2 G Iχ and for all s if s0 < s < s2, then
s £ R^. (Assume otherwise then at stage $2 Case 5 will apply rather than Case 6
and hence s2 is an almost free-clear stage.) So two layers cannot be peeled away

between stages when the restraint increases. Therefore |/£| < 2(|Λ^|-|-1) < i(x).

One should think of \i(x) — 1 as a bound on the number of times the restraint
can increase between a free-clear stage and the next almost free-clear stage and
still meet "P .
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6 Upper Cones

In this section we present two theorems each of which is presented in its own
subsection. Both of these theorems involve the construction of a degree above
which there is no weak critical triple (in the computably enumerable degrees).
We end this section with a subsection which concerns mixing the requirements
"P§ with the standard lowness requirements.

6.1 Upward nonbounding

The following theorem follows from Theorem 11 and the pseudo-jump theorem
in [JSh83] (see [CDo93] for more details). A direct proof of the theorem using
Harrington's "levels" method appears in [Wei88].

Theorem 20 [Wei88]. There is an incomplete computably enumerable degree e
above which there is no weak critical triple in the computably enumerable degrees.

To show E is not complete it is enough to build E and a computably enu-
merable set, W such that the following requirements are meet:

w £ W iff Φe(E\ w) = 0, for some witnesses w. 7£]

(If E is complete then every set which is computably enumerable is computable
in E. Hence W witnesses that E is not complete.) We meet 7£] by using the
following procedure:

Action for 7£-| at stage 5 + 1. Do the first of the following cases which
applies, if any:

Case 1 If a witness w does not exist, then choose a large witness w.
Case 2 If a witness w exists and Φe^s(Es\ w) — 0, add w to W and restrain E

below φet8(w) + 1.

This is a negative requirement; it wants to stop elements from entering E.
This strategy is injured if w £ Ws and some x later enters E below φe^s(w) -f 1.
When this occurs we will initialize the strategy. To initialize this strategy means
to discard the current witness. 7£-| can act at most once unless initialized. This
strategy will meet 7£-| as long as it is not initialized infinitely often.

We will meet all the negative requirements 7£-| and all the positive require-
ments 7*1,1 by using a tree. Let T — {ω}<ω (again, the subtree of nodes which
are accessible at some stage will be a finitely branching tree). Let / be the true
path and βs be the approximation to the true path at stage s.

Choose some appropriate computable ^-ordering of all the requirements 7*\ ,§.
Assume P~\^^ is the kth positive requirement. All the nodes of length 2Ar will
work on meeting P]l{}%^ using the same strategy as described in Section 5 and
the same restraint rekιXk. For shorthand, we will let fek,xk — ?2k

A node β of length 2e-f 1 will work on meeting H \ using the above procedure
at stages when β is accessible with its own witness Wβ. It would be nice if no
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node below β could injure the strategy used at β but this is not possible. We
can only restore all needed layers of a positive requirement when there is an
almost free-clear stage. Hence we cannot ensure the needed layers are available
when the computation converges. These layers may have been used on a previous
computation which was later injured or initialized.

To determine iek(xk) we need the following functions:

If k < e then g(2e + 1, k) = 0 (6.1)

If k + 1 > e then g(2e + 1, k + 1) = 1 + 2g(2e + 1, k) (6.2)
1 '*)+ 1) (6 3)

1) (6-4)

(We make no claims that our bounds are tight.)

The Construction of E at stage 5+ 1. By induction on k. Let βs+ι,o = λ.
Let /? = /?5+ι,fc. There are two cases:

Case 1 Suppose |/?| = 2m. Use the above procedure for P]^t^- We say /? injures
a at stage 5 + 1 if |α| = 2e + 1, ̂ ,5(^0) I and Case 5 applies and adds a
number less than or equal to φe,s(wa) into E at stage s -f- 1. Let o be the
outcome of this strategy as determined by the dual of Remark 3. If k < s+ 1
then let &+ι,*+ι = /To.

Case 2 Suppose \β\ = 2m -f 1. Use the above procedure for Ίl$ (using the
witness Wβ). If k < s -f 1 then let /?5+ι,fc+ι = /Π). Let tf > 2m be the last
stage such that βt <L /? (if such a stage does not exist then let t = 2m + 1).
If |α| > t then increase f \ a \ ( s -f 1) to s + 1. For |α| < t, let ta be the last
stage such that α injured β at stage tfα. Suppose that ta exists, t < ta and
for all 7 if \~γ\ > |α| then either tΊ does not exist or tΊ < ta. Then increase
ηα |(s+ 1) to s 4- 1.

Let /?β+ι = /?β+ι,ί+ι Initialize all nodes of odd length which are to the right of

Lemma 21. Let β C f (the true path on T) and \β\ = 2e + l. Fix t, t1 and k.
Assume that for all stages s if t < s < t1, β < βs. Assume no node of length
2fe + 1 or greater injures β during those stages s where t < s < t1 . Then β can
be injured at most g(2e -f 1, k) times during those stages s where t < s < t' .

Proof. By induction on k. Clearly, the lemma holds for k < e (otherwise β is
initialized). All the nodes of length 2k are using the same strategy. If one of these
nodes injures β, they all are later restrained from injuring β. Hence, collectively,
these nodes can injure β at most once. But this injury allows all the nodes of
length less than 2k to reinjure /?, if needed.

Lemma 22. Let β C f and \β\=2e + l. Let 2k > \β\. Then β can only increase
the restraint function r^ (</(2e + !,&) + !) times between a free-clear stage (for
<P] | ()§ | | /) and the next almost free- clear stage (for T*\u£\\)
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Proof. Let t be a free-clear stage and i" be the next almost free-clear stage. Let
t1 be the least stage such that t < t' < t" and either βt> <L β or some node 7 of
length greater than 2k injures β. After stage t1', /? will not increase the restraint
function Γ2/c until after stage t". If such a t' does not exist let t' = t". Now by
the above lemma, β can be injured at most g(2e +1, fc) times during those stages
s where t < s < t'.

Lemma23. Let 2k > \β\.
(i) The restraint function r^ only increases h(k) times between a free-clear

stage (for'P]^^) and the next almost free-clear stage (for'P~\u}§u)'

(") I^L*J < !«e*(**) - I- Hence P,|||S|| 25 met.

Proof, (i) Follows from Lemma 22 and the fact that if \β\ > 2Ar then β can never
increase rw

(ii) Follows from (i) and Lemma 19.

Lemma 24. Let β C f and \β\ = 2e + 1. /? w on/t/ injured finitely often. Hence
7£] is raeί.

Proo/. Let 2t > 2e +1 be the least stage such that for all stages s > 2t, β <L βs -
No node of length 2e or less ever injures β after stage t. No node of length 2t -f 1
or greater ever injures /? after stage t. Now, by Lemma 21, /? is injured at most
#(2e 4- M) more times.

6.2 Upward and downward nonbounding

Theorem 25. There is a computably enumerable degree e above which there is
no weak critical triple and below which there is no weak critical triple.

By [DSh96] we know that e must be Iow2 since they show that below every
nonlow2 degree one can embed a copy of MS .

We will meet all the negative requirements jV] }§ and all the positive require-
ments "P^g by using a tree. Let T = {ω}<ω (again, the subtree of nodes which
are accessible at some stage will be a finitely branching tree). Let / be the true
path and βs be the approximation to the true path at stage s.

Choose some appropriate computable ω-ordering of all the requirements 7*| }§.
Assume 2*i||,§| is the Arth positive requirement. If Xk = 0 then all nodes of length
2k will work on meeting 7*]||,§|i; each using a different strategy. Such a node is
called a parent node. If |α| = 2fc, α's parent node is the substring of length 2k',
where e/j/ = e^ and x^ =. 0 (by the dual of Remark 3 such a k1 always exists).
All nodes α of length 2k which share the same parent node will work on meeting
7*1 § using the same strategy as described in Section 5 and the same restraint
rα. Such a node is called a child node of its parent. Hence if a and a' are using
the same strategy to meet a positive requirement, fα = rα/.

Choose some appropriate computable ω-ordering of all the requirements Λ^ ,§.
Assume Λ/ί^, , is the Arth negative requirement. If Xk = 0 then all nodes of the
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nodes of length 2&+1 will work on meeting Λ/Ί|,,§ | , each using a different strategy.
Such a node is called a parent node. If 7 is a parent node and [7! is odd then let 1Ί

be the length of agreement function as defined in Equation 3.12. If |α | = 2 A r - f l ,
α's parent node is the substring of length 2k' + 1, where e/c/ = βk and x^ = 0
(by Remark 3 such a k1 always exists). All nodes a of length 2k + 1 which share
the same parent node will work on meeting -Λ/i,,,§,, using the same strategy as
described in Section 3. Such a node is called a child node of its parent (parents
are children of themselves). We will let pa(E, s) = p€k (E, #*, s) if a is working
on Λ/ί | | ,§n Hence if a and a.' are using the same strategy to meet a negative
requirement, pa(E,s) = paι(E>s).

We can initialize parent nodes 7 (see Remark 3) and all of their children. At
which point we can redefine the function iek(xk) for those children which are
initialized.

We will meet ^,,,§,1 by using Corollary 10. Hence, we must be able to count
the number of possible injuries. Similarly, since we will use Lemma 19, we must
also count the number of times the restraint for T\u $„ will increase between

III '3II
free-clear stages.

Informally, the key idea is: Assume β is working on <N\»t%» Let 7 be β's
parent node. Let a be a node of even length. Let 2t* + j < t (for j £ {0,1})
be the last stage at which 7 was initialized (if such a stage does not exist let
t* = 0). If |α| > f + \β\ then a can never injure β. Assume |α| < <* + \β\. If α is
started before /?, α may injure β once. After this initial injury, a cannot injure
β unless some α', where |α'| > |α| injures β first.

Actions and accessibility at stage s+1: Assume β is working on Λ/]0,§0.
Fix a stage s > \β\. Let 7 be βys parent node, s + 1 is 7-expansionary iff s = 0
or lΊ(s) > / 7(tf), for all t < s. β will only act at accessible 7-expansionary stages
5+1 where lΊ(s) > xm. We say β is started by stage s + I if some β1 working
on Λ/Ί 0,§ 0 using the same strategy as β acts (for the first time) by stage s -f- 1.

Injuries at stage s+1: Assume that a is working on 'P]«,§Q and that a
acts by adding a number n into E at stage s + 1. Assume β is working on Λ/],, ,§,.,
7 is /?'s parent node, 7 C α and /? has not been injured since the last stage tf
when it acted (defined below). If n < p β ( E , t ) then we say α injures β at stage
s + 1. If α injures /? at stage s + 1 and α' is also working on P]^^ using the
same strategy as α, then we say a1 injures /?. The same thing occurs when /?
and β1 are both using the same strategy to meet Λ / ί | ( ) § H . Hence a child of 7 can
be injured at most once between 7-expansionary stages. Let C = {/?)}• be a finite
collection of 7*3 children. We say this finite collection is injured at stage s + 1 if
the collection has not been injured since the last 7-expansionary stage and some
βi is injured at stage s+1.

Restraint at stage s+1: Assume that β is working on Λ/]φ l§φ and that
β acts at stage s+1. Let 7 be β's parent. Let 2t* + j < s + 1 be the last
stage at which 7 was initialized and j £ {0,1} (if such a stage does not exist let
t* = 0). Let t + 1 < s be the last 7-stage. If p β ( E , t ) ± pβ(E, s) or β is started
by stage s+1 then do the following: Assume a is working on ^Yi^i! and 7 C α.
If |α| > 2t* + \β\ then increase fα(s+ 1) to s+1. Let t1 be the last stage when a
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injured some child of 7 (ift* does not exist let t1 — 0). Suppose that 2t* -f j < t'
and β was started by stage t1 . For |α'| > |α| let ta' be the last stage such that OL
injured some child of 7 at stage ta>. Suppose for all α', if |α| < |α'| then either
taι does not exist or ta> < t. Then increase ra(s + 1) to s + 1.

Determining the stages s + 1 at which β restrains a only depends on whether
s + 1 is 7-expansionary, the last stage where 7 was initialized, lΊ(s) > xm and
p β ( E , s ) has increased since the last 7-expansionary stage. Hence this only de-
pends on 7 and the stage. We will assume that α's restraint at stage s -h 1 is
determined before a acts at stage s -f 1.

To determine iek(xk) and iek(xk) we need the following functions: Given /?,
let p(k) be the length of the parent node for all nodes of length k (this is a
well-defined function).

If k < m then g(2m + 1, Λr) = 0 (6.5)

If m < k + 1 then

g(2m + l,t + 1) = 22k + (22k -f l)<?(2m + 1, k) ^'^

h(k) = ]Γ 2#(2m + 1, fc - 1) + (* - ro) + 2 (6.7)
m</e

If /? is working on Λ/ί| ,§ | and /? is initialized at stage 2t* -f j, where j G {0, 1},
then define zefc(a:/c) = 9(p(2k -f 1),^* + k) at stage 2ί* + j. (We make no claim
that our bounds are tight.)

The Construction of E at stage s + 1. By induction on k. Let /?s+ι(o = λ.
Let ^ = /?β+ι^. There are two cases:

Case 1 Suppose \β\ = 2m. Use the above procedure for 7*]$,$$ (in Section 5).
Let o be the outcome of this strategy as determined by the dual of Remark 3.
If k < s -f 1 then let β+i^+i = /To.

Case 2 Suppose \β\ — 2m + 1. Let 7 be /?'s parent node. If s is /^-expansionary
and lΊ(x) > Xm, use the above procedure for jV]0(§^ (in Section 3) and
impose restraint as described above. If k < s + 1 then let /?s+ι)/e+ι = /TO (we
do not care about the outcome in the sense of Remark 3).

Let βs+ι — /?5+ι)S+ι. Initialize all nodes whose parent node is to the right of

Lemma 26. Let 7 be a parent node of length 2m + 1. Fix k and some stages
t < t f . Assume for all stages s} if t < s < t1 , 7 < βs. Let 2Γ -f j < t (for
j G {0, 1}) be the last stage at which 7 was initialized (if such a stage does not
exist let t* = ft). Let C = {β)} be a finite collection ofj's children such that for
all i either /?,- has been started by stage t or 2t* -h \βi\ < 2k. Assume no node of
length 2k -f 1 or greater injures any βi during those stages s where t < s < t1 .
Then the collection {βi} can be injured at most g(2πι-\- l , f c ) times by nodes of
length 2k or smaller during stages s where t < s < t' .
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Proof. By induction on k. Clearly, the lemma holds for k < m (otherwise 7 is
initialized). Suppose a node α of length 2k injures βi at some stage between t
and t'. Hence a last injured a child of 7 before /?,- was started and 2t* + |/?t | > 2k.
At the next 7-expansionary stage, a is restrained from injuring any βi. There are
22A; such nodes and they may act independently. But each one of these injuries
allows all the nodes of length less than k to reinjure the collection C, if needed.

Lemma 27. Let 7 C / be a parent node of length 2m + 1. Let 2t* + j < t (for
j £ {0,1}^ be the last stage at which 7 was initialized (if such a stage does not
exist let t* = 0^. Let β be a child 0/7 working on -A/ί,,,^ of length 2k + 1. Then
β can be injured at most iek(xk) — #(2m -f 1, t* + /?) fc'mes α/ίer sίαge 2t* + j.
Hence for all e and x, Λ/]^ is meet.

Proof. First note no node of length greater than 2t* + 2k + 1 = 2(Γ + λr) + 1 can
ever injure β. Now apply Lemma 26 to C — {β}.

Lemma 28. Z/eί j C f be a parent node of length 2m-f 1. Fix k > m. Let a be a
node of length 2k. Lett be a free-clear stage /or^>l||,§n and t' be the next almost
free-clear stage t' (for 7*]|,,§,, j- Let 2Γ +j<t (for j £ { 0 , I } ) be the last stage
at which 7 was initialized (if such a stage does not exist let t* = 0).

(i) After stage s, the children β of 7 such that 2t* -f- \β\ > 2k can collectively
increase a 's restraint at most g(2m - f l , f c — 1) + 1 times between t and t1.

(ii) After stage s, the children of 7 such that 2t* + \β\ < 2k can collectively
increase a 's restraint at most g(2m-\-1, fc — l) + (k — m) + 1 times between t and
t1.

(Hi) After stage s, the children of 7 of any length can collectively increase
a 's restraint at most 2g(2m + 1, fc — !) + (& — ra) + 2 times between t and t1.

Proof, (i) Let s, be the stages such that t < SQ < si ... < Sj < i', rα(sj) >
ra(si — 1) and this increase was caused by a child β of 7 such that 2t* + \β\ > 2k.
Let βi be a child of 7 such that /?,- restrained a at stage s, and 2t* + |/?, | > 2fc.
/?,- was started by stage t. No αx such that |α| < |αx| can injure any child of 7
between stages / and Sj (otherwise βj cannot restrain α at stage Sj). 7 cannot
be initialized between stages t and Sj (otherwise βj cannot restrain α at stage
Sj). Let i < i'. Since s, is a 7-expansionary stage and /?,-/ was started by stage t,
pβt,(E,Si)^< Si. So once /?,- restrains α, /?,•/ cannot restrain a unless it is later
injured. Now Lemma 26 applies to C ={/?}}. Hence j < g(2m -f 1, k — I) + 1.

(ii) Let s, be the stages such that t < SQ < si ... < Sj < t1, fα(sj) > fα(sj —1)
and this increase was caused by a child β of 7 such that 2t* + |̂ 3| < 2fc. Let /?j be
a child of 7 of length such that βi restrained a at stage Sj and 22* + \βi\ < 2Ar.
No node of length 2k or greater can ever injure any βi. 7 cannot be initialized
between stages t and Sj (otherwise βj cannot restrain a at stage Sj). Let i < i7.
Since Sj is a 7-expansionary stage, if ^-/ was started by stage Sj, pβ., (E, Sj) |< Sj.
Hence once βi restrains α, ^ / cannot restrain α unless it is later started or
injured. After (k — m) 7-expansionary stages, all the βi are started. Lemma 26
applies to C = {/?)}. Hence j < g(2m + 1, Ar - 1) -f (k - m) + 1.

(iii) Since 7 has no child of even length this follows from (i) and (ii).
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Corollary 29. Suppose a is working on *P]»t%» of length 2Ar. Let i be a free-clear
stage for P^ § and t' be the next almost free- clear stage t' (forP^^^).

(i) a's restraint can increase at most h(k) times between t and t1 .

(") I^L*J < &k(xk) ~ L Hence ^l||,§n is met-

Proof, (i) Only those β whose parent node 7 is a substring of a can restrain a.
Hence the above lemma applies at most k times.

(ii) Follows from (i) and Lemma 19.

6.3 P-J^ and lowness requirements

The astute reader might wonder why one could not combine the requirements
P-\£ and lowness requirements in the following fashion: First note that one meets
the standard lowness requirements by finite restraint. All the negative require-
ments in this section were met by finite restraint. However one cannot meet the
standard lowness requirements by acting independently at different nodes on a
tree with infinitary positive requirements. Now turn the infinite positive strategy
used for P \ ̂  into a finite positive strategy by only allowing Case 5 to act when x
actually enters BQ and ignoring the outcomes. Hence a negative requirement can
be injured at most once by each positive requirement of higher priority. So hope-
fully we can have enough layers in the positive requirements of lower priority to
handle this fixed number of increases in the restraint.

However, the problem with this approach, is that a positive requirement P^§
may in fact injure a negative requirement of higher priority: The strategy used
for P| ?§ may have peeled away all of its layers and be in a position that it must
add some number n into E iff x enters BQ. Now the computation for the negative
requirement converges and wishes to restrain n. Then x enters BQ which forces
n to enter E. This may be repeated infinitely many times for the same negative
requirement. This remains true even if we restrict the positive requirements to
a single fixed e. Thus the question of whether Mδ can be embedded above every
low computably enumerable degree remains open.
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