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Every saturated model of Peano Arithmetic having cardinality λ has 2λ

classes. Therefore, no saturated model of PA is rather classless. In other
words, if K = λ, then there are no rather classless, λ-saturated models of
PA having cardinality K. However, as long as λ is regular and K > λ, there
are no obstacles to the existence of rather classless, λ-saturated models of
PA of cardinality K other then there being no λ-saturated models of PA of
cardinality K at all. This is the content of the following theorem, which is
the main result of this paper.

Theorem If X is regular, λί \= PA is X-saturated and X < \N\, then there
is a rather classless, X-saturated M >- λί such that \M\ = \N\.

The first rather classless, highly saturated models of Peano Arithmetic
were constructed by Keisler [5]. His general theorem, specialized to models
of PA, yields that whenever T is a consistent completion of PA, λ<λ =
λ > NI, and the combinatorial principle Oλ+ holds, then there are rather
classless, λ-saturated models of T of cardinality λ+ (which, moreover, are
λ+-like). More rather classless, highly saturated models of PA can be ob-
tained from a general theorem of Shelah (Theorem 12 of [8]) which, when
specialized to models of PA, yields the following: If T is a consistent com-
pletion of PA, K, is the successor of a regular cardinal, and λ is a regular
cardinal such that NI < λ < K = κ<λ, then T has a rather classless,
λ-saturated model of cardinality K.

Kaufmann [3], assuming the combinatorial principle 0, proved that there
are Ni-like, rather classless, recursively saturated models of each consistent
completion of PA. Subsequently, this dependence on 0 was eliminated by
Shelah [8].

Rather classless, recursively saturated models of PA of each uncountable
cardinality were constructed in Schmerl [7]. These models could be made
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HO -saturated by requiring that their standard systems contain all subsets
of ω. The following, which is essentially Corollary 3.5 of [7], is that part of
our main theorem in which λ = NQ

Theorem 1 Let λί \= PA, and suppose K > |7V| + 2*°. Then there is a
rather classless, ^-saturated M >- N of cardinality K.

Our aim is to generalize Theorem 1 by pushing up the amount of sat-
uration. We do this in Theorem 2. It is well known that for singular λ, a
model of PA is λ-saturated iff it is λ"1" -saturated. Thus, we need consider λ-
saturation only for regular λ. It is also well known that if λί has cardinality
K and is λ-saturated, then κ<λ = K. Thus, the following theorem is easily
seen to be an optimal result. Notice that Shelah's previously mentioned
theorem handles the instance of Theorem 2 in which K is the successor of
a regular cardinal.

Theorem 2 Suppose λf \= PA, and suppose X is regular, N! < λ < K =
κ<χ and K > \N\. Then there is a rather classless, \-saturated M >- Λ/* of
cardinality K.

To prove Theorem 2 we will obtain a rather classless, λ-saturated model
M as the union of a continuous chain (Ma : α < λ+ ) of models of T,
where each model in the chain is an elementary end extension of each of
the previous models. For an ordinal a < λ+ , if α is not a limit ordinal or if
cf(α) > λ, then Ma will be λ-saturated. We will start with a λ-saturated
model MQ >- Λ/" having cardinality K and descending cofinality λ"1". Two
types of constructions of elementary end extensions will be used, resulting
in model ΛΊα+ι which is λ-generated over ΛΊα The type of construction
which is used when Ma is not λ-saturated (that is, when α is a limit
ordinal and cf(α) < λ) is discussed in §3. When Ma is λ-saturated, we will
use a construction involving compatible sequences of satisfaction classes as
described in §2. The proof of Theorem 2 will be completed in §4. Some
preliminaries will be given in §1. Some open questions appear in §5.

1 Preliminaries

Consult Kaye [4] as a background reference to models of Peano Arithmetic.
We let £PA = {+, ,0, 1, <} be the language of Peano Arithmetic. We

assume that the logic has term-building capabilities. For any language £ D
CPA, we let PA*(£) (or just PA* if £ is understood) be the extension of PA
by all instances of the induction scheme in the language £. In this paper it
will always be understood that £ is finite.

Consider a model M \= PA*. For 6 G M, the set [0,6] = {x G M :
ΛΊ |= x < b} is an initial segment of M. . A cut is an initial segment not of
the form [0, b]. If / is a cut, then its cofinality cf(/) is the least cardinal K
such that some cofinal X C / has cardinality K. Similarly, cf(M) is the least
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cardinal K such that some cofinal X C M has cardinality K. The descending
cofinality of Λΐ, denoted by dcf(M), is the least cardinality K of some set
X C M of nonstandard elements such that for each nonstandard α € M
there is 6 G X for which M |= 6 < α. Alternatively, if c G M is nonstandard,
then dcf(Λl) = cf({x e M : M\=x + n<cίoτ each n £ ω}).

The following easy lemma can be proved by a union of chains argument.

Lemma 1.1 Let N be a model of PA*. Let μ, K, λ be cardinals such that μ
and λ are regular, κ<χ = K > μ > λ > N0, and \N\ < K. Then there is a
X-saturated M >- λf such that \M\ = K, and dcf(M) = μ. D

We let Def(ΛΊ) be the set of all subsets of M which are definable in M
allowing parameters. A subset X C M is a class of M iff ΛΉ[0,6] € Def(ΛΊ)
for each b € M. If each class of M is in Def(.Λ/ί), then we say that M is
rather classless.

Let M \= PA*(£) and let b € M. We will refer to a (partial) satisfaction
class S C M as a ^-satisfaction class if (ΛΊ,S) \= PA*(£ U {S}) and 5
decides satisfaction for just the ^-formulas (from the point of view of M}.
If S is a ^-satisfaction class and α < 6, then S\a is the unique subset of 5
which is a ^^-satisfaction class. The following proposition contains some
well known facts about satisfaction classes.

Proposition 1.2 Let M \= PA*, n < ω and α, 6 6 M.
(1) If S is a Σb+n-satisfactίon class for M, then SζDef((M,S\b)).
(2) 7/5 is a Σα+6 satisfaction class for M, then there is SQ G Def((M, 5))

which is a ^^satisfaction class for (Λi, 5|α). D

A satisfaction class is just a ^6-satisfaction class for some nonstandard
b. It is well known that if M |= PA* is countable, then M has a satisfaction
class iff it is recursively saturated. The next proposition shows that certain
uncountable models also have satisfaction classes.

Proposition 1.3 Let X be a regular cardinal. Suppose that M \= PA* is
X-saturated and that cf(M) = λ. Then M has a satisfaction class.

Proof: Let Λ/o = M be countable and recursively saturated, and let SQ
be a satisfaction class for Λ/Ό Let (Λf, 5) = (Λ/Ό, So) be such that

IJV | = λ. Then 5 is a satisfaction class for ΛΛ Using the λ-saturation
we can easily get a cofinal, elementary embedding of ΛΓ into M. Thus, we
can assume that M -<c{ M. Then, according to Theorem 1.2 of [7], there
is S" C M such that (Λ/*,5) -< (Λΐ,S")» and therefore S' is a satisfaction
class for M. ^

If M \= PA* and X C M, then M is generated by X if M has no
proper elementary substructures containing X. If M is generated by a set
of cardinality at most λ, then M is λ-generated. If A C M, then M is
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λ-generated over A if for some X C M, \X\ < λ and M is generated by
A(J X. If M -< λί then M is a λ-generated elementary extension of M if
Λ/" is λ-generated over M.

Lemma 1.4 Suppose Λ/" -<end Λl |= PA* 6 € AT, c/(Λθ < λ, and X is
X-generated over [0,6]. Then M is X-generated over [0,6].

Proof: Let A\J[Q, b] generate M, where \A\ < λ; and let C C N be cofinal,
where \C\ < λ. For each term t(x,y) and elements a £ A and c E C there
is d < cc such that

X μ Vy < c (ί(o, y) < c -+ (d)y = t(α, y)).

Each such c? is in AT, and there are at most λ of them. Clearly, the set of
all such d generates λί over [0, b]. D

2 Compatible Sequences

In this section we will discuss compatible sequences of satisfaction classes
and of definable types. Let M \= PA* and let / C M be a cut. A sequence
(Sk '• k E /) is a compatible sequence of satisfaction classes (or CSSC) for
M if for each fcE/, Sk is a ^-satisfaction class and, whenever j < k E /,
then Sj C Sk It is just as easy to get CSSC's as it is to get just satisfaction
classes. For, let 5 be a ^^-satisfaction class for ΛΊ, let Sk = S\k for each
k < 6, and let / C [0, b] be a cut of M. Then (Sk : * E /> is a CSSC.

Recall the notion of definable types and their properties as developed by
Gaifman [1]. Let T be a completion of PA*(£). A type p(x] of T is definable
if it is unbounded (that is, for each θ(x) inp(x), the sentence \/w3x > wθ(x)
is in Γ) and for each £-formula φ(x,u) there is an ^-formula σφ(u) such
that whenever t is a constant £-term, then φ(x,t) £ p(x) iff σφ(t) E T. If
ΛΊ |= T and p(x) is a definable type of Γ, then p(x) can be extended to a
type pM(x) = [φ(x, a) : φ(x, u) is an £-formula, a € M, and M \= σφ(ά)}.
If M -< Λ/" and ΛΓ is generated by c over Λl and c realizes pM(#), then we
say that λί is a p(x)-extension of Λi generated by c. Each p(z)-extension ΛΓ
of Λl is conservative; that is, whenever X € Def(Λθ, then XnM £ Def(ΛΊ).

Now let M \= PA*(£) and let (Sk : k e I) be a CSSC for M. For
each k e I, let Tk = Th((Λί,Sfc)), which is a theory in the language
Ck = C U {Sk}- We say that (pk(x) k € /) is a compatible sequence of
definable types (or CSDT) (relative to (Sk : fe € /) and Λl) if the following
two conditions hold:

(1) For each k G /, Pk(x) is a definable type of 2V (Thus, for each £&-
formula </?(z, u) there is an £fc-fc>raiula σ^(u) such that whenever t is

a constant ^fc-term, then φ(x,t) £ pk(x) iff σj(ί) € Tfc.)
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(2) For j < k G /, if ψ(x) is an £., -formula and φ(x, u) is the £Λ-formula
derived from ψ(x) by replacing each occurrence of Sj by Sk\u, then

The formula φ(x, w), which is syntactically derived from ψ(x), is related
to ψ(x) in the following semantic way: for any α G M , (ΛΊ, 5j) |= V>(α) iff
(M,Sk)\=φ(a,j).

Here is the point of the preceding definition of a CSDT. Suppose (5fc :
k G /) is a CSSC for M and (pk(x) : k G /) is a CSDT. Suppose j <kel.
Let (ΛΛ Sfc) be an elementary extension of (ΛΊ,Sfc) and let c € TV realize
p%(x) over (M,Sk}. Then c (as an element of (Λ/",^')) realizes pf(x)
over (Λi,5j).

So, now let (Nk,S'k] be a pfc(z)-extension of (M,Sk] generated by c^,
for each A: € /. If j < k G /, then there is a unique elementary embedding
fjk ' (Nj>Sj\i)i<j — > (Nk,S'k\i)i<j which is the identity on M and for
which f ( c j ) = Cfc. It follows from the uniqueness that these embeddings are
compatible; that is, fjk°fίj — fίk- Therefore, we can assume, without loss of
generality, that (Λ/j, SJ|i)t<j -< (NkιS'k\i)i<j and c^ = ck when j < k e I.
Let (ΛΛ Λfc)fc€/ = U{( Λ4, 5ί|i)i<fc ' k e 1} and let c = ck (for any /c G /).
We will refer to (Λ/", Rk}k^i as the canonical (pk(x] : k G I)-extension of
(ΛΊ, Sk)kei generated by c. If the specific CSDT is not important, we will
refer to (ΛΓ, Rk)kei as a canonical extension of (Λί, Sk)kei-

The following easily proved lemma contains the main properties of canon-
ical extensions.

Lemma 2.1 Suppose (λf^Rk)kei ^s a canonical extension of(M,Sk)kei
Then (J\f,Rk)kei is a conservative extension of(M,Sk)kei- If cf(I) = λ,
then λf is a X-generated extension of

Proof: That the extension is conservative follows from the fact that
(J\f,Rk)k£i is the union of an elementary chain each member of which
is a conservative extension of some reduct of (Λί, Sk)kei

Let A C / be cofinal such that \A\ = λ, and let c G TV generate the
canonical extension. Now let C C TV be such that \C\ = λ, c G C and for
each term ί(x, u) in the language of (M, Sk)keA there is d G C such that
(λf,Rk)k£i \= Vz < c((d)x = t(x,c)). Clearly, (λf,Rk)kei is generated by
CUM. D

It still needs to be demonstrated that CSDT's exist. That is the content of
the next lemma, which, in fact, will show something stronger, namely that
compatible sequences of minimal types exist. For each n < ω we say that a
type p(x] of T is n-indiscernible if for any n-ary formula Ί/^ZO, x\ , . . . , xn-ι)
there is a formula φ(x] in p(x) such that either the sentence

) Λ φ(xι) Λ Λ φ(xn-ι) Λ XQ < x\ < - - < xn-ι) -* Ψ(x)]
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or the sentence

Vx[(φ(x0) Λ φ(xι) Λ Λ φ(xn-ι) Λ XQ < Xι < - - - < xn-ι) -> ^Φ(x)]

is in T. Recall (see [6]) that the type p(x) is minimal iff it is unbounded and
n-indiscernible for each n < ω. Also, p(x) is minimal iff it is unbounded
and 2-indiscernible. Minimal types are definable.

Lemma 2.2 Let M \= PA* and let I C M be a cut. Suppose (Sk : k £ /)
is a CSSC. Then there exists a CSDT ( p k ( x ) ' k G /).

Proof: We begin with a well known observation (see [2]) concerning the
effectiveness of Ramsey's Theorem: If k < ω and RQ, ΛI, , Rk C ω x ω
are recursive binary relations, then there is an infinite Δa-set H C ω such
that H is homogeneous for each Ri (that is, if i < k then either whenever
x,y G H and x < y then (#, y) G Ri or whenever x,y £ H and x < y
then (x,?/) ^ -Ri). This observation easily relativizes, yielding: If k,n <
ω, X C ω is an infinite Σn-set and #o, ΛI, , Λfc C α; x α; are binary ̂ n-
relations, then there is an infinite Σn+4-set H C X which is homogeneous
for each R^. This statement is formalizable and provable as a scheme in
PA*. Moreover, if k G /, then the following sentence can be formalized and
shown to hold in (Λί, Sk) : if j+4 < k and X C M is an unbounded X^-set,
then there is an unbounded ΣJ+4-set Y C X which is homogeneous for the

first j binary ^-relations R C M2. Therefore, in (ΛΊ, Sk) we can formally
define the sequence (Hj : j < k and j = I(mod4)), where H\ = M and
i/4i+5 is the first unbounded Σ4ί+5-set Y Q ^4i+ι which is homogeneous
for each of the first 4i + 1 binary ζ4i+1-relations.

Notice that H^+i is independent of k (as long as 4i + 1 < k G /).
Now "fill in" the sequence (Hk : k £ /) by setting Hk = ^4i+ι, where
4i < fc < 4i -f 3.

Clearly, for any A: G / and n < ω, Hk+n is definable in (Λi, 5fc) without
using parameters. Let pk(x) be the type consisting of all formulas φ(x) in
the language Ck such that for some n < ω, (ΛΊ,Sfc) (= Vx(x € Hk+n —*
(/?(x)). It is now an easy matter to check that (pk(x}:k E /) is a CSDT for
(Sk : k G /), completing the proof of the lemma. D

The next lemma shows how to construct λ-saturated, proper elementary
end extensions of some λ-saturated models.

Lemma 2.3 Let λ > NI be a regular cardinal, let M. f= PA * be \-saturated,
let I C M be a cut for which cf(I) > λ, and let (Sk ' k € /} be a CSSC. If
(Λ/*, Rk)kei is a canonical extension of(M,Sk)k£i, then λί is X-saturated.

Proof: First, we show that cf(Λ/") = cf(/) > λ. This is an immediate
consequence of Proposition 1.2(2) since whenever m € I there is k € /
such that ra + π < fc, for each n < ω, and for any such fc, there is a function
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g G Όef((M, 5*)) such that for any function / G Def((M, 5m)), (Λt, Sfc) (=
3wVx > w(f(x) < g ( x ) ) .

Next, we show that ΛΓ is λ-saturated. Let μ < λ and let {Aa : α < μ}
be a collection of nonempty, definable subsets of Λ/" which is closed under
finite intersections. We need to show f|{^α : α < μ} ^ 0. Since cf(Λ/") > λ,
we can assume that each Aa is bounded. Since cf(/) > λ, we can get k G /
large enough so that Aa G Nk for each α < μ. (Refer to the notation in the
definition of canonical extension.) Then, for each α < μ, there is an £fc-term
ta(u, v) and an element ba G M such that (A/*, S'k) \=Aa = ta(ba, c). Since
M is λ-saturated, there is d G M such that (d)bα = ta for each α < μ. Let
m € / be such that fc + π < m for each n < ω. By Proposition 1.2(2), there
is a ^-satisfaction class for (Λ/fc, *?£) in Def((Λ/"m, 5^)), so that there is an
£m-term t(u, v, w) such that for each α < μ, (Λ/"m, SJJ f= Aα = ί(6α, c, d).
Hence, there is e G N such that AQ = (e)ba for each a < μ.

Let 6 € M be such that 6Q < 6 for each a < μ. Let £ G Def(ΛΓ) be the set
offeN such that for each definable F C [0, 6], 0 ̂  Π{(e)χ : ̂  € F} iff 0 ̂
Π{(/)χ : x € F} In particular, a£E. Clearly J5(ΊAf ^ 0, so let / e ElΊM.
By the λ-saturation of ΛΊ, there is r € M such that r £ Π{(/)*>α : α < M}
For each ex G £?, there is r' such that for each x < 6, r' € (e7^ iff r G (/)x.
Thus, there is s such that for each x < 6, 5 G (e)x iff r G (/)x, so in
particular, s G ΓK(e)f>α : α < A4}- Thus, Πί^α : α < μ} ^ 0. D

The next corollary will not be explicitly used but is mentioned for its
independent interest.

Corollary 2.4 If M is λ-saturated and cf(M) = λ, then λΛ has a λ-
saturated, \-generated elementary end extension.

Proof: By Lemma 1.3, M has a ^-satisfaction class S for some non-
standard 6. Since M is λ-saturated, it has a cut / such that cf(7) = λ and
6 0 /. Then (S\k : k G /) is a CSSC. By Lemma 2.2 there is a CSDT. Now
apply Lemmas 2.1 and 2.3 to get the λ-saturated, λ-generated elementary
end extension. Π

3 Extending bdd λ-saturated models

In this section we present a simple lemma which shows that some bdd
λ-saturated models have elementary end extensions which are λ-saturated.

First, we define bdd λ-saturation. Let λ be a regular cardinal and let
M \= PA*(£). Then M is bdd λ-saturated if for each b G M there is a
λ-saturated N -<end M such that 6 G N. If M is λ-saturated, then M is
bdd λ-saturated. Indeed, M is λ-saturated iff M is bdd λ-saturated and
cf(M) > λ. If M is bdd λ-saturated and cf(Λl) = ft, then a filtration for
M is a continuous sequence (Ma : α < K) whose union is M such that
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Ma -<end Mβ -<end M whenever a < β < K and Ma is λ-saturated unless
ω < cf(α) < λ. Every bdd λ-saturated M has a filtration.

Lemma 3.1 Let X > NI be regular. Suppose M is a bdd X-saturated model
of PA* such that cf(M) < X and M. is X-generated over an initial segment.
Then M has a X-saturated, X-generated elementary end extension.

Proof: Let cf (M) = K < λ, and let 6 € M be such that M is λ-generated
over [0, b]. Because it is bdd λ-saturated, M has a filtration (Ma : OL < K)
such that that b € MQ. Then MQ has a filtration (Mβ : β < X) with b £ NQ.
By Lemma 1.4, MQ is λ-generated over [0,6]

Let C C M be a cofinal subset of M such that \C\ = K < X. More
specifically, let C = {ca : a < K,} where ca £ Mα+ι\Mα. By the λ-
saturation of MQ there is a function /Q'.C—* MQ which is elementary
over [0,6] and /o(cα) € Na+ι\Na for each a < K. By Lemma 1.4, Λ/"κ is
λ-generated over [0,6]. Let X C M be such that |X| < λ and X U [0,6]
generates M, and let Y C Nκ be such that Y U [0,6] generates λίκ and
\y\ < λ. By a back-and-forth argument, we can extend /o to /, which is
elementary over [0, 6] such that X C D = dom/ and Y C /"JD. Since X
and y generate M and JVK, respectively, over [0,6], we can extend / to an
isomorphism of M and J\fκ. Since MQ is λ-generated over [0, 6], it certainly
is a λ-generated extension of λίκ. Thus, J\ίκ has a λ-saturated, λ-generated
elementary end extension (namely MQ), then so does M. Ώ

4 Proving Theorem 2

The proof of Theorem 2 will be completed in this section.
Let MQ >• λf be λ-saturated such that dcf(Λ^o) = λ"1" and |Λ/b| = ft.

Moreover, we want MQ to have a ^-satisfaction class 5 for some nonstan-
dard 6 £ MQ. (To get such a model MQ, apply Lemma 1.1 to the theory
T together with the sentences asserting that 5 is a satisfaction class.) Let
(Ia : α < λ+) be a sequence of cuts of MQ such that:

(1) if a < λ+, then Ia C [0, 6] and cf(Jα) = λ

(2) if α < β < λ+, then Iβ C Ia and Iβ ^ Jα ;

(3) ω =

Let 5£ = S\k for each k € J0, and then let MQ = (MQ,S%)kei0. Notice
that (S£ : k G I0> is a CSSC.

Construct a sequence (M*a : a. < λ+) of structures Λ<* = (ΛΊα, S%)keia

such that for each α < λ+, the following hold:

(4) if α = 0, α is a successor ordinal or cf(α) = λ, then Λ<*+1 is a
canonical extension of (ΛΊα> S% )k€ia+ι
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(5) if NO < cf(α) < λ, then M^+i is an elementary end extension of
(Ma)S%)keia+l and Ma+ι is a λ-saturated, λ-generated extension
of Ma

(6) if a is a limit ordinal, then M*a = \J{(Mβ, S£)*e/« : β < α}.

We will construct this sequence by recursion. Suppose that 7 < λ+ and
that we already have (Λ4* : α < 7) such that for each a < 7, (4)-(6)
hold. If 7 is a limit ordinal, then let ΛΊ; = \J{(Ma,S%)keιΊ : α < 7}. If
7 = α -f 1 and either α = 0 or α is a successor ordinal or cf(α) = λ, then
apply Lemmas 2.1, 2.2 and 2.3 to get Λ4*. If 7 = α + 1 and N0 < cf(α) < λ,
let j € /α\/7 and apply Lemma 3.1 to the structure (ΛΊαjSj*), getting
CM7,5J), and then letting M* = (Λ47, S7|fc)fce/7

Now let Λί = Uί Mα : α < λ"1"}. Clearly, Λi is λ-saturated and \M\ = K.
Suppose X C M is a class and that X φ Def(A^). By an argument like
the one in the proof of Lemma 3.1 of [7], there is some α < λ+ such
that X Π Ma £ Def(ΛΊα). Then, by Lemma 2.4 of [7], there is k e Ia

such that X Π Ma £ Όef((Ma,S%)). Let β < λ+ be such that α < /?,
cf(/J) = λ and k £ Iβ. Then X Π MQ G Def(Λ<J), so for some j G //?, X Π

Mβ <E DefίCMp, 5f)). Since ΛίJ -X Λ^J, then X Π Mα € Def((Λία, 5^)) C
Def((jVία, 5j^)), entailing a contradiction.

This completes the proof of Theorem 2. D

5 Questions

The model M. which was constructed in the proof of Theorem 2 has cofi-
nality λ+. With a little more effort, we can get cf(Λ4) = λ++ provided, of
course, that λ"1"1" < K. This suggests the following question.

Question 5.1 For which cardinals K, λ,μ do there exist rather classless,
λ-saturated models M |= PA such that \M\ = K and cf(ΛΊ) = μ?

In [7], assuming V=L, for each K > ^2» such that cf(/c) > K0 and K is
not weakly compact, we constructed a rather classless, ft-like No-saturated
model of PA. By the theorem of Keisler [5], if K = λ+ and λ is regular, then
we can get a rather classless, /c-like λ-saturated model of PA. This suggests
the following question.

Question 5.2 (Assume V= L.) For which cardinals ft, λ do there exist
rather classless, κ-like, λ-saturated models of PA?

6 REFERENCES

[1] Gaifman, H., Models and types of Peano's arithmetic, Ann. Math.
Logic 9 (1976), 223-306.



246 James H. Schmerl

[2] Jockusch, C.G., Ramsey's theorem and recursion theory, J. Symb.
Logic 37 (1972), 268-280.

[3] Kaufmann, M., A rather classless model, Proc. Amer. Math. Soc. 62
(1977), 330-333.

[4] Kaye, Richard, Models of Peano Arithmetic, Oxford University Press,
Oxford, 1991.

[5] Keisler, H.J., Models with tree structures, in: Proceedings of the Tarski
Symposium (eds. L. Henkin et al.), American Math. Soc., 1974, Prov-
idence, RI, 331-348.

[6] Kossak, R., Kotlarski, H., Schmerl, J.H., On maximal subgroups of
the automorphism group of a countable recursively saturated model
of PA, Ann. Pure Appl. Logic 65 (1993), 125-148.

[7] Schmerl, J.H., Recursively saturated, rather classless models of Peano
Arithmetic, in: Logic Year 1979-80 (eds. M. Lerman et al.), Lecture
Notes in Mathematics 859, Springer-Verlag, Berlin, 1981, pp. 268-282.

[8] Shelah, S., Models with second order properties II. Trees with no un-
defined branches, Annals Math. Logic 14 (1978), 73-87.

Author address

Department of Mathematics,
University of Connecticut
Storrs, CT 06269, USA
email: schmerlQmath.uconn.edu




