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1 Introduction

In this survey article we wish to describe our classification, or identifica-
tion, of those (definably) simple groups G which are definable in O-minimal
structures. Our basic result says that any such group is a linear semialge-
braic group over some real closed field R. An even sharper result says that
the structure (G,.) is bi-interpretable with either the field R or with the
field R(i), where i is the square root of —1. These results will appear in
[8] and [9]. (It should be stated here that for technical reasons our hy-
pothesis on the group G is that it is actually definable in M rather than
interpretable. We, however, expect all the results to go through under only
the interpret ability hypothesis.)

Our results yield an O-minimal analogue of the well-known Cherlin con-
jecture. Recall that the (as yet unproved) Cherlin conjecture states any
(noncommutative) simple group of finite Morley rank is a linear algebraic
group over an algebraically closed field. It can be shown that if G is a sim-
ple group of finite Morley rank, then there is some strongly minimal set D
such that G can be defined in D. Thus the finite Morley rank hypothesis in
the Cherlin conjecture can be replaced by : G is definable in some strongly
minimal structure. So it is quite natural to ask the O-minimal analogue:
what are the simple groups definable in O-minimal structures? And this is
what we have answered. In fact our second result (the bi-interpretability
result mentioned above) clearly yields the full Cherlin conjecture for simple
groups of finite Morley rank which happen to be definable in O-minimal
structures. Any such group is a linear algebraic group over an algebraically
closed field of characteristic 0. Moreover this yields even a model-theoretic
characterisation of simple algebraic groups over algebraically closed fields
of characteristic 0.

For the remainder of this introduction we shall define our terms and give
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clear statements of the results.
As a rule when we speak of definable sets (in a structure) we allow

parameters in the defining formulas.
By an O-minimal structure we mean a structure (M, <,....) where < is

a dense linear ordering, and every definable (with parameters) subset of M
is a finite union of points and open intervals. We should emphasize that
the hypothesis is on subsets of M not Mn for n > I . Also by an interval
we mean something of the form (α, 6) where α, b G M U {±00}.

By a group definable in the structure M we mean a group G such that
both the universe of (G, •) and the graph of the group operation - are
subsets of Mn and M3n respectively (some n > 1) which are definable in
the structure M. We will say that G is definably simple in the sense of
M if G is noncommutative and has no proper nontrivial normal subgroup
definable in M. If we replace the latter condition by: G has no proper
nontrivial normal subgroups definable in the structure (G, •) we say that G
is definably simple in the sense of (G, •).

Now suppose that R is a real closed field. The term "semialgebraic"
(with respect to R) means definable in the structure (Λ, -f, .)• Of course
the ordering on R is semialgebraic, and in fact all semialgebraic sets will
be quantifier-free definable after adding a symbol for the ordering. By a
semialgebraic linear group with respect to R we mean a subgroup G of
GL(n,R) (some n) which is semialgebraic, namely definable in (JZ,+,.).
Such a group is said to be semialgebraically connected, if G has no proper
semialgebraic subgroups of finite index. If R happens to be the field of
real numbers R, then G is a semialgebraic linear Lie group, and semial-
gebraic connectedness of G is equivalent to topological connectedness (in
the Euclidean topology). Returning to the general situation where R is real
closed and G is a semialgebraic linear group with respect to Λ, G will have
a Zariski closure GI in GL(n, Λ), GI being the smallest subset of GL(π, R)
defined by poly nominal equations, which contains G. GI will be the uni-
verse of a subgroup of GL(n, R) (which we still call GI) and G will be a
finite index subgroup of GI. (Explanation:the Zariski closure of a subgroup
G of GL(n, R) will always also be a subgroup. On the other hand, if G is
also semialgebraic, then it comes equipped with a dimension, which turns
out to be the same as the dimension of its Zariski closure. Basic proper-
ties of this notion of dimension imply that if G and GI are semialgebraic
groups with the same dimension, and G is a subgroup of GI, then G is an
open subgroup of finite index in GI.) Now R(i) = K is an algebraically
closed field, and the subset of GL(n, K) defined by the zero set of all poly-
nomials over R vanishing on GI will be a subgroup of GL(n, jff), H say.
ίί is a linear algebraic group, defined over Λ, and H Π GL(n, R) = GI. In
general, by a linear algebraic group H we mean a subgroup of GL(n, K)
defined by polynomial equations over K, where K is an algebraically closed
field. If these polynomial equations can be chosen over a subfield L of K,
we say (at least in the characteristic 0 case) that H is defined over L. By
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H(L) we will mean H Π GL(n,L), which we call the group of L-rational
points of H. H is said to be L-simple, if H has no proper nontrivial nor-
mal algebraic subgroup defined over L. To be K-simple (K algebraically
closed) is the same as being abstractly simple. However, the L-simplicity
of H does not even guarantee the abstract simplicity of H(L). An example
is given by taking H = 50(3), the group of 3 by 3 orthogonal matrices of
determinant 1, identified with 50(3, K) for some big algebraically closed
field (of characteristic 0 say). This group is abstractly simple. However, if
R is a nonarchimedean real closed field, then H(R) ( = SΌ(3,Λ)) is not
abstractly simple, as its elements which are infinitely close to the identity
form a normal subgroup. On the other hand, 50(3, R) is semialgebraically
simple. This explains why we make the assumption "definably simple" in
place of "simple" in the following result.

Theorem 1.1 Suppose M is an O-minimal structure, and G is a group
definable in M which is definably simple in the sense of M. Then there
is a real closed field R definable in M, and an R-simple linear algebraic
group H defined over R such that G is definably isomorphic (in M) to
the semialgebraically connected component of H(R). Otherwise said, G is
definably isomorphic to a semialgebraic, semialgebraically connected linear
group with respect to some real closed field R definable in M.

Remark. There is a similar version if G is assumed only to be definably
simple in the sense of (G, •). The conclusion is for now a bit weaker: H
need not be connected, or .R-simple, although its connected component is
semisimple. G will be definably isomorphic to a finite index semialgebraic
subgroup of H(R).

A key concern of current model theory is the question of bi-interpretability.
A structure M is said to be interpretable in a structure N if there is an
isomorphic copy /(M) of M say whose universe and basic relations are
all definable sets in Neq. Now if M and N are each interpretable in the
other, witnessed by /(M) and g(N), then f.g yields an isomorphism of
N with f ( g ( N ) ) , the latter being also definable in N. Similarly g.f is an
isomorphism of M with g ( f ( M ) ) . M and N are said to be bi-interpretable
if one can choose both / and g such that the isomorphism f.g is definable
in N and the isomorphism g.f is definable in M. Bi-interpretability means
that the structures are essentially the same. An important observation of
Poizat ([12]) is that if G is a simple algebraic group (with respect to a given
algebraically closed field K), then the structures (G,.) and (K, +,.) are bi-
interpretable. This is a model-theoretic version (and easily implies) a simple
case of Borel-Tits theory: any abstract group automorphism of a simple al-
gebraic group over an algebraically closed field is a composition of a field
automorphism of K with a quasi-isomorphism of algebraic groups (i.e. an
isomorphism definable in (K, +,.) ). Much less trivial is the question of
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abstract automorphisms of groups of the form G(k) where G is a k-simple
algebraic group defined over an arbitrary field k. This is the concern of
general Borel-Tits theory ([2]). Our second result bears on this question in
the case where A; is a real closed field. Note that if R is real closed then
the algebraic closure of R is obtained by adjoining z, the square root of —1.
Moreover clearly R(ί) is definable in R. We will have two fundamental cases
for (definably) simple groups definable in the field R. An example of the
first case is PSL(2,Λ), which will be bi-interpretable with R. An example
of the second case is PSL(2, R(ί)) which will be bi-interpretable with R(i)
(and not with R). Actually in the proof the first case has 2 subcases: on
the one hand, groups like PSX(2,Λ), which for R — R are noncompact,
and and the other hand groups like 5O(3, R) which for R = R are com-
pact. The first (isotropic) subcase fits into Borel-Tits theory, whereas the
second (anisotropic) case was studied by Weisfeiler [14]. It should be said,
however, that our treatment is independent of either [2] or [14]

One would have liked to prove the next theorem by Theorem 1.1 and
inspection. However we were not sure what to inspect and where to find it.

Theorem 1.2 Let G be an infinite group which is definably simple in
the sense of (G, •), and which is definable in some O-minimal structure.
Then there is a real closed field R such that (G, •) is bi-interpretable ei-
ther with (R, +,.) or with (R(i), +, •)• ^n particular any simple Lie group
is bi-interpretable with the field of reals or the field of complexes.

With Theorem 1.2, one sees that definable simplicity of G in the sense
of (G, •) is equivalent to definable simplicity in the ambient O-minimal
structure. Theorem 1.2 also has bearing on Cherlin's original conjecture for
it implies that bi-interpretability with R corresponds to the group being
unstable.

Corollary 1.3 Suppose G is an infinite simple group. Then the following
are equivalent:
(i) T7ι(G, •) is stable and (G, •) is definable in some O-minimal structure,
(ii) G is an algebraic group over some algebraically closed field of charac-
teristic 0.

It should be said that the problem of proving O-minimal analogues of
Cherlin's conjecture (i.e. for Lie groups) was originally raised by the second
author, and the solution for groups of small dimension was given in [6].

In the next section we discuss the general ideology of the proof, and
mention some aspects which may be of independent interest.
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2 Outline of the proof.

Let us first discuss Poizat's original strategy for proving Cherlin's conjec-
ture. Let G be an infinite simple group of finite Morley rank. His idea was to
find an infinite solvable nonnilpotent definable subgroup B of G, and then
use a result of Zilber which gives an infinite definable field K. K, having
finite Morley rank too, has to be algebraically closed. The idea was then
to show that the structure induced on K from (G, •) is just the field struc-
ture, then to use some model theory to show that (G, •) is definable back
in (K, +,.), then to conclude, by a version of WeiPs Theorem, that G is an
algebraic group over K. The existence of solvable nonnilpotent subgroups
of a simple group of finite Morley rank, is the "no bad groups" hypothesis.
The truth of this is still unknown, although it is not unlikely that there is
a counterexample. The second thing one needs to know is that if K is an
algebraically closed field definable in a structure M of finite Morley rank,
then no structure on K is induced from M other than the field structure.
This is a strong version of the "no bads fields" hypothesis. This turns out
to be false: Hrushovski constructed counteramples. (It should be said that
Cherlin and others have now a program to prove Cherlin's conjecture under
the "no bad groups" hypothesis and a weaker version of the "no bad fields"
hypothesis.) So the Poizat strategy falls through. But note that one of the
main points was to define a field and show the field to be well-behaved.

Let us now pass to the O-minimal situation. Let M be an O-minimal
structure. Sometimes it is convenient to assume M to be saturated. There
is a general theory of definable sets and functions in O-minimal structures
([11],[3],[13]), yielding a notion of dimension and independence. Essentially
algebraic closure on M is a pregeometry, and the associated dimension of
definable sets has a topological significance: if X C Mn then dim(X) is the
greatest r such that some projection of X on Mτ contains an open set (in
the product topology). Also definable functions are piecewise continuous.

Now let G be an infinite definably simple (in the sense of M) group
definable in M. It turns out that the Poizat strategy is much more suc-
cessful here. However, this is made possible by a theorem of the first and
last authors ([7]) which shows the existence of a definable real closed field
in an O-minimal structure M under some reasonable assumption on its
complexity. In fact their result yields a definable real closed field in a neig-
bourhood U of a point a G M, whenever there is a family F of germs of
definable functions at α with diπι(F) > 1. The noncommutativity of G (to-
gether with quite a bit of work) enables one to find a point α € M closely
related to G satisying the above complexity hypothesis, yielding a defin-
able real closed field R. Some additional work, using definable simplicity
of G, is required to prove that some definable subset X of G of maximal
dimension is contained in dd(R). Now R may have additional structure
(other than semialgebraic structure) induced on it from M. However, what
O-minimality yields is that definable (in M) functions from Rn to R are
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piecewise continuously differentiable (in fact piecewise Ck for abitrarily
large k). Note that R is a densely ordered field so differentiability makes
sense. Methods from [10] allow us to equip G with a "definable group man-
ifold" structure over M such that moreover, some open neighbouhood U
of the identity is identified with an open subset of Rn for some n, and that
the group operation on this neighbourhood is continuously differentiable.
At this point, a version of the classical adjoint representation comes into
play: for any g € G, the conjugation by g map Inng : G —» G is continuously
differentiable on a neighbourhood of the identity of G. Its differential is an
element of GL(π, R). G being centreless, this yields a definable embedding
of G in GL(n,R). We now have G as a definable subgroup of GL(n, Λ),
but we would like it to be a semialgebraic subgroup. For this, one has to
develop some classical Lie theory (the relation between Lie groups and Lie
algebras) in the "O-minimal expansions of real closed fields" context. This
works quite successfully. We define a Lie algebra structure on the tangent
space at the identity of G in a natural fashion, to obtain L(G) the Lie
algebra of G. This is an object definable in (#, +,.). From semisimplicity
of G (no definable normal abelian subgroups) we conclude semisimplicity
of L(G) (no proper abelian ideals). Properties of semisimple Lie algebras
over arbitrary fields of characteristic 0 now imply that the (semialgebraic)
group of automorphisms of L(G) (linear transformations preserving the Lie
brackets), has the same dimension as L(G) and thus as G. The adjoint rep-
resentation now yields an isomorphism of G with a finite index subgroup
of Aut(L(G)) which must be semialgebraic. This completes the sketch of
the proof of Theorem 1.1.

We now say a few words about the proof of Theorem 1.2. As already
remarked, Poizat had already proved that if G is a simple algebraic group
over an algebraically closed field (i.e. G = G(K)) then (G, •) and (K, -f,.)
are bi-interpretable. The main point was to find an infinite field K' defin-
able in (G, •), and then to show that (in the structure (G, •), G is contained
in dcl(K'}. Both these steps require some work when transferred to the
real closed field setting. (We will here suppress the problem of working
with definable simplicity in the sense of (G, •) rather than in the sense of
M (or R}.) So the situation now will be: R is a real closed field, H is an
Jί-simple linear algebraic group defined over Λ, and G is the semialgebraic
connected component of H(R). The first problem is to find an infinite field
definable in (G, •). At the outset we have a division into two cases: (i) H is
anisotropic over R and (ii) H is isotropic over R. Condition (i) means that
H has no (infinite) Λ-definable algebraic subgroup which is Λ-isomorphic
to some product of copies of the multiplicative group. A typical example is
when G = 50(3, R), and corresponds in this classical case to G being com-
pact. In this case, with a little work, the results on definability in compact
Lie groups from [5] transfer to Λ, to give a 1-dimensional field definable
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(actually interpretable) in (G, •). In case (ii), where H is Λ-isotropic, we
can fabricate, using the theory of parabolic subgroups from [1], a connected
solvable centreless Λ-subgroup B of H. B(R) will be enveloped in a solvable
nonnilpotent subgroup of G definable in (G, •), and various methods enable
one to define in (G, •) an infinite field K. (An O-minimal version of Zilber's
Indecomposability Theorem is used here, as well as at other points of the
proof.) Now the field K is definable in the real closed field (#,+,.), and
is known to be semialgebraically isomorphic to R or to R(i). In the first
case dim(K) = 1 and there are methods, using simplicity of G, for showing
that G is (in (G, •)) contained in dd(K], so we finish. In the second case,
we can consider the structure N consisting of (K, +,.) equipped with all
structure induced from (G, •), as a semialgebraic expansion of (R(ϊ), +, .)•
Results of Marker [4] imply that either a 1-dimensional field is definable in
N, or N is simply an algebraically closed field with some constants. In the
first subcase, we have a 1-dimensional real closed field definable in (G, •)
and can proceed as before. In the second subcase, K with all its induced
structure is strongly minimal. The original Zilber Indecomposability The-
orem (or rather its proof), together with simplicity of G implies that (G, •)
is a structure of finite Morley rank, and it is then easy to show that this
structure is the definable closure of K.

This completes the outline, as well as the paper.

3 REFERENCES

[1] A. Borel, Linear Algebraic Groups, Springer-Verlag, 1991.

[2] A. Borel and J. Tits, Homomorphismes "abstraits" de groupes alge-
briques simples, Annals of Math. 97 (1973), 499-571.

[3] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered struc-
tures II, Transactions of A.M.S. 295 (1986), 593-605.

[4] D. Marker, Semialgebraic expansions of C, Transactions of A.M.S. 320
(1990).

[5] A. Nesin and A. Pillay, Some model theory of compact Lie groups,
Transactions of A.M.S. 326 (1991), 453-463.

[6] A. Nesin, A. Pillay and V. Rasenj, Groups of dimension two and
three over O-minimal structures, Annals of Pure and Applied Logic
53 (1991), 279-296.

[7] Y. Peterzil and S. Starchenko, A trichotomy theorem for O-minimal
structures, submitted to Journals of London Math. Soc.

[8] Y. Peterzil, A. Pillay and S. Starchenko, Definably simple groups in
O-minimal structures, submitted for publication.



218 Y. Peterzil, A. Pillay & S. Starchenko

[9] Y. Peterzil, A. Pillay and S. Starchenko, Simple algebraic and semial-
gebraic groups over real closed fields, submitted for publication.

[10] A. Pillay, On groups and fields definable in O-minimal structures,
Journal of Pure and Applied Algebra 53 (1988), 239-255.

[11] A. Pillay and C. Steinhorn, Definable sets in ordered structures I,
Transactions of A.M.S. 295 (1986), 565-592.

[12] B. Poizat, MM Borel, Tits, Zilber et le general nonsense, Journal of
Symbolic Logic 53 (1988), 124-131.

[13] L. van den Dries, Tame topology and O-minimal structures, book,
Cambridge University Press, to appear.

[14] B. Weisfeiler, On abstract homomorphisms of anisotropic algebraic
groups over real closed fields, Journal of Algebra 60 (1979), 485-519.

Authors addresses

Ya'acov Peterzil
Department of Mathehmatics
University of Haifa
Haifa, Israel
email: kobiΘmathcs2.haifa.ac.il

Anand Pillay
Department of Mathematics
University of Illinois
1409 West Green Street
Urbana, IL 61801
USA
email: pillayQmath. uiuc. edu

Sergei Starchenko
Department of Mathematics
Vanderbilt University
Nashville, TN, 37240,
USA
email: starchenQmath.vanderbilt.edu




