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1 Introduction

In this paper we continue our investigations started in [15] and [16] on the
question:

What is the impact on the growth of extractable uniform bounds the use
of various analytical principles Γ in a given proof of an V3-sentence might
have?

To be more specific, we are interested in analyzing proofs of sentences
having the form

(1) Vu\k°Vυ <
P

where AQ is a quantifier-free formula2 (containing only tz, k,v,w as free
variables) in the language of a suitable subsystem Tω of arithmetic in all
finite types, t is a closed term and <p is defined pointwise (p being an
arbitrary finite type).

From a proof of (1) carried out in Tω one can extract an effective uniform
bound Φuk on 3w, i.e.

(2) Vul,k°Vv <p tukBw <0

where the complexity (and in particular the growth) of Φ is limited by the
complexity of the system Tω (see [13],[15])0

By the predicate 'uniform' we refer to the fact that the bound Φ does
not depend on υ <p tuk.

In [13] we have discussed in detail, how sentences (1) arise naturally in
analysis and why such uniform bounds are of numerical interest (e.g. in the
context of approximation theory).

1 Received September 96; revised version February 97.
2Throughout this paper ΛQ, BO, Co,... always denote quantifier-free formulas.
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Proofs in analysis can be formalized in a suitable base theory Tω plus
certain (in general non-constructive) analytical principles Γ (usually not
derivable in Tω). In order to determine faithfully the contribution of the
use of Γ to the growth of extractable bounds Φ we introduced in [15] a
hierarchy of weak subsystems Gn A

ω of arithmetic in all finite types whose
definable type-1-objects correspond to the well-known Grzegorczyk hier-
archy of functions.

As the essential proof-theoretic tool, monotone functional interpretation
(which was introduced in [13]) was used to extract bounds Φ (given by
closed term of GnΔ

ω) from proofs

(3)GnA
α' + Δ + AC-qf h (1),

where
AOr-qf :

is the schema of choice for quantifier-free formulas and Δ is a set of 'axioms'
having the form

where GO is a quantifier-free formula containing only x^y^z free and s is a
closed term.

In particular for n — 2 (resp. n = 3) the extractability of a bound Φuk
which is a polynomial (resp. a finitely iterated exponential function) in
UMX := maxu(i) and k is guaranteed (see [15] for details).

In [14] we have shown that for suitable Δ already 62 Aω +Δ+ AC-qf covers
a substantial part of standard analysis. In fact essentially only analytical
axioms (4) having types 5,p < l,r = 0 are sufficient.

The proof of the verification of the extracted bound Φ also relies on these
non-constructive principles Δ, in fact even on their strengthened versions

(5) Δ := {3Y <1(1) sVx,zGo(x,Yx,z)\Vxl3y <ι sxVz°GQ(x,y,z) G Δ}

relatively to the intuitionistic variant GnA5f of GnA.ω.
However combining the methods from [15] with techniques from [12] one

can replace the use of (5) by the use of the 'ε-weakenings' of (5) thereby
achieving

(6) GnA? + Δε h Vu1, k°Vv <p tuklw <0

where

ί z

(7)Δe:= \ Vx\z°3y <x sx /\ GQ(x,y,i)\Vxl3y <ι 8xVz*GQ(x,y,z) G Δ
i=0

The ε-weakening Δε of Δ usually is constructively provable in suitable
subsystems of intuitionistic arithmetic in all finite types. This passage from
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Δ to Δe - which may be viewed as an ε-arithmetization of the original
proof - however is not necessary for the extraction of Φ but only for a
constructive verification of Φ.

Whereas a number of important analytical principles can be expressed

directly as axioms (4) - in particular relatively to systems like PA (̂  or
GnA

ω for n > 3 the binary Kόnig's lemma WKL can be expressed in
this form (see [12] for details) - there are many theorems not having this
form but which can be proved from WKL relatively to base systems like

PA |̂ + AC-qf which essentially is a finite type extension of the second-
order theory RCA0 known from reverse mathematics. Examples of such
theorems are the following principles:

• Every pointwise continuous function / : [0, l]d ->• IR is uniformly
continuous.

• The attainment of the maximum value of / G C([0, l]d, R) on [0, l]d.3

• The sequential form of the Heine-Borel covering property for [0, l]d.

• Dini's theorem.

• The existence of a uniformly continuous inverse function for every
strictly increasing continuous function / : [0,1] —> IR.

The problem in treating these principles relative to weak base theories
as G2^ω is that their usual proofs (using WKL) are not formalizable
within e.g. 62A.ω. In particular WKL can not even be expressed in its
usual formulation in this system, since this involves the coding functional
f^x := {/O,..., f(x — 1)) which is available in Gnλ

ω only for n > 3. In or-
der to treat the principles above faithfully we introduced in [15] the axiom
(having the form (4))

<ι(o)
( Λ (** <o yki) -> Φk(z^n) <0

where, for zp°, (z^n)(k°) :=p zk, if k <0 n and := Op, otherwise.
This axiom implies (already relatively to G2A

U'+ AC1)0-qf) the following
principle of uniform Σj-boundedness

<ι yk3z° A ( x , y , k , z )

( Λ (
i<on

3This statement can be expressed as an axiom (4) (if / is endowed with a modulus of
uniform continuity). However this requires a very complicated representation of the ele-
ments / € C([0, l]d, IR) which can be avoided using the principle of uniform boundedness
discussed below.
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where A = 3/°A0(0 is a purely existential formula (see [15] for a detailed
discussion of this principle).

In G2A
α;+ Σj-UB" and hence in G2A

α'+F-+AC1'0-qf one can give very
short and perspicuous proofs of the analytical theorems listed above and
since F~ has the form of an axiom Δ we can extract a polynomial bound
from such a proof (see [17] for details). The verification of this so far still
depends on the non-standard axiom F~ which does not hold classically,
i.e. it does not hold in the full set-theoretic type structure Sω (but only in
the type structure of all so-called strongly majorizable functionals Mω).
Nevertheless, using the ε-arithmetization technique mentioned above, one
can replace the use of F~ by its ε- weakening and this ε-weakening is
provable e.g. in GaA^ (see [15]). In this case ε-arithmetization still is not
needed for the extraction of an uniform bound but now it is needed even
for a classical verification.

On the other hand there are central theorems in analysis whose proofs
use arithmetical comprehension, more precisely instances of

ACαr : VxQ3y°A(x,y) -> 3flVx°A(x,fx),

where A € Π^ (A may contain parameters of arbitrary type), and which
are not covered by the results mentioned above.

Examples are the following theorems

1) The principle of convergence for bounded monotone sequences of real
numbers (or equivalently: every bounded monotone sequence of reals
has a Cauchy modulus (PCM)).

2) For every sequence of real numbers which is bounded from above
there exists a least upper bound.

3) The Bolzano- Weierstrafi property for bounded sequences in lRd (for
every fixed d).

4) The Arzela-Ascoli lemma.

5) The existence of the limit superior for bounded sequences of real
numbers.

Using a convenient representation of real numbers, (PCM) can be for-
malized as follows:

(PCM) :
,m >0 hk(\am -

(PCM) immediately follows from its arithmetical weakening

(PCM-) :
' V*03n°Vm,m>on(|αTO-HβΛ |<ι l ϊiΓ))
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by an application of ACαr to

A := Vm,m > n(|αm -n o^| <IR ^-y) G Π?

(<πιG Πj follows from the fact that real numbers are given as Cauchy
sequences of rationale with fixed rate of convergence in our theories).

It is well-known that a constructive functional interpretation of the neg-
ative translation of ACαr requires so-called bar-recursion and cannot be
carried out e.g. in GόdePs term calculus T (see [23] and [18] ). ACαr is
(using classical logic) equivalent to CAαr+AC°'°-qf, where

CAαr : 3glVx»(g(χ) =0 0 <+ A(x)) with A € U(o
OOΪ

and therefore causes an immense rate of growth (when added to e.g.
Prom the work in the context of 'reverse mathematics' (see e.g. [6], [22]) it
is known that l)-5) imply CAαr relatively to (a second-order version of)

PA^+AC^-qf (see [5] for the definition of PA^). In [14] it is shown that
this holds even relatively to 62 A".

In contrast to these general facts on huge growth we prove in this paper
a theorem which in particular implies that if (PCM) is applied in a proof
only to sequences (αn) which are given explicitly in the parameters of the
proposition (which is proved) then this proof can be (effectively) trans-
formed (without causing new growth) into a proof of the same conclusion
which uses only (PCM~) for these sequences. By this transformation the
use of ACαr is eliminated and the determination of the growth caused (po-
tentially by (PCM)) reduces to the determination of the growth caused by
(PCM~). This reduction is achieved using the method of elimination of
Skolem function for monotone formulas (developed in [16]).
In difference to (PCM) the (negative translation of the) principle (PCM~)
has a simple constructive monotone functional interpretation which is ful-
filled by a functional Φ which is primitive recursive in the sense of [9].
Because of the nice behaviour of the monotone functional interpretation
with respect to the modus ponens one obtains (by applying Φ to Φ) a
monotone functional interpretation of (1) and so, using tools from [13], [15],
a uniform bound £ for 3w, i.e.

<p tuk3w <0 ξukA^u, k,v,w),

where ξ is primitive recursive in the sense of Kleene [9] (and not
only in the generalized sense of GodeΓs calculus T). X-Mozilla-Status: 0000

(This conclusion also holds for sequences of instances Vn0PCM(χwm) of
PCM(α) instead of PCM(χtιv).)

In this case ε-arithmetization - namely the reduction of the use of in-
stances of (PCM) to corresponding instances of its arithmetical weakening
(PCM~) - is necessary already for the construction of the bound Φ.
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In our treatment of the Bolzano-Weierstrafi theorem (as well as the
Arzela-Ascoli lemma) in section 5 below the use of the method of elim-
ination of Skolem functions is combined with the use of the non-standard
axiom F~ mentioned above: Single (sequences of) instances of the Bolzano-
Weierstrafi theorem can be proved (relatively to 62 Aω-fAC1>0-qf) from sin-
gle instances of the second-order axiom Π?-CA plus F~. Π?-CA is studied
in [16] where it is shown that single instances of this principle (in contrast to
its full second-order universal closure, which is equivalent to full arithmeti-
cal comprehension over numbers) also contribute at most by a primitive
recursive functional in the sense of Kleene. By the method of F~-
elimination discussed above, the resulting bound from a proof which uses
single instances of the Bolzano-Weierstrafi theorem then can be classically
(and even constructively) verified. Here ε-arithmetization of a given proof is
used twice for the construction of a bound (by elimination of Skolem func-
tions) and for a classical verification (by elimination of the non-standard
axiom F~).

Finally we investigate the principle of the existence of the limit superior
of a bounded sequence of real numbers. It turns out that the use of single
instances of this principle in the proof of a theorem (1) can be reduced
to an arithmetical Π^-principle whose monotone functional interpretation
can be fulfilled by a functional from the fragment T\ of Godels calculus T
with the recursor constants Rp for p < 1 (this fragment of T is sufficient to
define the Ackermann function but no functions of essentially greater rate
of growth).

In section 2 we present the theorems from [16] on which our investigations
in the present paper are based in order to make this paper independent from
the reading of [16]. However we assume the reader to be familiar with [15]
and all undefined notions in this paper are used in the sense of [15].

2 Proof-theoretic tools

In this section we recall some of our proof-theoretic results from [16] which
will be used in section 5 below.

Definition 2.1 ([16]) Let A G C(GnA
ω) be a formula having the form

A = VulVv <τ tu^y^xl . . . Jy0^x°k3w^A0(u, v, 2/1, xι , . . . , </*, α*, w),

where AQ is quantifier-free and contains only u,υ,y^,x,w free. Furthermore
let t be G GnR

ω and τ,7 are arbitrary finite types.
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1) A is called (arithmetically) monotone if

VulVv <τ tuVxι,xι, -. .,»*, zib, l/i, £ι, . . . I/*, 2/fc

Mon(A) :=< * >o y<) Λ

77ιe Herbrand normal form AH of A is defined to be

AH := VulVυ <τ teVft?1 , . . . , A£ fc3yJ, . . . , j/g,

...yk,w), where pi = 0(0)...(0).

Theorem 2.2 ([16]) Lei n > 1 and Φj, . . . , Φfc € GnΛ^. TΛen

/ fc

Gn^ -h Mon(A) h V^Vυ <r tuVΛi, . . . , hk ( f\(hi monotone)
M=l

-> 3yα <0 Φiuft . . . 3yfc <0

I

(Λi monotone) := Vxi , . . . , x<, 2/1 , . . . , y< ( / \ ( x j >o yj) -* /itX >o
j=ι

Definition 2.3 (Bounded choice) b-AC:= \J {(b-A&p}\ denotes
<5,p€T ^ J

ί/ie schema of bounded choice

(b-A(?'p) : VZpδ(Vxδ3y<pZx A(x,y,Z)->3Y <pδ ZNxA(x,Yx,Z}}.

Theorem 2.4 ([16]) Let A be as in thm.2.2 and Δ be a set of sentences
Vxδ3y <p sxVzηGQ(x,y,z) where s is a closed term of GnA

ω and GO a
quantifier-free formula, and let A' denote the negative translation4" of A.
Then the following rule holds:

GnA
ω+AC-qf+ Δ h AH Λ Mon(A) =>

GnA
ω + Δ h A and by monotone functional interpretation

one can extract a tuple Φ. € GnR^ such that

GnA" + Δ h Φ satisfies the monotone functional interpretation of A' ,

4Here we can use GόdeΓs [7] translation or any of the various negative translations.
For a systematical treatment of negative translations see [18].
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where Δ:= {3Y <pδ sVx6 \z*G*(x,Yx>z) : Vx*3» <p sx
Δ}. (In particular the second conclusion can be proved in
GnA? + Δ+ b-AC).

Remark 2.1 In theorems 2.2,2.4 one may also have tuples 9ju;' instead
of ^WΊ ' in A.

For our applications in paragraph 5 we need the following corollary of
theorem 2.4:

Corollary 2.5 ([16]) Let VxΌ3y0Vz°Ao(u\vτ,x,y,z) G £(GnA
ω) be a

formula which contains only n, v as free variables and satisfies provably
in GnA

ω -f Δ+AC-qf the following monotonicity property:

(*) Vu, v, x, x, y, j/(ί <0 x Λ y >0 j/ Λ VzQAQ(u, v, x, y, 2?) ->

). Furthermore let BQ(U,V,WΊ) G £(6?

n^
u;) be a

(quantifier- free) formula which contains only u,v,w as free variables and
7 < 2. Then from a proof

GnA
ω+ Δ + AC-qf h

Vt^Vv <τ tu(3flVx, z AQ(U, v, x, /x, z) -» 3^750(n, υ, n;)) Λ (*)

one can extract a term x G GnR^ such that

GnA
ω

{ 4- Δ 4- b-AC h Vi^Vυ <r twVΦ*((Φ* satisfies the mon.funct.

7n ί/ie conclusion Δ-f 6-ΛC can 6e replaced by Δ as defined in thm.2.4-
If r < I and the types of existential quantifiers in the axioms Δ are < 1,
Λen Gn^H-Δ-hAC-g/may 6e replaced by E-GnA

ω + Δ+ ACaβ-qf) where
(a = 0 Λ β < 1) or (a = 1 Λ /? = 0), since elimination of extensionality
applies in this case.

The mathematical significance of corollary 2.5 for the extraction of bounds
from given proofs by arithmetization rests on the following fact: Direct
monotone functional interpretation of

GnA" -h Δ + AC-qf h

<τ tu(3fl\/x, z A0(u, υ, x, /x, z) -* 3w^B0(u, v, w))

5'Φ* satisfies the mon. funct.interpr. of Vx1g3yAo(u1 υ, x,y,gy) ' is meant here

for fixed n,v (and not uniformly as a functional in u,υ), i.e. 3Φ(Ψ* s-maj Φ Λ

Vx, p Λ0(ι*, v, x,
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provides only a bound on 3w which depends on a functional which satis-
fies the monotone functional interpretation of (1) 3/Vx, z AQ or if we let
remain the double negation in front of 3 (which comes from the negative
translation) (2) -i-iΞ/Vα:, z AQ. However in our applications the monotone
functional interpretation of (1) would require non-computable functionals
(since / in general is not recursive). The monotone functional interpre-
tation of (2) can be carried out only using bar-recursive functionals (see
[23]). In contrast to this the bound χ only depends on a functional which
satisfies the monotone functional interpretation of the negative translation
of VxJyVz AO (#,?/, 2): In our applications in section 5 such a functional

can be constructed in PR except for the existence of the limit superior
of a bounded sequence of real numbers where the fragment T\ of GόdePs
calculus T with Rp for p < 1 is needed (note that the Ackermann function
is definable in T\).

In particular by arithmetizing the original proof the use of the analytical
premise 3/1Vx, zA$ has been replaced by the use of the arithmetical
premise Vx°3yQVzQA0.

ω3 Real numbers in

Suppose that a proposition Vx3yA(x, y) is proved in one of the theories
Tω from [16], where the variables x,y may range over IN, ZZ, Q,R or e.g.
C[0,l] etc. What sort of numerical information on 'ΐh/' relatively to the
'input' x can be extracted from a given proof depends in particular on how
x is represented, i.e. on the numerical data by which x is given:
Suppose e.g. x that is a variable on 1R and real numbers are represented
by arbitrary Cauchy sequences of rational numbers #n, i.e.

(1) Vfc°3n°Vm,m > n(\xm - x<n\ < j)

Let us consider the (obviously true) proposition

(2) Vz € B3ί € JN(x < 0-

Given x by a representative (xn) in the sense of (1) it is not possible to
compute an / which satisfies (2) on the basis of this representation, since
this would involve the computation of a number n which fulfils a (in general
undecidable) universal property like Vra,ra > n(\xm - Xrh\ < 1) to define I

If however real numbers are represented by Cauchy sequences with a
fixed Cauchy modulus, e.g. l / ( k + 1), i.e.

(3) Vm,m>k(\xm-Xrn\ < Γ-)>
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then the computation of / is trivial: I := Φ ( ( x n ) ) '-= Γkoll + 1. Φ is not a
function : 1R — > IN since it is not extensional: Different Cauchy sequences
(xn), (xn) which represent the same real number, i.e. limn_00(xn-xn) = 0,
yield in general different numbers Φ((xn)) ^ Φ((xn))> Following E. Bishop
[3] , [4] we call Φ an operation : 1R — > IN. This phenomenon is a general
one (and not caused by the special definition of Φ): The only computable
operations 1R — * IN, which are extensional, are operations which are con-
stant, since the computability of Φ implies its continuity as a functional6 :
IN1^ — * IN and therefore (if it is extensional w.r.t. =JR) the continuity as a
function IR -> IN.

The importance of the representation of complex objects as e.g. real
numbers is also indicated by the fact that the logical form of properties of
these objects depends essentially on the representation:
If (xn)j (xn) are arbitrary Cauchy sequences (in the sense of (1)) then the
property that both sequences represent the same real number is expressed
by the Πg-formula

(4) Vfc3nVm,m > n(\x

For Cauchy sequences with fixed Cauchy modulus as in (2) this property
can be expressed by the (logically much simpler) Πj -formula

For Cauchy sequences with modulus l/(fc + 1) (4) and (5) are equivalent
(provably in 62 A^). But for arbitrary Cauchy sequences (4) does not imply
(5) in general.

If (xn] C Q is an arbitrary Cauchy sequence then AC°'° applied to

Vfc3nVτn,ra > n(\xm - Xfh\ < T"ττ

yields the existence of a function fl such that
VfcVm,™ > fk(\Xm - Xrn\ < ̂ ).

For ra, ra > k this implies |x/m — x/m\ <! ̂ ϊ (choose k' € {m, ra} with
fkf < fm,fnι and apply the Cauchy property to m' \— fm,πι' := /m),
i.e. the sequence (z/n)neiN is a Cauchy sequence with modulus l/(k + 1)
which has the same limit as (#n)neiN

6 An operation Φ : IR —> IN is given by a functional : IN1^ —» IN (which is exten-
sional w.r.t. =ι!) since sequences of rational numbers are coded as sequences of natural
numbers.
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Thus in the presence of AC°'° (or more precisely the restriction AC°'°-
V of AC°'° to Π?-formulas) both representations (1) and (2) equivalent.
However AC°'°-V is not provable in any of our theories and the addition of
this schema to the axioms would yield an explosion of the rate of growth of
the provably recursive functions. In fact every α(< εo)-recursive function
is provably recursive in G2A

α;+ AC°'°-V. This follows from the fact that
iterated use of AC°'°-V combined with classical logic yields full arithmetical
comprehension

where A is an arithmetical formula, i.e. a formula containing only quanti-
fiers of type 0. CAar applied to QF-IA proves the induction principle for
every arithmetical formula. Hence full Peano-arithmetic PA is a subsystem
of G2 A"+ AC°'°-V.

As a consequence of this situation we have to specify the representation
of real numbers we choose:

Definition 3.1 A real number is given by a Cauchy sequence of rational
numbers with modulus l/(k -f 1).

The reason for this representation is two-fold:

1) As we have seen above any numerically interesting application of the
extraction of a bound presupposes that the input is given as a numer-
ically reasonable object. This is also the reason why in constructive
analysis (in the sense of Bishop) as well as in complexity theory for
analysis (in the sense of H. Friedman and K.-I. Ko, see [11] ) real
numbers are always endowed with a rate of convergence, continuous
functions with a modulus of continuity and so on. Also in the work by
H. Friedman, S. Simpson (see e.g. [22]) and others on the program of
so-called 'reverse mathematics', real numbers are always given with
a fixed rate of convergence.

2) For our representation of real numbers we can achieve that quantifi-
cation over real numbers is nothing else then quantification over IN1"1,
i.e. Vxl,3yl. Because of this many interesting theorems in analysis
have the logical form V3Fo (see [13] for a discussion on that) so that
our method of extracting feasible bounds applies.

1) and 2) are in fact closely related: If real numbers would be represented
as arbitrary Cauchy sequences then a proposition MX € ΊR3y € IN A(x, y)
would have the logical form

where (*) Vfc3nVraF0 expresses the Cauchy property of the sequence of
rational numbers coded by xl. By our reasoning in [15] we know that in
general we can only obtain an effective bound on y which depends on x
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together with a Skolem function for (*). But this just means that the com-
putation of the bound requires that x is given with a Cauchy modulus.
As concerned with provability in our theories like GnA^+AC-qf the rep-
resentation with fixed modulus is no real restriction: In section 5 we will
show in particular that the a proof of

V(xn)(3/1VfcVm,m > fk(\xm - xm\ < ̂ y) -> 3</°A)

can be transformed into a proof of

V(zn)(Vfc3nVm,m > n(\xm - xm\ < —J—) -> 3y°A).
K " ι J.

within the same theory (i.e. without any use of AC°'°) for a large class of
formulas A.

The representation of IR presupposes a representation of Q: Rational
numbers are represented as codes j(n, m) of pairs (n, ra) of natural numbers
n,ra. j(n,ra) represents

the rational number ^y , if n is even, and

the negative rational — ̂ TT if n is odd.

By the surjectivity of our pairing function j from [15] every natural
number can be conceived as code of a uniquely determined rational number.
On the codes of Q, i.e. on IN, we define an equivalence relation by

n\ =<D Π2 := - — - — 7 = - — - — 7 if j\n\,j\n<ι both are even

and analogously in the remaining cases, where ~ = § is defined to hold iff
ad=0 cb (for bd > 0).
On IN one easily defines functions | |Q , -f Q , — Q , Q :<Q j maxQ , min^ G G%Rω

and (quantifier-free) relations) <Q, <Q which represent the corresponding
functions and relations on Q. In the following we sometimes omit the index
Q if this does not cause any confusion.

Notational convention: For better readability we often write e.g. ̂ 4-j

instead of its code j(2, k) in IN. So e.g. we write x° <Q ^y for x <Q j(2, fc).

By the coding of rational numbers as natural numbers, sequences of
rationale are just functions fl (and every function fl can be conceived as
a sequence of rational numbers in a unique way). In particular representa-
tives of real numbers are functions fl modulo this coding. We now show
that every function can be conceived as an representative of a uniquely
determined Cauchy sequence of rationals with modulus l/(fc+l) and there-
fore can be conceived as an representative of a uniquely determined real
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number.7

To achieve this we need the following functional /.

Definition 3.2 The functional λ/^/G G2R^ is defined such that

/n, if Vfc,m, m <o n(ra, m >o k —> |/τn —Q /ra| <Q v^

/«=
|/m—Q /ra| >Q ^γ)j, otherwise.

One easily verifies (within G2Ajf) that

1) if /* represents a Cauchy sequence of rational numbers with modulus

l/(k + 1), then Vn°(/n =0 /n),

2) for every fl the function / represents a Cauchy sequence of rational
numbers with modulus l / ( k + 1).

Hence every function / gives a uniquely determined real number, namely
that number which is represented by /. Quantification Vx € 1R A(x) (3x €

IR A(x)) so reduces to the quantification V/1A(/) (3/M(/)) for properties
A which are extensional w.r.t. =IR below (i.e. which are really properties
of real numbers). Operations Φ : IR — > IR are given by functional Φ1^1)
(which are extensional w.r.t. =ι). A real function : IR — > IR is given by a
functional Φ1^1) which (in addition) is extensional w.r.t. =ja Following

the usual notation we write (xn) instead of fn and (xn) instead of fn.
In the following we define various relations and operations on functions

which correspond to the usual relations and operations on IR for the real
numbers represented by the respective functions:

Definition 3.3 1) (xn) =IR (ίn) := Vfc°(|ίfc -Q ik\ <Q

2) (xn) <R (in) := 3fc0(Sfc - xk

3) (Xn) <R (in) '-= -'(ίn) <H (

^ (Xn) +R (*n) := (Ϊ2n+l +Q

5̂  (Xn) -IR (xn) ί=

R (xn) -=

fc :=

7 A related representation of real numbers is sketched in [1]
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8) For (xn) and 1Q we define

>Q 0
(Xn)~l '•= 1), otherwise;

9)

minjR ((xn), (xn)} := (mm^(xn,xn)).

One easily verifies the following

Lemma 3.4 1) (xn) =IR (xn) resp. (xn) <JR (zn), (xn) <IR (xn) hold
iff the corresponding relations hold for those real numbers which are
represented by (xn},(xn)'

2) Provably in GzA? , (xn) +πι (xn), fan) ~IR (in), (&n) "IR (in), maxiR
((zn),(in)), miniR ((rrn), (zn)) and |(xn)|iR olso represent Cauchy
sequences with modulus l/(k + 1) which represent the real number
obtained by addition (subtraction,...) of those real numbers which are
represented by (xn)^(xn) This also holds for (xn)~l if |(#n)|iR ^M
jπ for the number I used in the definition of (xn)~l In particular
the operations +]R, — JR etc. are extensional w.r.t to =JR and therefore
represent functions8.

3) The functional +R, -JR, IR, maxjR, miniR of type 1(1)(1), | |IR of type
1(1) and (}~l of type 1(1)(0) are definable in

Remark 3.1 Since our theories GnAf contain all IN, JN^-true purely uni-
versal sentences VO^^AQ(X_) as axioms (because they do not contribute to
the growth of extractable bounds at all, see [15] for details), it is easy to
check that the basic properties of =JR, <JR,, +JR, . . . can be proved in G^A^ .
They are either directly purely universal or can be strengthened to universal
statements, e.g.
x =}R V A y =πι z — > x =]R z follows from the universal axiom
Vz1, y^k^x^k + 1)) -Q y(6(k + 1))| <Q ̂ fa Λ

\y(6(k + 1)) -Q z(6(k + 1))| <Q p - _ |ί(Λ) _Q ?(fc)| <Q

Rational numbers q coded by rq have as canonical representative in IR
(besides other representatives) the constant function \n°.rq. One easily
shows that Vk(\(xn) — IR \n.Xk\ <IR j^) for every function (xn)

Notational convention: For notational simplicity we often omit the
embedding Q ^̂  IR, e.g. xl <IR y° stands for x <JR Xn.y°. From the type
of the objects it will be always clear what is meant.

8The functional Q"1 is extensional for all I and (xn), (yn) such that
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If (/n)n<EiN of type 1(0) represents a ^-Cauchy sequence of real num-
bers, then

f(n) '-= /3(π+i)(3(n + 1)) represents the limit of this sequence, i.e.
-IR /| <IR fc^y). One easily verifies this fact in

Representation of ΊRd in G2A^:

For every fixed d we represent JRd as follows: Elements of ΊRd are rep-
resented by functions fl in the following way: Using the construction /
from above, every f1 can be conceived as a representative of such a d-
tuple of Cauchy sequences of real numbers, namely the sequence which is
represented by

(ί(7), , 3(7)), where vf(f) := \x°.vf(fx),

(i/f are the coding functions G G2RU> from [15]).

Since the vf(f) represent Cauchy sequences of rationale with Cauchy

modulus ~-f , elements of ΊRd are so represented as Cauchy sequences of

elements in Qd which have the Cauchy modulus ^~ w.r.t. the maximum

norm H/lmax := maXlR (|ι/f (/)!», . . . , |^(/)k) ___ _ __ ^

Quantification V(xι, . . . , Xd) G JRd so reduces to V/1 A(ι>f (/), . . . , &$(/)) for
Hd-extensional properties A (likewise for 3).
The operations -fjRd, — j^d, . . . are defined via the corresponding operations
on the components, e.g. xl +5̂  yl := vά(v^x +JR, v%y, . . . , v^x -hjR v$y).

Sequences of elements in ΊRd are represented by (fn) of type 1(0).

Representation of [0,1] C IR in

We now show that every element of [0,1] can be represented already
by a bounded function / € {/ : / <ι M}, where M is a fixed function
from G2Ru; and that every function from this set can be conceived as an
(representative of an) element in [0,1]: Firstly we define a function

q G G2R
ω by

ί min/ <o n[l =Q n], if 0 <Q n <Q 1
n

Oυ, otherwise.

It is clear that every rational number G [0,1] Π Q has a unique code by a
number G ς(lN) and Vn°(q(q(ri)) =Q q(n)). Also every such number codes an
element of G [0,1] Π Q (0° codes 0 G Q since j(0,0) = 0). We may conceive
every number n as a representative of a rational number G [0,1] ΠQ, namely
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of the rational coded by q(n).
In contrast to IR we can restrict the set of representing functions for [0,1] to
the compact (in the sense of the Baire space) set / G {/ : / <ι M}, where
M(n) := j(6(n + 1), 3(n + 1) — 1) (here j is the Cantor pairing function):
Each fraction r having the form 3/^-\-ι) (wl^ * < 3 ( n 4 l))is represented
by a number k < M(π), i.e. k < M(n)/\q(k] codes r. Thus {k : k < M(n)}
contains (modulo this coding) an 3> ^-net for [0,1].

We define a functional λ/./ G G<2&ω such that

/(*) = g(<o), where i0 = μi <0 M(fc)[Vj <0 M(k)(\f(3(k + 1)) -Q

>Ql7(3(* + l))-Qί(OI)]

q(j)\

/ has (provably in 62 A^) the following properties:

1) V/H/^iM).

2) V/1 (?=ι/).

3) VΛO^

4) V/ 1 (0<

5) V/ I (/=R/).

By this construction quantification Vx G [0, 1] A(x) and 3x £ [0, 1] A(x)
reduces to quantification having the form V/ <ι M A(f) and 3/ <ι
M -A(/) for properties A which are =]R-extensional (for /ι,/2 such that
0 <M /i, /2 <n I)? where M G 62^ . Similarly one can define a repre-
sentation of [α, b] for variable α1, bl such that a <IR b by bounded functions
{ f l ' f ^i M(α, 6)}. However by remark 3.2 below one can easily reduce
the quantification over [α, 6] to quantification over [0, 1] so that we do not
need this generalization. But on some occasions it is convenient to have
an explicit representation for [— fc, k] for all natural numbers k. This rep-
resentation is analogous to the representation of [0, 1] except that we now
define Mfc(π) := j(6k(n + 1), 3(n + 1) — 1) as the bounding function. The
construction corresponding to λ/./ is also denoted by / since it will be
always clear from the context what interval we have in mind.

Representation of [0, l]d in G2A^

Using the construction / »-> / from the representation of [0,1] we also can
represent [0, l]d for every fixed number d by a bounded set [ f l : f <ι Md]
of functions, where Md '• vά(M, . . . , M) G 62^ for every fixed d: f(< Md)

represents the vector in [0, l]d which is represented by ((vd /), . . . , (z^/)). If
(in the other direction) /i, . . . , fd represent real numbers xi, . . . , Xd G [0, 1],
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then / := ι/ d (/i, . . . , fd) <x v
d(M,..., M) represents (x 1 } . . . , χd) e [0, l}d

in this sense.

Remark 3.2 For α, 6 E IR with a <^ b, quantification Vx G [α, b] A(x)
(3x G [α, b] A(x)) reduces to quantification over [0,1] (and therefore -
modulo our representation- over {/ : / <ι M}) by Vλ G [0,1] A((l - λ)α +
λ&) and analogously for 3x. This transformation immediately generalizes
to [ai, bi] x x [ad, 6d] usmp λ i , . . . , λd.

4 Sequences and series in G^A": Convergence with
moduli involved

By our representation of real numbers by functions fl developed in the
previous section, sequences of real numbers are given as functions flW in
G^Ptf. We will use the usual notation (αn) instead of /. In this section we
are concerned with the following properties of sequences of real numbers:

1) (αn) is a Cauchy sequence, i.e.
>0 n(|αm -Ro^| <R

2) (αn) is convergent, i.e. 3α1Vfc°3n°Vm >0 n(\am —^ a\ <IR

3) (αn) is convergent with a modulus of convergence, i.e.

>0 hk(\am -Rα| <R .
rC ~T~ 1

4) (αn) is a Cauchy sequence with a Cauchy modulus, i.e.

>0 ftfc(|αm -Ro^| <R )

One easily shows within G2Af that 4) ̂  3) -» 2) -* 1). Using AC0'°-V°
one can prove that 1) — > 4) (and therefore 1) «->• 2) <-> 3) <-* 4)).
However, as we already have discussed in the previous section, the addition
of AC°'0-V° to G2Aω would make all α(< εo)-recursive functions provably
recursive.

Thus since we are working in (extensions of) G2 A.ω we have to distinguish
carefully between e.g. 1) and 4). In the next section we will study the
relationship between 1) and 4) in detail and show in particular that the
use of sequences of single instances of 4) in proofs of VulVv <p tu3w2AQ-
sentences relatively to e.g. G?,λω + Δ+AC-qf (where Δ is defined as in
thm.2.4) can be reduced the use of the same instances of 1).

For monotone sequences (αn) the equivalence of 2) and 3) (and hence
that of 2) and 4)) is already provable using only the quantifier-free choice
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AC°'°-qf:
Let (an) be say increasing, i.e.

(<) Vn°(αn <R αn+ι),

and α1 be such that

(it) Vfc°3n°Vm >0 n(|αm - α| <R ^-y).

AC° °-qf applied to Vfc°3n°( |αn - α| <R -i— ) yields
K ~\~ Λ-

£Σ°

3h1Vfe°(|oΛfc - α| <R fc^ ), which gives BfcWVm >0 hk(\am - a\

fciϊ), since -by (i),(ii)- α/^ < αm < α for all m >o Λfc. (Here we use the
fact that Vn(αn <R αn+ι) — * Vm, m(m > m — » α^ <R αm). This follows
in G2Aω from the universal sentence

(+) VαJ.^.n./ίV* < n(ofc(Z) <Q αfc+1(J) + jfj ) -» Vm,m < n(m >

^ — > a*™, ^IR αm 4- ]+γ)) (+) ιs ^rue (and hence an axiom of 62 A.ω) since

2fc(0 <Q αfc+ι(ί) 4- j— -> αfc <R αfc+ι + —j.)

If one of the properties 1), ... ,4) -say i G {!,... ,4}- is fulfilled for
two sequences (αn),(6n), then z) is also fulfilled (provably in G2A^) for
(«n +ικ&n), K -R&Π), K R &n) and (if 6n ̂  0 and 6n -̂  6 φ 0) for (f*),
where in the later case the modulus in 3), 4) depends on an estimate / G IN
such that |6| > j^ (The construction of the moduli for (an -hiR 6n), (αn — ̂

bn), (αn IR frn), (f0-) from the moduli for (αn), (6n) (for i=3,4) is similar to

our definition of +JR, — R, JR> (O""1 giyen in ^ne previous section.
The most important property of bounded monotone sequences (αn) of

real numbers is their convergence. We call this fact principle of convergence
for monotone sequences' (PCM). Because of the difference between 1) and
4) above we have in fact to consider two versions of this principle:

(PCMl)
>0 n(|αm -Ro^| <R

(PCM2)

0

Both principles cannot be derived in any of the theories GnA^ 4- Δ-hAC-
qf. In fact (PC Ml) is equivalent (relatively to GaAω) to the second-
order axiom of E^-induction whereas (PCM2) is equivalent (relatively to
GsAu;-hAC0'0-qf) even to arithmetical comprehension over numbers (see
[14]; for the system RCAo, known from reverse mathematics, the equiva-
lence between (PCM2) and arithmetical comprehension is due to [6]). We
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now determine the contribution of the use of (PC Ml) to the growth of
extractable uniform bounds. This will be used in the next section to deter-
mine the growth which may be caused be single sequences of instances of
(PCM2).

Using the construction ά(n) := maxja(0,min(α(z))), we can express
i<n

(PCMl) in the following logically more simple form9

(1) Vα^Vfc^Vm >0 n(α(n) -R α(m) <R T-^-).
K H- 1

(If α1^) fulfils Vn(0 <R a(n + 1) <H α(n)), then Vn(α(n) =R α(n)). Fur-
thermore Vn(0 <R α(n -f 1) <R δ(n)) for all α1*0). Thus by the transfor-
mation a »— > ά, quantification over all decreasing sequences C IR+ reduces
to quantification over all α1^0^).
By AC°'°-qf (1) is equivalent to

(2) ValW,k°,gllnf>(gn >0 n -> α(n) -R αfon) <R ^ y ) .

We now construct a functional Φ which provides a bound for 3n, i.e.

(3) Vα1(0), fc°, ̂ Ξn <0 Vakg(gn >0 n -> α(n) -R α(^n) <R r^-r).
/c -f- 1

Let C(α) € E^ (C(a) > 1) be an upper bound for the real number
represented by α(0) (with C s-maj C), e.g. C(α) := (α(0))(0) -f 1. We
show that
tyakg :— max (Φit*0ρ)(= max (^l(0)) satisfies (3) (provably in

i<C(a)k' ^ i<C(a)k'

PRA"):
Claim: 3ί < C(a)k' (g(gίO) > g{Q -* 2(^0) -R ά(g(giQ)) <κ ^).

Case 1: 3i < C(a)k/(g(giO) < 0*0): Obvious!
Case 2: Vt < C(a)k/(g(giO) > ^0):

Assume Vz < C(α)^(α(^0) -R α(p(^0)) >R ^).

Then α(0) -R ά(g°WQ) > C(α), contradicting α(n) e [0,C(o)] for all n.

9Here we use that Vπ°(α(n + 1) <JR αnj —> Vn° f ΦminiR (α, π) =IR αnj, where

Φmίnπi is a functional from G2Rω which computes the minimum of the real numbers
α(0),... ,α(n) (such a functional can be defined similarly to miniR in section 3 noting
that ΦminαjC/1,™0) = min<Q(/0,...,/n) is definable in G2R

ω). This follows in G2^ω

from the purely universal sentence

(+) Vα1^0),^ k( VZ < n((a(l + l)J(fc) <<Q (al)(k) H- fcTϊ) —> |ΦminIR(α>τl) — m αnl ^IR

fϊ}' (+) is true (and hence an axiom of G2Au;) since

T^TT -» α(i + 1) <R αZ + Trlr.
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In contrast to (2) the bounded proposition (3) has the form of an axiom
Δ in the theorems from [15] and section 2. Hence the monotone functional
interpretation of (3) requires just a majorant for Φ. In particular we may

use Φ G PRω itself since Φ s-maj Φ.
Thus from a proof of e.g. a sentence V#°Vy <p sx3z° AQ(X, y, z) in GnA^ +
Δ -f (PCMl)+AC-qf we can (in general) extract only a bound t for z

(i.e. VxVy < sx3z < tx AQ(x,y,z)) which is defined in PR since the
definition of Φ uses the functional Φa which is not definable in GooR^ (see
[15]). If however the proof uses (3) above only for functions g which can be
bounded by terms in GfcR"', then we can extract a t G Gmax(fc+ι)n)Rω since
the iteration of a function G G^R" is definable in Gfc+iR'4' (for k > 2).

The monotone functional interpretation of the negative translation of (1)
requires (taking the quantifier hidden in <IR into account) a majorant for
a functional Φ which bounds 'Ξn' in

(3)' Val(0\k°,g\hl3n(gn > n -* ά(n)(hn) -Q ά(gn)(hn) <Q

1 3 .

However every Φ which provides a bound for (2) a fortiori yields a bound for
(3)' (which does not depend on ti). Hence Φ satisfies (provably in PRA^)
the monotone functional interpretation of the negative translation of (1),
i.e. (PCM1).

5 The rate of growth caused by sequences of
instances of analytical principles whose proofs
rely on arithmetical comprehension

In this section we apply the results presented in section 2 in order to de-
termine the impact on the rate of growth of uniform bounds for provably
Vu 1Vv <r tu3w^AQ-senteiίces which may result from the use of sequences
(which however may depend on the parameters of the proposition to be
proved) of instances of:

1) (PCM2) and the convergence of bounded monotone sequences of real
numbers.

2) The existence of a greatest lower bound for every sequence of real
numbers which is bounded from below.

3) Π?-CA and Π?-AC.

4) The Bolzano-Weierstrafi property for bounded sequences in IRd (for
every fixed d).
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5) The Arzela-Ascoli lemma.

6) The existence of Hm sup and lim inf for bounded sequences in 1R.

5. 1 (PCM2) and the convergence of bounded monotone
sequences of real numbers

Let α1^) be such that Vn°(0 <IR a(n + 1) <^ an)10

(PCM2) implies

3hl\/k°,mQ(m >0 hk -> a(Λfc) -R o(m) <
K ~τ~ -L

(a(hk))k is a Cauchy sequence with modulus ^~ whose limit equals the
limit of (α(m))neiN. The existence of a limit α0 of (α(m))m now follows from

the remarks below lemma 3.4 : aQk := (α(Λ(3(£+ 1))))(3(* -f 1)). Thus
we only have to consider (PC Ml}. In order to simplify the logical form
of (PCM2) we use the construction ά(n) := maxiR,(0,min(α(z)) from the

i<n

previous section (recall that this construction ensures that ά is monotone
decreasing and bounded from below by 0. If α already fulfils these properties
nothing is changed by the passage from α to ά).

(PCM2)(α1(0)) := 3hlVkQ,m°(m >0 hk -> α(ftfc) -Rα(m) <R T —
rC ~f~ J.

We now show that the contribution of single instances (PCM2)(α) of
(PCM2) to the growth of uniform bounds is (at most) given by the func-
tional Φakg := max (Φitίΰg) (where IN* 9 C(a) > ά(0)) as above:

i<C(a}k'

Proposition 5.1 Letn > 2 andBQ(ul,vr,WΊ] G C(GnA
ω] be a quantifier-

free formula which contains only ul, vτ, WΊ free, where 7 < 2. Furthermore

10The restriction to the lower bound 0 is (convenient but) not essential: If Vn°(c <JR
α(™ 4- 1) <IR an) we maY define a1 (n) := α(n) -IR c. (PCMl) applied to a' implies
(PCMl) for α. Everything holds analogously for increasing sequences which are bounded
from above.
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let ξ,t G GnR? and Δ be as in thm.2.4- Then the following rule holds

GnA
ω + Δ -f AC-qf\- Vί^Vv <r tu((PCM2)(ξuv) -> 3^50 ,̂ v, ̂ ))

=»3(e//.)χ,χ

Gn^ + Δ + 6-.

mίeττ?r.

αnα7

h Vt^Vv <r tuVΦ*((Φ* satisfies the mon.funct.

gn > n -> (ξuυ)(n) -R (ξuv)(gn) <^ ^y))

mon. fu.nct.

interpr. n α(n) -

therefore

PRA" -f Δ 4- 6- v <r

= maxwhere Φ := λa, fc,^. max (Φΐt

αndC(α):=(α(0))(0) + l.
In the conclusion, Δ+ 6-^4(7 can be replaced by Δ, ιy/ιerτe Δ Z5 defined as
in theorem 2.4- //Δ = 0, ίΛen b-AC can be omitted from the proof of the
conclusion. If r < 1 and the types of the ^-quantifiers in Δ are < I, then
GnA

ω + Δ+AC-qf may be replaced by E-GnA
ω -f Δ+AC* β-qf, where α, /?

are a5 in cor. 2. 5.

Proof: The existence of χ follows from cor. 2. 5 since

h Va^^Vfc, jfc, n, n(fc <0 Jk Λ n >0 nΛ

Vm >0 n(a(n) -JR a(m) <R ̂ ) -> Vm >0 n(ά(n) -R a(m) <R ^γ))

fulfils the monotone functional interpretation of
°, gl3n°(gn > n — > α(n) -JR ά(yn) <IR ~^ ) (see the end of section

4) and hence (using lemma 2.2.11 from [15]) V(ξ*(uM ,t*uM)) satisfies the
monotone functional interpretation of

n -> n

where ξ* s-maj ξ Λ ί* s-maj t.

X is defined by χ := λw,Φ

Remark 5.1 1) The computation of the bound χ in the proposition
above needs only a functional Φ* which satisfies the monotone func-
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tional interpretation of

i > n -» (ξuυ)(n) -JR (ξuυ)(gn) <

For special ξ such a functional may be constructable without the use
of Φit. Furthermore for fixed u the number of iterations of g only
depends on the k-instances of (+) which are used in the proof.

2) If the given proof of the assumption of this proposition applies Φ only
to functions g of low growth, then also the bound χuty is of low growth:
e.g. if only g := S is used and type/w == 0, then χuΦ is a polynomial
in UM (in the sense of [15]).

Corollary to the proof of prop.5.1:
The rule

GnA.ω + Δ 4- AC-qf h Vt^Vv <τ tu

(3fQVkVm,m>fk(\(ξuv)(m) -R (ξuυ)(m)\

GnA.ω + Δ h VulVυ <r tu

(Vfc3nVm,m > n(\(ξuv)(fh) -JR (ξuυ)(m)\

holds for arbitrary sequences (ξuv)1^ of real numbers (this also extends
to more general monotone formulas \/ul\/v <r tuB(u, v) in the sense of
thm.2.4). The restriction to bounded monotone sequences ξuυ is used only
to ensure the existence of a functional Φ which satisfies the monotone
functional interpretation of (+) above.

We now consider a generalization (PCM2*)(αJ(

)

0)(0)) of (PCM2)(a1^)
which asserts the existence of a sequence of Cauchy moduli for a sequence
aι of bounded monotone sequences:

(PCM2*)(αJ(

)

0)(0)) := Ξfc^V/0, fc°Vm >0 hkl((al)(hkl) -R

Proposition 5.2 Let n,Bo(u,v,w),t,Δ be as in prop. 5.1. t,ξ € GnR? '•
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Then the following rule holds

Aω + Δ + AC-qf h VulVυ <τ tu((PCM2*)(ξuv) -» 3w^BQ(u, v, w))

3 ( e f f . ) χ € GnΛ

^ + Δ + δ-ΛC' h

<r ίιΛ/Φ*((Φ* satisfies the mon. fund, interpr. of
Ό,gl3nQ(gn > n -* Vί < *((ϊ)(n) -R (ί)(<?n) <R

— > 3w

αnc? m particular

ΐ 4- Δ -h 6-^lC h Vi^Vi; <τ ίtx3^ <7 χuΦ; J

iί;/ιerτe Φ' := λα. A;, σ. max (Φ;tϊOα) αnrf
V y

IN* 3 C(α, fc) > maxR((α)(0), . . . , (α)(0)) ^ίΛ C 5-mαj C/1.
/n ί/ie conclusion, Δ+ 6->K7 can 6e replaced by Δ, it Λene Δ w defined as
in theorem 2.4- //Δ = 0, then b-AC can be omitted from the proof of the
conclusion. Ifr<l and the types of the 3-quantifiers in Δ are < 1, then
GnA

ω +Δ+AC-qfmay be replaced by E-GnA
ω +Δ+AC">β-qf, where a,β

are as in cor. 2. 5.
As in prop. 5.1 we also have a term χ which needs only a Φ* for the instance
a := ξuυ.

Proof: The first part of the proposition follows from corollary 2.5 since
(PCM2*)(α) is implied by

-1

>0 ftfcVZ <0 fc(α()(/ιfc) -R K ~\~ L

and

;, Is, n, n(k <0 fc Λ n >0 nΛ

Vm >0 nVZ <0 Λ((ί)(n) -R (βi)(m) <R

-» Vm >0 ήVZ <o *((ί)(n) -R (ί)(m) <R )).

It remains to show that Φ7 satisfies the monotone functional interpreta-
tion of

VaKOW.fcO^Bn^n > n -> V/
Assume

Vi

11E.g. take C(o, fc) := max(θi(0)(0) -h 1).
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Then

V< < C(a, k)(k + I)2 (0(0*0) > g{0) and

31 < klj(Vi < C(e,A)(fc + l)-l((i)i < (j)i+ι < C(a,k)(k + 1)2)Λ

Vi < C(β,*)(fc

and therefore

3f < klj Vi < C(β, *)(fc + 1)

ιo > pϋ)'0 Λ (

Hence

3ί< *3jV«ί7(o, *)(* + !)

T ,
AC ~r~ J

which contradicts (aι) C [0, C(α, fe)].

5.̂  T/ιe principle (GLB) 'every sequence of real numbers in
IR+ has a greatest lower bound'

This principle can be easily reduced to (PCM2) (provably in 62 Aw):
Let α1^) be such that Vn°(0 <IR an). Then (PCfM2)(a) implies that the
decreasing sequence (α(n))n C IR-j. has a limit άj. It is clear that άo is the
greatest lower bound of (α(n))n C IR-f_. Thus we have shown

Gnλ
ω h

By this reduction we may replace (PCM2)(ξuv) by (GLB)(ξuv) in the
assumption of prop. 5.1.
There is nothing lost (w.r.t to the rate of growth) in this reduction since
in the other direction we have

GnA" + AC°'°-qf h Val<V((GLB)(a) -> (PCM2)(α)) :

Let α1^0) be as above and απ its greatest lower bound. Then α0 = lim άn.n— >oo

Using AC°'°-qf one obtains (see section 4) a modulus of convergence and
so a Cauchy modulus for (α(n))n.
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5.3 Π°-O4 andU°-AC

Definition 5.3

1) H®-CA(flW) := 3glVx°(gx =o 0 <-> Vy°(fxy =o 0)).

2) Define Afi(flW,x°,y°,zQ) := Vx <0 xly <o yV5 <0 >2r(/xy ^0 0 V

/x5= 00).

ΛQ^ can be expressed as a quantifier-free formula in GnA
ω (see [15]).

(Note that iteration of Vf1^(U°l-Cλ(f)) yields CAαr).
In [16] we proved (using cor.2.5)

Proposition 5.4 Letn > I andBo(u1^ VT,WΊ) G C(GnA
ω} be a quantifier-

free formula which contains only ul,vτ,WΊ free, where 7 < 2. Furthermore
let ξ,ί £GnP? and Δ be as in thm.2.4- Then the following rule holds

GnA
ω 4- Δ 4- AC-gf h V^Vυ <τ

=> 3(e//.)χ € Gn/^ βucΛ t/iαt

GnA^ + Δ + b-AC \- VulVυ <τ

((Φ* satisfies the mon. funct.interpr. of

and in particular

PEA* + Δ + δ-ΛG h Vti^v <r tulw <Ί χv$l BQ(u, υ,

Φ := λx0,/!1. max (ΦitiOh)( = λx°,hl. max (/^O)).

/n ίfte conclusion, Δ+6-AG can 6e replaced by Δ, w/iere Δ zs defined
as in thm.2.4. // Δ = 0, ί/ien 0-4 G can 6e omitted from the proof of the
conclusion. If r < 1 ana1 ί/ie ίy^es o/ ^/ιe ^-quantifiers in Δ are < 1, ί/ien
Gn A

ω + Δ+4G-ς/ may be replaced by E-GnA
ω 4- Δ4--AC°^-q/, w/iere a, /?

are a5 zn cor. 2. 5.

A similar result holds for Πι-AC(ξut ), where

=0 0) -4 3glVx*,z*(flx(gz)z =0 0)).

5.̂  Γ/ie Bolzano- Weierstraβ property for bounded sequences
in ΊRd (for every fixed d)

We now consider the Bolzano-Weierstrafi principle for sequences in [— 1, l]d

C ΊRd. The restriction to the special bound 1 is convenient but not essential:
If (xn) C [— C, C]d with C > 0, we define x'n := ^ xn and apply the
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Bolzano-Weierstraβ principle to this sequence. For simplicity we formulate
the Bolzano- Weierstrafi principle w.r.t. the maximum norm || ||max. This
of course implies the principle for the Euclidean norm || \\E since || \\E <

We start with the investigation of the following formulation of the Bolzano-
Weierstrafi principle:

BW : V(xn) C [-I,l]d3* € [-l,l]dVfc°,m°3n >0

i.e. (xn) possesses a limit point x.
Later on we discuss a second formulation which (relatively to GnA

ω) is
slightly stronger than BW:

BW+ . " C I"1' 1]d3x € I"1' l]^/1^/* <o /(» + 1))

i.e. (xn} has a subsequence (xfn) which converges (to x) with the modulus
i

fc+l'
Using our representation of [— 1, 1] from section 3, the principle BW has
the following form

V ι(0) i(o)V X j , . . . ,Xd

<* _ χ

3αι,...,o r f <ι MVfc0,m°3?ϊ >0 m /\ (|αi -JR, x<n| <πι rrr))

where M and yl >-> y are the constructions from our representation of
[-1,1] in section 3. We now prove

(*) G2A" + AC^-qf h F- -> Vzl ( 0 ) , . . . , zi(0) (Π?-CA(χz) -> B\

for a suitable x € G2R":
BW(x) is equivalent to

d

(I) 3αι,...,α d <ι MVfc°3π >0 * /\ (|δt -JR i
i=l

which in turn is equivalent to

(2) 3αι,... ,αd <ι MVfc°3n >0 k /\ (|α<fc -Q (x?n

Assume ~ι(2), i.e.

(3) V α i , . . . , ad <ι M3/c°Vn >ok\/
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Let x £ G2R
ω be such that

G2A
ω h \/x\(0), . . . , z^VZ0, n°(χxln =00~

[n >o »£ί(0 - V l^'ίO -Q (3w)(«
1=1

Π5-CA(χx) yields the existence of a function h such that

d
(4)Vί?, . . . ,ZS,fc°(ΛZι . . .id* =0 0 <-> Vn >0 fc V (!*<-«> (

i=ι

Using ft, (3) has the form

(5) Vαi, . . . , αd <ι M 3fc° (h(δι fc, . . . , αdfc, fc) =0 0) .

By Σ?-UB- (which follows from AC1'0^ and F~ by [15] (prop. 4.20)) we
obtain

(6) 3fc0Vαι, . . . , αd <ι MVm°3fc <0 fc0Vn >0 fc V

and therefore
rf _

(7) 3A:oVαl5 . . . ,ad <ι MVm°Vn >0 fc0 W (K^ϊTW) -R ί?rί| >R

Since (a^, 3(m + 1) — ιaάi| <JR ^~γ (see the definition of y ι-> y from section
3) it follows

(8) 3fc0Vaι, - - - ,ad <ι MVn >0

(9) 3fcoV(a!, . . . ,ad) € [-1, l]dVn >0 *o(||a - xn\\

.
'

By applying this to α := x(fco -f 1) yields the contradiction
||x(feo 4-1) - x(kQ H- l)||maχ > 2(fco+ι) ' w^ic^ condudes the proof of (*).

Remark 5.2 In the proof of (*) we used a combination of Π5-CA(ξ<;) and
Σj-UB" to obtain a restricted form Π?-UB"" ̂  of the extension of Σ?-UB~
to Πj-formulas:

V/ ̂  *3n°V*° A)(t°[/], n, *)

3n0V/ <ι βVm°3n <o
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where k does not occur in t[f] and / does not occur in AQ (0,0,0) and g1

is the only free variable in Ao(0, 0, 0).
Π?-UB-|̂  follows by applying Π?-CA to λπ, k.tAo(a°, n°, fc°), where tAo is
such that t AO (a°, n°, fc°) =o 0 «-> AQ(O,°, n°, A:0), and subsequent application
of Σ?-UB~. Π?-CA and Σ?-UB~ do not imply the unrestricted form Π?-
UB- of Π?-UB-|̂ :

ττθ ™-11}— Uij : _
3n0V/ <ι sVra°3n <0 nQVkQA<>((f, m), n, k)

since a reduction of Πj-UB" to Σj-UB" would require a comprehension
functional in /:

(+) 3ΦV/1,n°(Φ/n =0 0 <-» Vfc°Λo(/,n,*)).

In fact Πj-UB" can easily be refuted by applying it to V/ <ι λx.!3n°VA;0

(fk = 0 — * fn = 0), which leads to a contradiction. This reflects the
fact that we had to use F~ to derive Σj-UB"", which is incompatible with
(+) since Φ+AC1'°-qf produces (see above) a non-majorizable functional,
namely

l \ minn[/n = 0], if existent

1 0°, otherwise,

whereas jP~ is true only in the model M.ω of all strongly majorizable func-
tionals introduced in [2] (see [15] for details).

Next we prove

(**) G2A
ω+AC°'°-qf h Vxl ( 0 ), . . . , xl

d

(0} (Σ°l-lλ(χx)^BW(x) -> BW+(x)}

for a suitable term χ G 62 Rw, where

ί Vί°(3y°(/% =0 0) ΛVx"(3y(flxy = 0) -> Bj/i/te^ = 0))

x) implies the existence of αi, . . . , α^ <ι M such that

d
Vfc, m3n > m Λ/=\
(|5i(2(A; + !)(*; + 2)) -Q (x?n

Define (for x\(0\..., x1™, ί?,...,/°)

F(x,/, fc, m, n) := (xn is the (m 4- l)-th element in (x.(l))ι such that
d . . .

Λ (rt ~Q (^ί71)
ί=l
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One easily verifies that F(x,/, fc,m,n) can be expressed in the form

where FQ is a quantifier-free formula in £(G2Aω), which contains only
x, /, fc, m, n, a as free variables. Let χ G G2Rω such that

χ(x, /, fc, m, n, α) =0 0 «-* F0(x, /, fc, m, n, α)

and define χ(x,g,m,p) :=
Σ?-IA(χx) yields

(11)

(10) and (11) imply

Vfc, m3n(xn is the (m -f l)-th element of (x(ί))ί such that
(12) { d

Λ (|θi(2(fc + l)(k + 2)) -Q (xft)(2(k + l)(fc + 2))| <Q

and therefore

(xn is the (k + l)-th element of (x(l))ι such that
(13) { d

ΐ=l

By AC°'°-qf we obtain a function gl such that

Vfc(x((/fc) is the (fc -f l)-th element of (x(/))i such that
(14) < d

Λ (|a<(2(* + 1)(* + 2)) -Q (x i(^fe))(2(fc + l)(fc

We show (15) Vk(gk < g(k + 1)) : Define

A0(xl,k) := Λ (|άi(2(fc + l)(fc + 2))-Q(ίΓ/)(2(A + l)(fc + 2))| <Q
i=l

Let / be such that AQ(X^ k + 1). Because of

|αi(2(fe + l)(fc + 2)) -Q (ί

|α,(2(A; + 2)(fc + 3)) -Q (xi

this yields ΛQ(X/, fc). Thus the (fc-f2)-th element xί such that A0(xl, k + 1)
is at least the (fc -f 2)-th element such that AQ(X/, k) and therefore occurs
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later in the sequence than the (k + l)-th element such that A0(xl, k), i.e.
gk < g(k + 1).
It remains to show

(16) Vfc /\ (\άi -R X i ( f k ) \ <R —!—), where fk := g(2(k + 1)) :

This follows since

Λ (\άi(2(k + l ) ( k + 2)) -Q (^(gk))(2(k + l)(fc + 2))| <Q ̂ ) implies
r=l

Λ (\a>i -R Xi(gk)\ <R TTT -

(15) and (16) imply BW+ (x) which concludes the proof of (**).

Remark 5.3 One might ask why we did not use the following obvious
proof of BW+ (x) from BW(x): Let α be such that

d
V/c3n > k f\ (\άi — R x^nl <IR ^γ) AC°'°-qf yields the existence of a

i=l

function g such that Vk(gk > k Λ /\ (|δi —R £i(#A;)| <πι fc+τ)) Now define

fk := y(fc+1)(0). It is clear that / fulfils BW+(x).
The problem with this proof is that we cannot use our results from section
2 in the presence of the iteration functional ΦH (see [16] for more infor-
.mation in this point) which is needed to define / as a functional in g. To
introduce the graph of Φa by Σξ-IA and AC-qf does not help since this
would require an application of Σξ-IA which involves (besides x) also g as
a genuine function parameter. In contrast to this situation, our proof of
BW(x) —> BW+(x_) uses Σj-IA only for a formula with (besides x_) only
k,ak as parameters. Since k (as a parameter) remains fixed throughout
the induction, α only occurs as the number parameter ak but not as
genuine function parameter. This is the reason why we are able to
construct a term x such that Σ?-IA(χx) Λ BW(x) -> BW+(x}.

Using (*) and (**) we are now able to prove

Proposition 5.5 Letn>2 andB0(ul,υr,w^) G £(GnA
ω) be a quantifier-

free formula which contains only -u1, vr, w~* free, where 7 < 2. Furthermore
letξ,t€ GnW and Δ be as in thm.2.4. Then for a suitable ξ' G GnR? the
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following rule holds

GnA
ω + Δ + AC-gf h VuxVt; <τ tu(BW+(ξuv) -> 3w^BQ(u, v, w))

=> 3(e//.)χ € Gnu" such that

<τ tuVΦ*((Φ* satisfies the mon. fund, interpr. of

VxQ,hl3yQA§(ξ'uυ,x,y,hy)) -* 3w <7 χuV* BQ(u,v,w))

and in particular

PRAf + Δ + 6-4C h Vi^Vt; <r tuBw <7 χuΦ B0(u, υ, w),

where Φ := λx°, Λ1. max (ΦίtiOΛ) ( = λx°, Λ1. max (^0)) .

In the conclusion, Δ+b-AC can be replaced by Δ, lί Λere A is defined as
in thm.2.4- // Δ = 0, then b-AC can be omitted from the proof of the
conclusion. If τ < 1 and the types of the 3-quantifiers in Δ are < 1, then
GnA

ω 4- Δ-MC-ς/ may be replaced by E-GnA
ω -f Δ+ACP'P-qf, where α, /3

are a5 m cor. 2. 5.
This results also holds (for a suitable ξ" instead of ξ' ) if instead of the

single instance BW*(ξuυ), a sequence VIQ BW* (ξuvl) of instances is used
in the proof.

Proof: By (*),(**) and the proof of prop.3.11 from [16] there are func-
tionals φ\,φι G G%Rω such that

G2A
ω + AC^-qf h F- -4 Vx(Π?-CA(v?ιx) Λ

Furthermore G2A
ω h Π?-CA(^/ι/2) -» Π5-CA(/ι) ΛΠ?-CA(/2), where

o ι , i f jιx =
y =o

h(hx,y), otherwise.

Hence G2A
u; -f AC^-qf h F~ -> Vx(Π?-CA(y?3£) -» ^VF+(x)), for a

suitable </?3 G 62 Rω and thus

GnA" + Δ + AC-qf h F- -* VtιαVυ <r ttx(

By the proof of theorem 4.21 from [15] we obtain

GnA" + Δ + (*) + AC-qf h Vutyv <r ^(Π?-CA(^3(î )) -» 3^ Bo),

where Δ := {3Y <pδ sVx6, z^A^x, Yx, z) : Vxly < sxMz^A^ G Δ},

(*) := Vn03F < AΦ^.^^.yVΦ, jf1^, fc°,^Vn <0 n0

t<n
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Prop. 5.4 (with Δ' := Δ U {(*)}) yields the conclusion of our proposition in
GnA.f + Δ + (*)+ b-AC and so (since, again by the proof of theorem 4.21
from [15], G3A? h (*) and even G3A? h (*)) in Gmax(3,n)A^ + Δ+b-AC.

This proof also extends to sequences Vl°B W+ (ξuvl) of instances of BW +
since by the reasoning above such a sequence reduces to a suitable sequence
v7°Π?-CA(<£>ίw/) of instances of Πξ-CA which can be reduced in turn to a
single instance using coding (see [16] for this).

5.5 The Arzelά-Ascoli lemma

Under the name 'Arzela-Ascoli lemma' we understand (as in the literature
on 'reverse mathematics') the following proposition:
Let (fι) C C[0, 1] be a sequence of functions12 which are equicontinuous
and have a common bound, i.e. there exists a common modulus of uniform
continuity ω for all // and a bound C €ϊ IN such that ||//||oo < C. Then

(i) (fι) possesses a limit point w.r.t. || H^ which also has the modulus
u>, i.e.

3/ € C[0, l](Vfc°Vm3n >0 m(||/-/n||oo < 77^-7 )Λ/ has modulus u;);
AC ~r~ 1

(ii) there is a subsequence (fgι) of (fι) which converges with modulus

E+ϊ

As in the case of the Bolzano-Weierstrafi principle we deal first with (ί).
The slightly stronger assertion (ii) can then be obtained from (i) using
Σ?-IA(/) and AC°'°-qf analogously to our proof of BW+(x) from BW(x).
For notational simplicity we may assume that (7 = 1. When formalized in
GnA^, the version (i) of the Arzela-Ascoli lemma has the form13

λi°,n°.MΛ

Π?9F(/,,m,u, ι.):=Vα0Fo(/ι,m,u>tι,α):=

°, m°, u°, v° ( \qu -Q 91;) <Q

— > 3g <i(o) λn.M(Vm, u, vF(g, m, -u, v

VfcΞn >0

Here M, q and yl ^> y are the constructions from our representation of
[0, 1], [—1, 1] in section 3. For notational simplicity we omit in the following

12The restriction to the unit interval [0,1] is convenient for the following proofs but
not essential.

13<7(χ)iR denotes the continuation of g : [0,1] Π Q —> [—1,1] to [0,1] which is definable
in g and its modulus ω.
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0-
A-A(/,ω) is equivalent to14

(.) <ί0,n0.MΛVZ0,m0,u°,t;0F(/ z,m,ti,ι;)

<? <i(o) λn.M(Vm,n, vF(g,m, u, v)f\

i— 0

Assume ->A-A(/,u;), i.e. /(.) < λ/°,n°M Λ VZ,m,w, 7λF(//,ra, n, υ) and

' 5±i(o) λn.M ί Vm, n, v F(g, m, n, v) — > 3fcVn(n >o fc

>Q

Let α be such that

Vί, A:,n(α(ί°,fc0

5n
0) =0 0 ++ [n > k ->

w(*)+ι .

V (lίOi^/nί^
i=0

Πι-CA(α;) (where of in := ^(jiij^ijn)) yields the existence of a function
/ι such that

Vί, fc(Wfc =0 0 ++ Vn(α(Z, fc,n) = 0)).

Hence

)m.(k)(ω(k) + 2), k) =0 0 <->

(2) { X ««+ϊ , ^ _ , ^ _ N

t^O

(1),(2) and Σj-UB" yield (using the fact that g can be coded into a type-
1-object by g'xΌ := g(j\x,hx)}

<ιλ

V
ί=0

14For better readability we write ^ Λ 1 instead of its code.
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and therefore using

gmn, if ra, π < I

0°,otherwise,and gt =1(0) λz,2/.((0ι)',r)(j(z,2/))for r > j ( l , l

(4) V
i=0

By putting g := /fc0+ι and ί° := 3(c + 1), where c is the maximum of
/CQ -h 1 and the codes of all ;Λ+1 for i < ω(k) -f- 1 and k < &o, (4) yields
the contradiction

<"(*)+! . ,

^<^o V

α' can be defined as a functional ξ in /(.),t<;, where ζ € 62^. Since the
proof above can be carried out in GsA^+AC^-qf15 (under the assumption
of F~ and Π?-CA(ξ(/, ω)) using prop. 4.20 from [15] ) we have shown that

Analogously to BW+ one defines a formalization A-A+ (/, α;) of the ver-
sion (ii) of the Arzela-Ascoli lemma. Similarly to the proof of BW(x) —>
BW+(x) one shows (using Σ?-IA(χ(/,α;)) for a suitable χ G G2R" and
AC°'°-qf) that A-A(/,α;) —> A-A+(/,α;). Analogously to prop.5.5 one so
obtains

Proposition 5.6 For n > 3 proposition 5.5 holds with BW+(ξuv) (resp.
\/l°BW+(ξuvl)) replaced by A-A(ζuv) or A-A+(ξuv) (resp. VlQA-A(ξuυl)
orVl°A-A+(ξuvl)).

5.6 The existence of lim sup and lim inf for bounded
sequences in IR

Definition 5.7 α G IR is the lim sup of (xn) C IR iff

>0 m(|α - xn | < - ) Λ 3IVj >0

15We have to work in GaA^ instead of G2Aω since we have used the functional

Φ()fx=Jx.
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Remark 5.4 This definition o/limsup is equivalent to the following one:
(**) a is the greatest limit point of (xn).
The implication (*) -» (**) is trivial and can be proved e.g. in G%Aω. The
implication (**) —> (*) uses the Bolzano-Weierstraβ principle.
In the following we determine the rate of growth caused by the assertion
of the existence o/limsup (for bounded sequences) in the sense of (*) and
thus a fortiori in the sense of (**).

We may restrict ourselves to sequences of rational numbers: Let z1^0) rep-
resent a sequence of real numbers with Vn(|xn | <IR C). Then yn := x^(n)
represents a sequence of rational numbers which is bounded by C + 1. Let
α1 be the lim sup of (t/n), then α also is the lim sup of x. Hence the existence
of lim sup xn follows from the existence of lim sup yn. Furthermore we may
assume that C = 1.

The existence of lim sup for a sequence of rational numbers € [—1,1] is
formalized in GnA.ω (for n > 2) as follows:

>o m(|α —IR x(n}\ <^ ) Λ
K H- 1

1 ,x

1 fc + 1"'

where x(n) := max<Q(—l,minQ(xn, 1)). In the following we use the usual
notation xn instead of x(ri).

We now show that 3 lim sup(x1) can be reduced to a purely arithmetical
assertion L(xl) on xl in proofs of Vn1Vυ <τ tu3wΊAQ-seutences:

L(xl) := VO >0 kVK >0 HjVg, r >0 j

ι(K >o wi) n ίHo I ~* \χJ? ~~Q ^r I —Q

L0(x,k,ltK,q,r)ι=

where x^1 := maxQ(xm, . . . ,Xm+q) (Note that L0 can be expressed as a
quantifier-free formula in GnA

ω).

Lemma 5.8

1) G2A
ω h Mon(3kVΠKVj3q, r(l > k -> K > I Λ g, r > j Λ -ιL0).

2; G2>lu ;hVx1(31imsup(x)->L(x)).

G2A
ω\-Vxl((L(x)s

(The facts l)-3) combined with the results of section 2 imply that
3 lim sup(ξuτ ) can be reduced to L(ξuυ) in proofs of sentences
Vul\fv <r tuBw^Ao, see prop. 5.9 below).
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4) G3A
ω + Σ§-L4 h VxlL(x).

Proof: 1) is obvious.
2) By 31imsup(x1) there exists an α1 such that
(1) Vfc°Vm3n >0 m(|α -R xn| <R ̂ ) and

(2) VkQ3Nj >o i(^j ^IR α + fc+ϊ) Assume ->L(#), i.e. there exists a fco such
that

(3) Vί > kQ3K > Nj3q,r> j3m,n(K > m,n > J Λ |z™ -Q a£| > , * ).

Applying (2) to 2fco + 1 yields an UQ such that (4) Vj > uo(ίj
) (3) applied to / := maxo(fcθ) ^o) + 1 provides a KQ with

(5) KQ > u0AVj3q,r> j3m,n(K0 > m,n > u0 Λ KQ

(1) applied to A; := 2fc0 + 1 and m := KQ yields a d0 such that

By (5) applied to j := do we obtain

> UQ Λ dQ > KQ Λ (|α -JR Xdo | < 2(fco-fl))Λ

r > d03m,n(AΓ0 > m,n > u0 Λ |x^ -Q <|

Let g, r, m, n be such that

(8) g, r > d0 Λ KQ > m, n > UQ Λ |x^ -Q z?| > -r - -.
KQ ~\~ 1

(6) -
Then x^1 > £d0 > a — 2(k \ι\ since m ^ ̂ o < ^o < m + <7 Analogously:

xj? > α — 2(ko+ι) - ^n tne otner hand, (4) implies xj1,^ < α

Thus |α;̂  -Q a£| < ̂ ^ which contradicts (8).
3) Let /, g be such that L8 is fulfilled, i.e.

Vfc(/fc > * Λ VK > fKiq, r > gkK

(K > m,n > fk -> j x 1 -Q a:^| <

We may assume that f,g are monotone for otherwise we could define
fMk := maxo(/0,..., /&), gMkK := maxo {9%y ' % <o k Λ y <Q K]
(/M, gM can be defined in GiR'*' using Φi and λ-abstraction). If /, g sat-
isfy (*), then /M,<7M also satisfy (*).
Define

ί minί[f(k) <Q ί <Q f(k) + gk(fk) Λ Xi =Q ^ίw/fc)]) ^ existent
h(k) :=0 <

Oυ, otherwise.
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h can be denned in G2 A" as a functional in /, g. The case Otherwise' does

not occur since

<0 i <o m + Q A x f =

By the definition of h we have (+) Xhk =Q χf

gk(fk) for a11 fc Assume tnat

m > k. By the monotonicity of f,g we obtain fm >o /A; Λ gm(fπι) >o
gk(fm) >0 g k ( f k ) . Hence (*) implies

^ and

and therefore (3) k££(/fc) -Q a ( / m ) | < fc$γ. Thus for m,m>kwe obtain

For Λ(fc) := Λ(4(fc + 1)) this yields (5) VfcVm,m > fc(*&m -Q x^| < ̂ J.

Hence for α :=ι λm°.x^m we have α =ι α, i.e. α represents the limit of the
Cauchy sequence (#^m)

(*)
Since h(k) = h(4(k + 1)) > /(4(fc + 1)) > 4(* + !)>*, we obtain

(6) V*(Λ(fc) > * Λ |*Rfc -R α| <

i.e. α is a limit point of x. It remains to show that
)VOVj> 0i(^<ιRα+ Il τ):
Define c(fc) := fl(4(Λ + 1), /(4(Λ + 1))). Then by (*)

and by (+) α(fc) =Q xj

glllk+1^f(4(k+m and therefore

1

Hence Vj > c(A;)(x/(4(fc+1))+J <Q α(fc) + jpΐpϊj) which implies

Thus (7) is satisfied by 1 := c(2(k + 1)) + /(4(2* + 1) + 1).

4) Assume - L(x), i.e. there exists a fco such that

(+) VZ > k0BK > NjBq, r > J3m, n(K>m,n> ΪA |z™ -Q x?\ >
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We show (using Σξ-IA on l°): (++) :=

>o
ΛVj, j' < I -l(j φ f -> |ί(ί)3. -Q x(ϊ)jl \ > -^

/ = 1: Obvious. / ι-> / + 1: By the induction hypothesis their exists an i
which satisfies AQ(Z, I).
Case 1: V? < / -^13αV6 > a(\xb -Q x(ί)j| > -^pϊ).

Then by the collection principle for Πj-formulas Πj-CP there exists an α0

such that

\/j < I -1V6 > αo (|*4 -Q *«>, I > jΓ-j-r).
KQ -f- 1

Hence i' := i * {max0(αθ) W/- ι ) + 1) satisfies AO(^,/ -I- 1).
Case 2: -« Case 1. Let us assume that x^0 < . . . < x^) m (If not we use

a permutation of (ΐ)o, . . , (ϊ)/ -ι) Let JQ <o ' —1 be maximal such that

( 1 ) Vra3n >0 rh(\xn -Q x(ί).J < - )

(The existence of jo follows from the least number principle for Π^-formulas
: Let j\ be the least number such that (I —1) —jι satisfies (1). Then

The definition of jo implies Vj < l^l(j > jo -» 3αV6 > a(\xb -Q x^
. Hence (again by Π?-CP)

(2) 3αι > J0VJ < I -l(j > jo -> V6 > αι(|*6 -Q x(i) , | > 7 - ) ) .

Let c G IN be arbitrary. By (+) (applied to ϊ := maxo(A o j c ) + 1) there
exists a K\ such that

(3) V?3g,r > j3m,n(/fι > m,n > c,fc0 Λ (xj1 -Q xn

r\ >

By (1) applied to ra := jFίi there exists a u > K\ such that

(3) applied to j := u yields g, r, m, n such that

(5) g, r > w Λ KI > m, n > c, Λ0 Λ |xj* -Q x?\ > - - - Λ
KQ ~\~ J

(since m,n <u <m + q,n + r).
Because of m, n > c, k^ this implies the existence of an α > c, λ?o such that
xα > Xφ. . Thus we have shown

(6)Vc3α>0c,*d(*α>*(θ,0).
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For c := max0(αι, (i)t j^) +1 this yields the existence of an c*ι > α1} (i)z ̂ 1

fco such that zαι > x(i}jo. Let #αι be (by (+)) such that

(7) Vj3g,r > j3m,n(Kαι > m,n > QI(> αi, fc0) Λ \x™ -Q z?| > ——)

(6) applies to c := tfαι provides an α2 > tfai such that xa2 > X(^JQ . Hence
(7) applied to j := a% yields <?, r, m, n with

(8) g,r > a2/\Kaι > m , n > αi Λ jarj1 -Q a:?| > fc Λx^,x^ >Q xa2.

Since m, n > αi > 01, (z)/ -i, (8) implies the existence of an α3 > (i)t

such that

(9) x*3 >Q x(0 .o + -

Since ^(i)^ < X(i)JQ for j < jo, this implies

Let j < l-^-l be > JQ. Then by (2) and α3 > αi: |xtt3 -Q X(i)J >
Put together we have shown

(11) α3 > (<)ι^ι Λ V j <

Define i7 := i * (0:3). Then AQ(Ϊ, /) implies AQ(I', I +1), which concludes the
proof of (++).
(++) applied to / := 2(fco -f 1) -h 1 yields the existence of indices

IQ< ... < i2(fc0+i) such that !*(<)* ~Q *(<)^/1 > kj+ϊ for

j,/ < 2(fc0 +1) Λ j ^ /, which contradicts Vj°(-l <Q xj <Q 1). Hence we
have proved L(x). This proof has used Σ?-IA, Π?-CP and Π§-LNP. Since
Π§-LNP is equivalent to Σ§-IA (see [20]), and Π?-CP follows from Σ^-IA
by [19] (where CP is denoted by M), the proof above can be carried out
in GSAw + Σ§-IA (these results from [19],[20] are proved there in a purely
first-order context but immediately generalize to the case where function
parameters are present).

Proposition 5.9 Letn>2 andB0(ul,υr,wΊ) € £(GnA
ω) be a quantifier-

free formula which contains only ul,υr,WΊ free, where 7 < 2. Furthermore
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let ξ,t € GnR^ and Δ be as in thm.2.4- Then the following rule holds

GnA
ω + Δ + AC-qf h Vtityv <r tu(3limsup(ξuυ)

=> 3 ( e f f . ) χ G GnP? such that

GnAΪ + Δ 4- δ-ΛC h Vfityv <r *wVΦ*

((Φ.* satisfies the mon. funct.interpr. of the negative transl. L(ξuυ)'

of L(ξuv) — > 3w <

m particular 3Φ €

? -h Δ 4- 6-^C h V^Vυ <τ tulw <7 Φ^ B0(u, v,

I Z5 ί/ie restriction of Go del 's T which contains only the recur s or Rp

for p < 1 . 77ιe Ackermann function (but no functions having an essentially
greater order of growth) can be defined in TI .
In the conclusion, Δ+ό-^4C can be replaced by Δ, where Δ is defined as
in thm.2.4- // Δ = 0, then b-AC can be omitted from the proof of the
conclusion. If r < I and the types of the 3-quantifiers in Δ are < 1, then
GnA

ω + Δ+ AC-qf may be replaced by E-GnA
ω + Δ+AC*'β-qf, where α, β

are as in cor. 2. 5.

Proof: Prenexation of VulVv <r tu(L(ξuv) — > JW^BQ(U^ v>w)) yields

G := Vul Vv <τ tulkVBKVjBq, r, w [(I > k Λ (K > I Λ g, r > j -* L0))

Lemma 5.8.1) implies
(1) G2A

u; h Mon(G).

The assumption of the proposition combined with lemma 5.8.3) implies

(2) GnA" -h Δ -h AC-qf h Vt^W <r ίu(L(£ut;)5 -̂  3^B0(^, v, n;))

and therefore
(3)GnA^ + Δ + AC-qf h GH .

Theorem 2.4 applied to (1) and (3) provides the extractability of a tuple
φ € GnR

ω such that

(4) GnA^ + Δ + b-AC h

(v? satisfies the monotone functional interpretation of G').

G' intuitionistically implies

(5) V^Vυ <r tu(L(ξuv)f -> -r
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Hence from <£ one obtains a term φ E GnR
ω such that (provably in Gn A" +

Δ 4- b-AC)

(6) 3ψ(φ s-maj φ Λ V^W <τ £uVα(V6(L(£w;)% -» BO(W, v,^vα))),

where 3αV&(L(ξm>)')D is the usual functional interpretation of L(ξuv)'.
Let Φ* satisfy the monotone functional interpretation of L(ξuυ)' then

(7) 3α(Φ* s-maj α Λ Vb(L(ξuυ)') D).

Hence for such a tuple α we have

(8) \ul.φu(t*u)Φ* s-maj ψuυa for v <tu

(Use lemma 2.2.11 from [15]. ί* in GnR" is a majorant for £).
Since 7 < 2 this yields a >2 bound χuΦ_* for V>uuα (lemma 2.2.11 from
[15]).
The second part of the proposition follows from lemma 5.8.4) and the fact
that GnA.ω + Σ^-IA has (via negative translation) a monotone functional
interpretation in PA^ by terms G TI (By [20] Σ§-IA has a functional
interpretation in TI. Since every term in TI has a majorant in TI, also the
monotone functional interpretation can be satisfied in TI).

Remark 5.5 By the theorem above the use of the analytical axiom
31imsup(ξw;) in a given proof ofVulVv <τ tu3wΊBo can be reduced to
the use of the arithmetical principle L(ξuv). By lemma 5.8.2) this reduc-
tion is optimal (relatively to GιAω).
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