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ABSTRACT We extend work of G. Ahlbrandt and M. Ziegler to give a
classification of the finite covers with fibre group of prime order p for the
projective space over the field with p elements, and for the Grassmannian
of fc-sets from a disintegrated set (for k 6 N).
AMS classification: 03C35 and 20B27.

This paper is a contribution to the study of the fine detail of the class of
(countable) totally categorical structures, in particular the almost strongly
minimal ones. The approach we adopt is the one initiated by G. Ahlbrandt
and M. Ziegler in [1] and [2] and is purely algebraic. The results we ob-
tain are explicit classification results (under restrictive hypotheses) and are
phrased in the terminology of finite covers. It may be helpful if we give a
brief impression of them without using this terminology.

Corollary 2.13 represents a classification of certain strongly minimal No-
categorical structures where the associated strictly minimal set is a pro-
jective geometry over a prime field. Theorems 3.6 and 3.12 classify certain
almost strongly minimal structures in which the associated strictly minimal
set is disintegrated. In all these cases it is assumed that the relative auto-
morphism group of the structure over the strictly minimal set is abelian of
prime exponent. A key question is whether there exists an expansion of the
structure which is biinterpretable with the strictly minimal set (splitting).
One corollary of our results is that this happens in all cases we consider.
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2Supported by an EPSRC Research Studentship.
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1 Introduction

1.1 Finite covers

If W is any set then the symmetric group Sym(VK) on W can be con-
sidered as a topological group by taking as open sets arbitrary unions of
cosets of pointwise stabilisers of finite subsets of W. In this topology, closed
subgroups are precisely automorphism groups of first-order structures with
domain W. In fact, if H is a subgroup of Sym(W) then the closure of
H in Sym(W) is the set of elements of Sym(W) which, for each n G N,
preserve each #-orbit on Wn. Thus we employ the following notation and
terminology.

Definition 1.1 A permutation structure is a pair (W] G) where W is a
non-empty set (the domain), and G is a closed subgroup of Sym(VF) (the
group of automorphisms). We shall usually write G — Aut(W) and refer
simply to 'the permutation structure W.' If A is a subset of W and B a
subset of W (or more generally of some set on which Aut( W) is acting in an
obvious way), then Aut(A/B) denotes the permutations of A which extend
to elements of Aut(VF) fixing every element of B. We regard Aut(W) as
a topological group with the subspace topology from Sym(W): a base of
open neighbourhoods of the identity consists of subgroups Aut(W/X) for
finite X C W. We shall write permutations on the left of the elements of
W.

Permutation structures are obtained by taking automorphism groups of
first-order structures on W, and we often regard a first-order structure as a
permutation structure without explicitly saying so (by taking for the group
of automorphisms of the permutation structure the automorphism group of
the first-order structure). In this paper we will be primarily be concerned
with the following permutation structures.

Definition 1.2 Let F be a finite field and V a vector space over F. So V
is a permutation structure with automorphism group GL(V), the group of
invertible linear transformations of V. Let A: G N, and let [[V]]k denote the
set of /.-dimensional subspaces of V. The group of permutations induced
on [[V]]k by GL(V) is closed and the kernel of this action consists of the
scalar linear transformations. Thus we may regard [[V]]k as a permutation
structure with automorphism group PGL(V) (the quotient of GL(V) by
the scalar transformations). This is the Grassmannian of fc-subspaces of V.
In the case k = 1, we also refer to this as the projectiυe space of V.

Definition 1.3 Let D be any set and k € N. Let [D]k denote the set of sub-
sets from D of size k. Then the group of permutations induced on [D]k by
Sym(D) is closed and we refer to the permutation structure ([D]k] Sym(D))
as the Grassmannian of fc-sets from (the disintegrated set) D.
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We now give the group-theoretic definition of finite cover.

Definition 1.4 If C, W are permutation structures, then a finite-to-one
surjection π : C —> W is a finite cover if its fibres form an Aut(C)-invariant
partition of C, and the induced map μ : Aut(C) —> Sym(VF) given by
μ(g)w = π(gπ~~l(w)) for g G Aut(C) and w G W has image Aut(W).
We refer to μ as the restriction map. The kernel of the finite cover is
kerμ = Aut(C/W). If this is the trivial group we say that the cover is
trivial. We say that the cover is split if there is a closed complement to
Aut(C/W) in Aut(C).

Remark. To provide a reference-point for model theorists, we give a model-
theoretic version.

Definition 1.5 Let C and W be first-order structures. A finite-to-one sur-
jection π : C —> W is a finite cover of W if there is a 0-definable equivalence
relation E on C whose classes are the fibres of π, and any relation on Wn

(respectively, Cn) which is 0-definable in the 2-sorted structure (C, W, π)
is already 0-definable in W (respectively, C).

A finite cover (in the sense of 1.5) TT : C —> W induces a homomorphism

μ : Aut(C) -> Aut(W),

given by putting μ(g)(w) = π(gπ~l(w)) for all g G Aut(C) and w G W. In
fact, if W is countable No-ca tegorical, then 1.5 is equivalent to saying that
the fibres of π are the classes of an Aut(C)-invariant equivalence relation
on C, and the map Aut(C) —> Aut(W) induced by π has image Aut(W)
(Lemma 1.1 of [7] ensures that Definition 1.5 implies the surjectivity). The
cover is split if there is an expansion of (C, W, π) which is a trivial cover.

If π : C —» W is a finite cover than the associated restriction map
μ : Aut(C) —> Aut(W) is a continuous homomorphism and so the kernel of
the cover K = Aut(C/W) is a closed normal subgroup of Aut(C). As all K-
orbits on C are finite, it follows that K is compact (and in fact, profinite).
By Lemma 1.1 of [7], μ maps open sets to open sets and closed subgroups
to closed subgroups. In particular, the induced isomorphism Aut(C)/K —>
Aut(W) is a homeomorphism.

Definition 1.6 If C, C1 are permutation structures with the same domain
and π : C —» W and π' : C' —> W are finite covers with ττ(c) = πx(c)
for all c € C = C1 then we say that π' is a covering expansion of π if
Aut(C') < Aut(C).

Suppose π : C —> VK is a finite cover. For each α G VK let C(α) denote the
fibre above α, that is {x G C : ττ(x) = α}. We also define, for any α G W,
the fibre group F(a) of the cover at α as the permutation group induced
by Aut(C) on C(a). The binding group at α is a normal subgroup of the
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fibre group, and is the permutation group induced on the fibre C(ά) by the
kernel K. Clearly, if Aut(W) acts transitively on W then all of the fibre
groups are isomorphic as permutation groups, as are the binding groups.

A finite cover is principal if its kernel is the product of the fibre groups.
We can regard any finite cover π : C —> W as a covering expansion of a
principal finite cover τr0 : Co —> W in a canonical way: we take as Aut(Co)
the group KQ Aut(C), where KQ is ΠweWF(w), the product of the fibre
groups of 7Γ. It is easy to see that a principal finite cover is split.

In this paper we shall be concerned with determining, for primes p, the
finite covers of the projective space over the field with p elements, and the
Grassmannian of k-sets from a disintegrated set, where the fibre groups
are of order p (acting transitively on a set with p elements). So these
can be considered as covering expansions of an appropriate principal cover
πo : CQ —> W, and our classification is up to conjugacy of the automor-
phism groups in Aut(Co). The strategy we use is that of G. Ahlbrandt
and M. Ziegler from [2]: we first determine the possible kernels of covering
expansions of TΓQ and then we use cohomological methods to determine the
actual covering expansions which can give rise to each kernel. The results
are summarised in Corollary 2.13 (for the projective space case) and The-
orems 3.6 and 3.12 (for the case of Grassmannians of disintegrated sets),
but in particular, we note that all these covers split. In the rest of this
section, we summarise the machinery we use. This is mostly taken from [2]
and [10].

1.2 Kernels

Suppose π0 : Co —> W is a finite cover with abelian kernel KQ. So KQ is
a closed normal subgroup of Γ0 = Aut(CΌ) and we have the short exact
sequence

1 -> KQ -> Γ0 A G -> 1

where μ is restriction to W, and G = Aut(W). Recall that TQ/KQ = G
as topological groups. Now consider ΓQ acting on KQ by conjugation. As
KQ is abelian, KQ is in the kernel of this action, and so we get an action
of G = TQ/KQ on KQ. From now on we shall write KQ additively, with
the G-action on the left. Thus gk = Λfc/i"1, for g G G, k G KQ and any
h G μ~l(g). We have the following basic fact (see Lemma 6.2.1 of [8] for a
proof).

Lemma 1.7 With this notation KQ is a topological G-module. D

If πo is a principal finite cover (so KQ = Πw€W Aut(Co(w))) then π0 is
split. Let T be a closed complement to KQ in Aut(Co) and suppose K is a
closed submodule of KQ. Then KT is a closed subgroup of Aut(Co) and so
can be thought of as the automorphism group of a split covering expansion
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of 7Γ0 with kernel K. This gives part of the following, which is a result of
Ahlbrandt and Ziegler (Lemma 2.1 of [2]):

Theorem 1.8 Suppose W is a permutation structure with automorphism
group G and TΓQ : GO — » W is a principal finite cover of W with abelian
kernel KQ. Regard KQ as a topological G -module. Then a subgroup K of KQ
is the kernel of some covering expansion of TΓQ if and only if it is a closed
G-submodule of KQ. D

We shall mainly use this in the case where the fibre and binding groups
are cyclic of order p, for some prime p. In this case, we can identify KQ with
the G-module ¥p

w of functions from W into Fp, the field of integers modulo
p (the G-action is given by (gf)(w) = f(g~lw), for / € ¥p

w , g G G, and
w € W). So we are interested in the closed G-invariant subspaces of ¥p

w .
These can sometimes more easily be described by making use of a simple
instance of Pontriagin duality (for full details see [8]).

Definition 1.9 Let ¥PW be the vector space of formal linear combinations
of elements of W, and regard this as a G-module in the natural way. Let
X be a subspace of ¥PW and define its annihilator in ¥p

w to be

= {/ G ¥p
w : Έw£Wawf(w) = 0 for all Σ,wewaww G X}.

Note that XL < Y^ if and only if Y < X.

Theorem 1.10 The closed G-invariant subspaces of¥p

w are precisely the
annihilators X^ of G-invariant subspaces X of¥pW. D

In summary, to determine kernels of finite covers of W where the fibre
and binding groups are of prime order p, it is enough to determine the
G-submodules of the permutation module ¥PW.

1.3 Derivations

Here we follow rather closely the approach of [2] as modified by Hodges
and Pillay in [10].

Recall that if G is a group and M is a G-module, then a derivation from G
to M is a map d : G — > M which satisfies d(gh) = d(g}+gd(h] for all #, h G
G. An inner derivation is a derivation of the form da (for α G M) where
da(g) = ga — a for all g G G. The set of all such derivations forms an abelian
group (with pointwise addition of functions) , and the inner derivations form
a subgroup. The quotient group is denoted by Hl(G, M), and is referred
to as the first cohomology group of G on M. If M is a topological G-
module then the continuous derivations form a subgroup of the group of all
derivations, and this clearly contains all the inner derivations. We denote
the quotient group of continuous derivations modulo inner derivations by
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Suppose that TΓQ : CQ —> W is a finite cover of the countably infi-
nite permutation structure W, and suppose from now on that the kernel
KQ = Aut(Co/W) is abelian. Then conjugation in Aut(C) gives KQ the
structure of a topological Aut(W)-module. Let μ : Aut(CΌ) —> Aut(W) be
the restriction homomorphism. Suppose K is a (closed) G-invariant sub-
group of KQ such that there exists a closed subgroup HQ of Aut(CΌ) with
H0ΠK0 = K and μ(HQ) = G. The following is from ([10], Corollary 18).

Corollary 1.11 There is a one-to-one correspondence between the set of
conjugacy classes of closed subgroups H o/Aut(Cb) which satisfy μ(H) = G
and HΠK0 = K, and Hl(G> K0/K). D

In applications here, π0 : CQ —> W will be a principal finite cover and
we will be interested in classifying covering expansions of this which have
as kernel some particular G-invariant closed subgroup K of KQ. Corollary
1.11 indicates that to do this we should compute the cohomology group
#* (G, KQ/K). If this is trivial, then we can use the following.

Corollary 1.12 Suppose ΈQ : CQ —> W is a principal finite cover with
abelian kernel KQ and K is an Aut(W)-invariant closed subgroup of KQ. If
Hc(Aut(W),KQ/K) = {0}, then there is a covering expansion of π0 with
kernel K. It is unique (up to conjugacy in Aut(Co),) and split.

Proof. Existence of a split covering expansion follows from Theorem
1.8 and the remarks preceding it. The uniqueness follows from (1.11): the
automorphism groups of any two covering expansions of TΓQ with kernel K
are conjugate in Aut(CΌ). D

The following curious lemma will replace the use of envelopes in [2]. It
allows us to deduce triviality of the cohomology groups we are concerned
with from known results about 1-cohomology of finite general linear and
symmetric groups.

Lemma 1.13 Let Γ be a Hausdorff topological group and M a compact
topological Y-module. Suppose there exists (d : i < ω), an increasing chain
of subgroups of Γ such that G — \Ji<ω G{ is dense in Γ. Suppose also
that for each i we have an open, d -invariant subgroup Mi of M, and that
Mi+i < MI for all i < ω and Γ\i<ω M = {0}. Suppose further that for all i,
any continuous derivation from Gi to M/Mi is inner. Then any continuous
derivation d : Γ —> M is inner.

Proof. Note first that if two continuous derivations Γ —» M agree on
a dense subgroup, then they must be equal. So (as inner derivations are
continuous) it will suffice to prove that δ = d\G is inner. The hypotheses
imply that M is metrizable, with a metric θ such that the diameters of the
Mi tend to zero (in fact, M as a topological group is isomorphic to the
inverse limit of the finite groups
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For every i < ω there exists α; € M such that for all g £ d we have

δ(g) + Mi = gai - α^ + Mi.

By compactness of M we may assume that the α^ converge to some α € M.
Let da denote the inner derivation obtained from α. Thus, for g G GΪ, for
every j > z there exists πij € Mj such that

- a j +mjίga-a).

Now, the πij tend to 0 as j tends to infinity, and so (by continuity of the
Γ-action) θ(6(g),da(g)) can be arbitrarily small. So δ(g) = da(g). But this
holds for all z, and so we conclude that d = da, as required. D

The following is easy, but useful.

Lemma 1.14 Let Γ be a topological group and M a continuous Γ -module.
Let N be a closed submodule of M and suppose that H^(T^M/N) and
H*(Γ,N) are trivial. Then H*(Γ,M) is trivial. D

We shall also require the following version of the 'long exact sequence
of cohomology'. A proof can be found in [8] (or see ([5], III. 6.1) for the
discrete case). If M is a G-module, then #°(G, M) is the submodule of
G-fixed elements of M.

Lemma 1.15 Suppose G is a group and

0-> K -» M -> N ->0

is an exact sequence of G-modules. Then there is an exact sequence of
abelian groups:

0 -» ff°(G, K) -* #°(G, M) -+ #°(G, N) -*

-> ff^G, K) -+ Hl(G, M) -> Hl(G, N).

If, moreover, G is a topological group and the the short exact sequence is
a sequence of compact topological G-modules in which the homomorphisms
are continuous, then there is a long exact sequence as above in which the
Hl terms are replaced by Hi . D

2 Projective spaces

Throughout this section p will be a prime and Wp will denote the field
with p elements. If n is a cardinal then V(n,p) denotes the vector space of
dimension n over Fp.
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2.1 Kernels

Let V = VXN0,p), W = [[V]}1 and G = GL(V). Let π0 : Co —> W be a
principal finite cover with fibre groups cyclic of order p. In this subsection
we determine all possible kernels of covering expansions of π0. According
to Theorem 1.8 and the remarks following it we may identify the kernel
KQ of πo with the G-module of functions Fp , and we want to know the
closed G-submodules of KQ. By Theorem 1.10 this problem is equivalent
to determining all the G-submodules of the permutation module ¥PW.
To do this we first investigate the finite case. So let Vn = V(n,Fp) and
Gn = GL(Vn}. We will determine precisely the Gn-submodule structure of
the Gn-module Fp^V^]]1. Crucial to this study are the following natural
incidence maps.'

Definition 2.1 Let k and / be integers satisfying 0 < / < A: < n. Then
we define the map /?£, : Wp[[Vn]]h —> Vp[[Vn]]1 by β^w) = ^{wf : w' €

[[w]]1} for w € [[Vn]]k, and extend linearly to the whole of Fp[[Vy]fc. So
/3£j maps a fc-dimensional subspace it; of Vn to a formal sum of all the
/-dimensional subspaces of w. This map is clearly a homomorphism of Gn-
modules.

The images of these maps (with / = 1) provide us with a stock of submod-
ules of FpflVn]]1. Also consider the map /?£<, : FpflV^]]1 —> Fp, the so-called
augmentation map. Obviously, the kernel of this is an FpGn-submodule of
Fp[[V^]] (known as the augmentation submodule) and it is easy to see that
ker β™Q is of codimension one in FP[[V^]] .

Suppose 0 < s < t. Denote the number of s-dimensional subspaces of
V(t)p) by [*] (a Gaussian coefficient). It is not difficult to compute this
in terms of 5, t and p and show that it is coprime to p.

Lemma 2.2 Let I and k be integers satisfying Q<k<l<r<n. Then
we have that /^ = (\I*}pP?>k.

Proof. The homomorphism β™t maps an r-dimensional subspace x of Vn

to the formal sum of the /-dimensional subspaces of x. Let α = β™ι(x). Now
the coefficient of a fc-dimensional subspace y of Vn in βfk (α) is equal to the

number of /-dimensional subspaces of x which contain y, which is |jZ*]

D

Lemma 2.3 Let r, I and k be integers satisfying 0<k<l<r<n. The
we have that im β™k < im β™k.

Proof. This follows from the above because [y~*] , considered as an

element of Fp, is non-zero. D
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So we have the following chain of submodules:

0 < im /£fl < im /3£_M < < im /3ίfl < im β$tl < Vp[[Vn]]1.

Father, we have:

Lemma 2.4 The two submodules im /?£ j and ker /?j*0 o/FpflV^]]1 are in-
corapαraδ/e.

Proo/. This follows from the fact that im /3£fl is one-dimensional, and

[™] is coprime to p. D

We now give a result due to P. Delsarte which is the the most important
(and difficult) ingredient needed for calculating the submodule structure of
Fp[[V^]] . In its original form, the result involves so-called (non-primitive)
generalised Reed-Muller codes, but the version presented here has been
translated' into a directly applicable form. For the orginal statement of the
result, see Theorem 8 in [6] (and see Chapter 5 of [3] for a nice treatment
of the coding-theoretic background).

Theorem 2.5 Let U be a Gn-submodule ofVp[[Vn]]1 such that U is not
contained in ker /3"0. Then U = im β%^ for some k satisfying 2 < k < n,
and moreover these are all distinct. D

We now have enough to describe the submodule structure of Fp^V^]]1,
so we collect our results together as:

Theorem 2.6 Let Vn = V(n,Fp) and Gn = GL(Vn). Then the proper

Gn-submodules of¥p[[Vn]}1 are:

. ker /??|0

im β^ for k = 2,3, . . . , n

im β£tl Π ker /J£0 for k = 2, 3, . . . , n,

and these are all distinct. Moreover, we have that

0 < im fttl < im /£_u < < im βξΛ < ¥P[[V}}1

is a composition series for Fp[[ΐ^l]] .

Proof. Delsarte's theorem gives the (?n-submodules of Fp^Vn]]1 not
contained in ker β\^ If U is a submodule contained in ker /3f0 then (by
Lemma 2.4) U 4- im β%tl must therefore equal im β% ̂  for some k and (as
ker β^0 Π im β^l contains U and is of codimension 1 in im β^) we have
C/ = ker P t M m . D

We can now give the corresponding result for FPW.
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Theorem 2.7 Let V = V(^¥p) and G = GL(V). Let W = [[V]}1. Then
the G-submodules of¥pW are:

• ker /3ι)0

• im βk,\ for k = 2,3,...

• im βkιι Π ker /31>0 for k = 2,3,. . . ,

and £/ιese are a// distinct. Moreover, we have that

0 < . . . < im /3Π|ι < < im #2,1 < FPW

is a composition series for ¥PW.

Proof. Let x G Fp W. Then for large enough n we have that x G Fp[[yn]]
1

So by Theorem 2.6, the Gn-submodule generated by x equals im β%^ or
im β%! Π ker /?J*0, for some fc. In the former case we may assume that

x = βktι(w) for some w G [[V^]]Λ, and then clearly the G-submodule of
WPW generated x is im βkιι. In the latter case we may assume that x =
βktι(w — w'} f°r some distinct w,w' G [[V^]]fc (as this is a generator for
im β£ x Π ker /Jpo) and then the G-submodule generated by x is seen to be
imβfc'i Πker Λ'O Π

So we have described all the G-submodules of FpW\ Now we use Theorem

1.10 to describe all the closed G-invariant subgroups of KQ = ¥p

w, by
taking annihilators. Corresponding to the submodule im βk+ι,ι of WPW we
have the folllowing submodule of ¥p

w:

Polk = ί / G F p ^ : Σ,xewaxf(x) = 0 for all Σx(ΞWaxx e ]m βk+ι,ι\

= {/ € Fp^ : Σ,€lH1ι /W = 0 for all w G ([V}}k+l] ,

and the annihilator of ker /J^o is Gon, which is the submodule of constant
functions. Thus we have:

Corollary 2.8 The closed, G-invariant submodules of¥p

w are

• Con

• Polk fork = 1,2,...

• Polk + Con for k = 1,2,...,

and £/ιese are all distinct. D

Remark 2.1 The above is proved in ([1], Theorem 1.11) for the case p = 2.
We have used the same notation for the submodules as in [2].

We now provide a different description of the composition factors of the
finite-dimensional Gn-module FpflV^]]1.
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Definition 2.9 Suppose E is any field of characteristic p and consider the
ring E[XI , . . . , xn] of polynomials in variables x\,..., xn as a module for Gn

(with Gn acting by substitutions in the usual way). The Gn-action preserves
the total degree of an element of the ring, and leaves invariant the ideal /
generated by x\,..., xp

n. We let XE(Ϊ) be the image in E\x\,..., xn]/I of
the homogeneous polynomials of degree i, and regard this as a Gn-module.
This is called the module of truncated polynomials of degree i.

Remarks 2.2 (i) When p = 2, the module Xψ (i} is just the i-th exterior

power of Vn.
(ii) If i < n(p — 1) there is a natural basis of XE(Ϊ) consisting of

x"1 ... xϊj1 + I where the a,j < p — I and Σjdj = i. It is easy to see that
XE(Ϊ) is naturally isomorphic with Xψ (i) (8>jp E.

(iiΐ) If ί is divisible by p — I then the scalar transformations in Gn act
trivially on Xψ (i).

Some of the results about these modules which we wish to quote are
stated in the literature for the case where E is algebraically closed. The
following trivial lemma allows us to deduce the corresponding results for
the prime field.

Lemma 2.10 Let E C F be a field extension and G a group. Suppose M
is a finite dimensional EG-module. Extend this to an FG-module Mr =
F®E M > M.

(i) If M' is an irreducible FG-module} then M is an irreducible EG-
module.

(ii) If M has a series of submodules with m non-zero factors MI, ...,
Mm and M1 has a composition series with m composition factors, then MI
,.. .j Mm are irreducible EG-modules and the composition factors of M'
are F ®E MI, ... ,F ®E Mm.

(Hi) If M is irreducible and N is an EG-module such that M' and F®E
N are isomorphic as FG-modules, then N and M are isomorphic EG-
modules.

Proof, (i) If H is an F-subspace of M of F-dimension fc, then the F-
subspace H' of M1 spanned by H has F-dimension k. Moreover, if H is
G-invariant, then so is H'.

(ii) As in (i), taking the F-subspaces of M' generated by the terms of
the series of submodules of M gives a series of submodules of M' with m
non-zero factors isomorphic to F®£Mι,..., F<8>£Mm. The statement now
follows from the Jordan-Holder theorem and (i).

(iii) Without loss of generality, we may assume that N is an FG-sub-
module of M1 of F-dimension n. Let x i , . . . , xn be an F-basis for M and
2/1, - , Vn an F-basis for N. For each g E G the matrix representing g with
respect to each of these two bases has entries in E. Moreover there is an
invertible matrix A with entries in F which for each g E G conjugates the
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one matrix to the other. The entries of A therefore give a non-zero solution
to a system of linear equations with coefficients in E, and so we can actually
find such a solution in E. This matrix of elements of E can then be used to
set up a non-zero £G-homomorphism from M to N. The rest follows from
irreducibility of M, and comparison of dimensions. D

Now we let Sn denote the elements of Gn of determinant 1. Clearly we
can regard any Gn-module as an 5n-module, just by restriction. Let F
denote an algebraically closed field of characteristic p.

Theorem 2.11 Suppose n > 3. Then the composition factors ofWp[[Vn]\ ,

viewed as an Sn-τnodulef are < Xy (i(p — 1)) : i = 0,1,..., n — I >.

Proof. By a result of I. Suprunenko and A. Zalesskii (Theorem 1.8(a)
of [14], together with the description of the highest weights of the modules
Xptyϊp— 1)) in, for example, the fourth paragraph of [13]) the composition
factors of ί1^^]]1, considered as F5n-modules, are Xp(i(p - 1)) for i =
0 , . . . , n — 1. In particular, there are n composition factors. Also Theorem
2.6 gives a series of submodules of the FpSn-module FP[[V^]] with n non-
zero factors.The result now follows from Lemma 2.10. D

Remark 2.3 The case p = 2 (where the composition factors are exterior
powers of Vn) is proved directly in [1].

2.2 Cohomology groups

As above, we let V = V(&Q,p) be a countably infinite dimensional vector
space over the field with p elements, and G = GL(No,p) its automorphism
group. Let W = [[V]]1, considered as a permutation structure with auto-
morphisms those permutations induced by G. Let π0 : GO —> W be the
principal finite cover of W with fibre groups cyclic of order p (and each
fibre of size p). Let KQ be the kernel of this. In Theorem 2.8 we described
the closed G-invariant subgroups K of KQ: a result which was deduced from
the parallel situation of finite-dimensional V.

We now show:

Theorem 2.12 For each possible kernel K we have H*(G,Ko/K) = {0}.

Applying (1.12) we get:

Corollary 2.13 All covering expansions of TΓQ split. Any such covering
expansion is determined (up to conjugacy in Aut(Go),) by its kernel, and
the possibilities for the kernels are given in Theorem 2.8. D

Remarks 2.4 For the case p = 2 Ahlbrandt and Ziegler ([2]) deduce The-
orem 2.12 from results of G. Bell ([4]) about the vanishing of the first
cohomology groups of the finite general linear groups GL(n, 2) acting on
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exterior powers of V(n, 2) (if n > 4), together with results on envelopes
in totally categorical structures. Instead of using envelopes, we use Lemma
1.13. In place of BelΓs results, we shall use the following. The cases not cov-
ered by Bell's work are due to A. Kleschev. The notation is as in Theorem
2.11.

Theorem 2.14 For ra > 4 and i = 0, . . . , n — 1 we have

Proof. For p = 2 this is in [4]. For p = 3 it is ([12], Theorem 4.8). For
p > 3 it is ([12], Theorem 4.6). D

Corollary 2.15 Ifn > 4 and M is a submodule or quotient module of the
WpSn-module Vp[[Vn]]1, then Hl(Sn,M] = {0}.

Proof. This follows from Theorem 2.11, Lemma 1.14 (for discrete groups),
and Theorem 2.14. D

Proof of 2.12. We use Lemma 1.13 with Γ = GL(V) and M = KQ/K.
Remember that KQ = Wp

w and K is a closed, Γ-invariant subgroup of KQ.
Let (Vi : 5 < i < ω) be an increasing chain of finite dimensional subspaces
of V (with Vi of dimension ΐ) with union the whole of V . Let T; be a
complement to Vi in V, and choose these so that T{ > Tί+i for all i. Let

d = {g € Γ : gVi = VJ, g\Vϊ has determinant 1 andgx = x Vx e T;}.

Then the d form an increasing chain whose union is dense in Γ, and d
is naturally isomorphic to the special linear group SL(Vί) (called Si in the
above). Let Ki be those functions in KQ which are zero on [[Vi]]1. Thus,

K0/Ki is isomorphic to W p

[ [ V ί ] ] 1 . Let Mi = (K + KJ/K. Then

M/Mi = (K0/K)/(K + Ki/K) * K0/(K + Ki) * (K0/Ki)/(K + Ki/Ki)

and all these isomorphisms hold as isomorphisms of Gi-modules. So

is isomorphic to a quotient module of Fp"
Vi" . But the latter is isomor-

phic to Fp^V;]]1 (this module is self-dual) and so by Corollary 2.15 we get
Hl(Gi, M/Mi) = {0}. Lemma 1.13 is now applicable, and this finishes the
proof of 2.12. D

3 Grassmannians of a disintegrated set

Throughout this section p will be a prime number. Let D = N, G =
Sym(£>), let A: € N and let W = [D]k, the Grassmannian of fc-sets from
the disintegrated set D. We shall describe the finite covers of W with fi-
bre group of order p (and fibres of size p). So we wish to find all the
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closed G-submodules K of K0 = ¥p

w, and compute the cohomology groups
Hi (G, KQ/K) in each case. We shall use facts about the representation the-
ory of the finite symmetric groups for which we refer to [11]. We use the
following notation throughout.

We denote by Mk the G-module ¥p[D]k. If n e N let [n]k be the set
of fc-subsets from {!,..., n}, and let Mk[n] = ¥p[n]k, which we regard as
a Sym(n)-module. The Specht submodule Sk of Mk is the G-submodule
generated by the element:

r=0

Also, if n > 2k then the Sym(n)-submodule of Mfc[n] generated by this
is called the Specht submodule of Mfc[n] and is denoted by Sk[n}. There
is a natural Sym(n)-invariant inner product on M'[n] (with [n]1 as an or-
thonormal basis), and any submodule of Mf[n] either contains Sl[n] or is
orthogonal to it (see [11], Theorem 4.8). The Specht modules can also be
characterised as the intersections of the kernels of the module homomor-
phisms βkyι (and β%ι) definied below (cf. [11], Corollary 17.18). In par-

ticular, this shows that Sk[n] = Mfc[n] Π Sk. It can be shown that Sk is
irreducible ([9], Corollary 3.3) (although this is not necessarily true of Sk[n]
for arbitrary n).

3. 1 Kernels

As in the previous section, if 0 < / < k we define a map βkj : Mk — » M1

by setting, for w £ W,

and extending linearly. This is clearly a G-homomorphism. Similarly, we
define maps /?£z : Mk[n] -> Ml[n] for 0 < / < k < n. The following in
proved in [9]:

Theorem 3.1 Any proper, non-zero G-submodule of Mk is an intersection
of kernels of homomorphisms βkj forO <l<k. The composition factors of
Mk are Specht modules 5°, . . . , Sk (where 5° is the one- dimensional trivial
module ¥p). D

Remark 3.1 Note that there are only finitely many submodules of Mk.
In fact, there is an algorithm which enables one to write down the full
submodule lattice of Mk (and the only computation involved in this is
checking divisibility by p of a finite number of binomial coefficients). See
[9] for further details.
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We can now use Theorem 1.10 to describe the closed G-submodules of
¥p

w. Consider the maps a^k : FP

[D1/ -> ¥p

w given by

It is easy to see that these are continuous G-module homomorphisms and
that / G ¥p

w annihilates keτ(βkj) if and only if / is in the image of aiyk.
Thus we have:

Corollary 3.2 Any closed G-submodule o/Fp is a sum of images of ho-
momorphisms aίjk, for some 0 < / < k. There is a (topological) composition
series of Fp by closed G-submodules, where the composition factors are
duals of Specht modules (S1)* for 0 < / < k, each appearing with multiplic-
ity one. D

Remark 3.2 The dual (S1)* consists of all linear functions / : S1 -> Fp.

We can regard this as the quotient module of FP'
D' by the annihilator in

FP

[D]' oίS1.

3.2 Cohomology groups

Lemma 3.3 // α G N is such that pa > I and n = pa + 21 — 1 then the
Specht module Sl[n] is self-dual and irreducible.

Proof. This follows from ([11], Theorem 23.13). D

Lemma 3.4 If Sl[n] is irreducible, then the map obtained by considering
a derivation into Sl[n] as a derivation into Ml[n] gives an embedding of

\,Sl\n}} into L

Proof. Applying the long exact sequence of cohomology (Lemma 1.15)
to the exact sequence

0 _> Sl[n] -» Ml[n] -» Ml[n]/Sl[n] -> 0

we get the exact sequence

M'In]) Λ H°(Sym(n),Ml[n]/Sl[n}) -*

where ψ is as described in the statement of the lemma. So it is only nec-
essary to show that φ is surjective. Let T be the subspace of vectors of
Ml[n] orthogonal to Sl[n] under the natural form on Ml[n], As Sl[n] is ir-
reducible, we have Ml[n] = Sl[n]®T. Now suppose x + Sl[n] € Ml[n]/Sl[n]
is fixed by all elements of Sym(n). Then there exists a unique y £ T such
that y-x € Sl[ri\. It follows that y is fixed by Sym(n) and φ(y) = x + S'[τι],
as required. D
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Corollary 3.5 Ifp ^2,n = pa+2l-l andpa > I then Hl(Sym(n), Sl[n])
= {0}.

Proof. By Shapiro's lemma ([5], IΠ.6.2) we have

Hl(Sym(n),Ml[n]) * Hl(Sym(l) x Sym(n - ί),FP)

which is trivial, as any derivation into a trivial module is a homomorphism,
and Sym(J) x Sym(n - /) has no homomorphic image of order p. The result
now follows from the above two lemmas. D

Theorem 3.6 Ifp ^ 2 then for all closed G-submodules K of KQ we have
Hl(G,KQ/K] = {0}. All finite covers ofW with fibre group of order p split
and (assuming the fibres have order p) each such cover is determined by its
kernel. The possibilities for the kernels are described in Corollary 3.2.

Proof. By Corollary 3.2 all of this follows exactly as in Corollary 2.13
once we show that Hl(G, (5Z)*) = {0} for I = 0, . . . , k. We use Lemma
1.13 (with Γ = G and M = (Sz)*), as in the proof of Theorem 2.12. Let
n\ < n% < be such that S^n^] is irreducible and self dual for all i € N.
Let Gi consist of permutations in G fixing each n > HI , and let MI consist
of linear functions Sl —> Fp which are zero on S'[n»]. This is an open GΪ-
invariant subgroup of M and M/A/i is isomorphic (as a Gΐ-module) to
(Sl[rii])*, which by choice of Ui is isomorphic (as G^-module) to 5z[π;]. The
result now follows from Lemma 1.13 and Corollary 3.5. D

3.3 The case p = 2

Throughout we assume that p = 2 and n = 2α -f 21 — 1 where 2α > I. Thus
Sl [n] is self-dual and irreducible. We denote by Z<ι the cyclic group of order
2.

As before, πo : CO —> W is a principal finite cover with fibres of size 2
and fibre groups Z%. The difficulty with this case is that the cohomology
groups Hi (G, (S1)*) are not all zero.

Lemma 3.7 // k > 2 there are covering expansions πi : C\ —* W and
7Γ2 : Ci —> W of πo with trivial kernels, whose automorphism groups T\
and TI are not conjugate in Aut(CΌ). Thus} H^(G^Ko) ^ {0}.

Proof. The connection between the two parts of the claim is given by
Corollary 1.11. It follows from a version of Shapiro's lemma ([8]) that
H*(G, KQ) = Z<ι, but we shall describe explicitly πi and π<z.

We take ?TI to be a covering expansion with trivial fibre group: pick a
transversal of the fibres and let πi be the expansion of πo by this (as a unary
relation). Now let w = {1,..., k} € W and let H < G be those elements of
the stabiliser of w which induce an even permutation on w. This is of index
2 in the stabiliser of w. Let CΊ be the set of left cosets of H in G (regarded as
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a permutation structure with automorphisms those permutations induced
by left multiplication by elements of G) and π2 : G2 —» W be given by
7Γ2(<7#) = gw. This is a finite cover with fibres of size 2 and fibre group
Z2. It is clear that the only element of G fixing each element of W is the
identity. So π2 may be regarded as a covering expansion of TΓQ with trivial
kernel and Aut(CΊ) and Aut(G2) are not conjugate in Aut(Go) (as they
have different fibre groups). D

By Shapiro's lemma ([5], IΠ.6.2) we have the following.

Lemma 3.8

Shapiro's lemma can be used to calculate the derivations Sym(n) —»
Mz[n]. If I > 2 then (modulo inner derivations) these are as follows. Note
that to specify such a derivation, it is enough to give its value on each of
the transpositions (i, i +1) G Sym(n) for i = 1,..., n — I (as these generate
Sym(n)).

• 0

• <50 : Sym(n) —> Ml[n] given by

0 if g is even

J = Σwεiny w if 9 is odd.

: Sym(n) —> Ml[n] given by

62 : Sym(n) -> Mf[n] given by

If / = 0 or 1 then <50 gives the non-zero element of Hl(Sym(n), Ml[n}).

Lemma 3.9 Let I ^ 0. There exists an inner derivation dx : Sym(n)
Ml[n] with Ίm(δj -f dx) C Sl[n] if and only if 1 = 2 and j = 2.

Proof. Case j = 1. Suppose / > 2. Let x € Mz[n]. Recall that

r=0
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So it is enough to find 0 < r < I such that βfr o (δι + dx) ^ 0. Now,

AV2(<5ι((M + 1)) + x + (M + I)*) = A%2(Σί™ ^ W : M + 1 € w})

Moreover, x + (i,i-f l)x is a sum of terms of the form {i}Uw-f{i + l}Uu> for
some it; € [n\{i,i+l}]l~l. Thus no element of the form w' G [n\{ΐ,z+l}]z~2

appears in the support of /3z

n

z_2 (#+(«, i+ l)x). However any such it/ appears

in /3π_2(Σ{w ^ [π]1 : i,t + 1 G w}) with coefficient 1. Thus δι + dx £
ker/3ft_2.

Case j = 0. The image of <$o is a one-dimensional submodule of M'[n],
so is not contained in Sl[n] (which is irreducible). If im(<$o -f dx) C Sl[n]
for some x G Ml[n] then as in the previous case /3£r(j + (i, i 4- l)x -f x) = 0
for 0 < r < I. It is now easy to argue that this implies /3£r(j) = 0, and so

j G Sl [n] , a contradiction.

Case j = 2. If 0 < r < I then for x G Ml[n]:

/J£r(«2((<, < + 1)) + x + (i, < + l)x) =

Σ tι;

for some y C [n \ {i,i + I}]7""1.
So, this is zero for all r only if each of the binomial coefficients

π - 2 \ / n - 2 - l λ / n - 2 - ( / - l ) \

i H i - i J ' " V i
is divisible by 2. By ([11], Corollary 22.5) this happens if and only if

n - 2 - I ΞΞ -1 mod 2s

where 2s is the smallest power of 2 greater than /. Recalling that n =
2α 4- 21 - 1 and 2α > Z, this says that / = 2. Note that if / = 2 then the
above shows that im(<52) C 52[n].

It remains to show that (in the case / = 2) there is no inner derivation
dx such that ίm(δι + dx) C S2[n}. But in this case δι = 60 + <52 and
im(52) C 52[n], which implies im(ί0 + dx) C 52[n]. This contradicts the
result already established for j = 0. D

Corollary 3.10 For I > 1 we have

Hl(Sym(n),Sl(n}) =
if I = 2.
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Proof. This follows directly from the above lemma and Lemma 3.4. D

Corollary 3.11 (i) We have

^ = { Z2 if I = 2.

(ii) If K is a closed G-submodule of KQ = F^ then H^(G^ KQ/K) is trivial
if (S2)* is not a composition factor of KQ/K, otherwise, it is of order 2.

Proof, (i) The case / = 0 follows from the fact that 5° is the trivial
module F2, and G has no subgroup of index 2. In the other cases where
/ ^ 2 the result follows from Corollary 3.10 and Lemma 1.13 exactly as in
Corollary 3.6.

Now suppose that I = 2. First note that there is a non-inner derivation d :

G -> (S2)* (otherwise H*(G,W[f]2) is trivial, by Corollary 3.2 and Lemma
1.14, contradicting Lemma 3.7). Now suppose that d' is another non-inner
derivation. Then by Lemma 1.13 (or rather, its proof) for infinitely many
choices of n, the derivations induced by d and d1 on (52[n])* are non-inner.
Thus by Corollary 3.10, and the fact that these S2[n] are self-dual, we
deduce that d — d' induces an inner derivation on (S^fn])* for infinitely
many n. It follows from the proof of Lemma 1.13 that d — d' is inner.

(ii) If (52)* is not a composition factor of KQ/K this follows from Corol-
lary 3.2 and Lemma 1.14. More generally, KQ has the property that the
trivial G-module appears as a (topological) composition factor with multi-
plicity 1, and this appears as a submodule of KQ (the constant functions).
Thus if M is a closed submodule of a continuous homomorphic image of
KQ and N is a closed submodule of this then any fixed point of G on M/N
comes from a fixed point of G on M. So then the long exact sequence
(Lemma 1.15) shows that the sequence

0 -» H*(G, N) -» Hl

c(G, M) -» Hl

c(G, M/N)

is exact. It is now easy to deduce (ii) from (i) (and Corollary 3.2). D

Remark 3.3 By the dual version of Corollary 3.16 of [9] we have that
(S2)* is a composition factor of KQ/K if and only if im(α2,fc) is not con-
tained in K (cf. Corollary 3.2).

We use the notation of Lemma 3.7.

Theorem 3.12 Let π : C —> W be a covering expansion ofττQ with kernel
K. Then Aut(C) is conjugate in Aut(Cb) to KT\ or to KT2 (and only the
first of these if k = I). These are non-conjugate in Aut(CΌ) if and only if
im(θ!2,fc) £ K. In any case, π is split.
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Proof. Let d : G -> KQ be the derivation corresponding to π2 of Lemma
3.7. Then the derivation corresponding to the split cover with automor-
phism group KTi and kernel K is J, the result of composing d with the
natural map KQ —> KQ/K. By Corollary 3.11 and Corollary 1.11 the the-
orem follows once we show that if im(α2,A;) ^ K then d is not inner. But
if d is inner, there exists α € KQ such that d - da has image in K, so is
a derivation into K. Now, if im(α2,fc) ^ # then (S2)* is a composition
factor of KQ/K, so not a composition factor of K and thus all continuous
derivations into K are inner (by Corollary 3.11). So d is inner, contradicting
Lemma 3.7. D
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