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DE RHAM THEORY AND COCYCLES OF CUBICAL SETS FROM

SMOOTH QUANDLES

Takefumi Nosaka

Abstract

We show a de Rham theorem for cubical manifolds, and study rational homotopy

type of the classifying spaces of smooth quandles. We also show that secondary char-

acteristic classes in [8, 9] produce cocycles of quandles.

1. Introduction

Characteristic classes in topology are interpreted as cohomology classes of
the classifying space of a Lie group G. According to Chern-Weil theory, the
classes are recovered from some invariant theory. Dupont [7] used simplicial
manifolds to study the classifying spaces, and reformulate the Chern-Weil theory
universally. Moreover, according to the enriched Chern-Weil theory [8, 9], the
characteristic classes (with a condition) produce cocycles of G d, where G d is the
Lie group G with descrete topology. This approach recovers some of secondary
characteristic classes, including the Chern-Simon class.

Meanwhile, a quandle [17, 21] is a set with a certain binary operation; a
typical example is a homogenous set as in symmetric space (see §§2–3 for the
details). Furthermore, as an analog of the classifying space of a group, Fenn,
Rourke, and Sanderson [12] defined a space BX from a quandle X , which is
called the rack space, and is cubically constructed from a k-set; cocycles in the
cohomology provided applications to low-dimensional topology (see [2, 3]), e.g.,
including the Chern-Simon invariant [15] and K2-invariant [24] of links. How-
ever, in most papers on quandles, X was assumed to be equipped with descrete
topology.

In this paper, we focus on the situation where a quandle X has a manifold
structure as a homogenous space, and we study the cohomology of BX . After
Section 2 reviews quandles with manifold structure, Section 3 discusses di¤erential
forms on cubical manifolds, and shows a de Rham theorem on BX (Theorem
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3.5): This result is a cubical translation of [7]. As a corollary, Section 4 com-
pletely determines the rational cohomology of the rack space BX , where the co-
homology of X satisfies some conditions. Furthermore, for such an X ; Section
5 provides a formula of computing the rational homotopy type of BX , as in
Milnor-Moore theorem; see Theorem 5.1.

In Sections 6–7, we will examine a contrast between the cohomology groups
of BX and BX d, where X d means the discrete topology of X . First, we show
(Theorem 6.4) that if X is compact and ‘‘semi-homogenous’’, every R-value con-
tinuous cocycle of BX d is trivial (cf. the computation of second (co)-homology of
BX d; see Appendix B). To obtain non-trivial cocycles, the last section 7 exam-
ines cocycles with the coe‰cient C=Z modulo Z, where we use a chain map of
Inoue-Kabaya [15] to bridge the complex of BX d and the enriched Chern-Weil
theory. As a result, we show (Proposition 7.3) that every secondary character-
istic class in the sense of [8, 9] yields a C=Z-value cocycle of BX d. Hence, in
doing so, we hope that this proposition produces many cocycles of a quandle BY ,
when Y is a subquandle of X .

Acknowledgment. The author sincerely expresses his gratitude to Katsumi
Ishikawa and Masahico Saito for valuable comments on the early draft of this
paper. He also thanks Hiroshi Tamaru for referring him to the papers [22, 23],
and the referee for careful reading and comments.

2. Preliminaries on smooth quandles

We start by reviewing quandles and smooth quandles. A quandle [17, 21] is
a set Q with a binary operation k : Q2 ! Q satisfying the following three:

(Q1) For any x A Q, xk x ¼ x,
(Q2) For any x; y A Q, there exists a unique element z A Q such that

zk y ¼ x,
(Q3) For any x; y; z A Q, ðxk yÞk z ¼ ðxk zÞk ðyk zÞ.
A smooth quandle is a Cy-manifold Q with a Cy-map k : Q2 ! Q sat-

isfying (Q1), (Q3) and that ð�k xÞ : Q! Q is di¤eomorphic for any x A Q. Let
InnðQÞ be the subgroup of Di¤ðQÞ generated by ð�k yÞ, where y runs over Q.
We equip InnðQÞ � Di¤ðQÞ with the compact open topology. A quandle Q is
said to be transitive, if the action of InnðQÞ on Q is transitive; see [17, 21]. A
quandle Q is of type n, if there exists n A Z which is the minimal number
satisfying xkn y ¼ x for any x; y A Q.

Example 2.1. Let X be a symmetric space, i.e., a Cy-manifold equipped
with a Riemannian metric such that each point y A X admits an isometry
sy : X ! X that reverses every geodesic line g : ðR; 0Þ ! ðX ; yÞ, meaning that
sy � gðtÞ ¼ gð�tÞ. Then, X has a quandle structure of type 2 defined by xk y :¼
syðxÞ. In addition, similar Riemannian manifolds with quandle structure of type
> 2 are studied in [18] as generalized symmetric spaces.
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Example 2.2 ([17, 21]). As an important example in this paper, we will see
that transitive quandle structures turn to be good operations defined on homog-
enous spaces. Let G be a Lie group, and H be a closed subgroup. If z0 A G
commutes with any h A H, then the homogenous space HnG has a quandle
structure given by

½x�k ½y� :¼ ½z�10 xy�1z0 y�;ð1Þ
for representatives x; y A G. In what follows, we write ðG;H; z0Þ for such a
transitive quandle. We define k : HnG ! G by the map which sends ½x� to
x�1z0x, which the reader should keep in mind.

Conversely, we will explain that if Q is a smooth quandle and is transitive,
Q is reduced to some ðG;H; z0Þ. For x0 A Q, let Stabðx0Þ � G be the stabilizer
subgroup of x0. We equip the group InnðQÞ with a quandle operation given by
(1). Then it is known [17, Theorem 7.1] that the natural map

InnðQÞ ! Q given by g 7! x0 � gð2Þ
is a quandle homomorphism, which induces the quandle isomorphism Stabðx0Þn
InnðQÞGQ. Moreover, Ishikawa [16, Theorem 2.4] showed that InnðQÞ is a Lie
group. In conclusion, the structure of the smooth quandle Q is determined by
the Lie groups Stabðx0Þ � InnðQÞ.

Accordingly, throughout this paper, we mainly focus on such smooth
quandles ðG;H; z0Þ, which are transitive quandles.

Moreover, we now observe the situation that G is compact. Then G has the
Haar measure dg. By taking the quotient of dg, the smooth quandle Q has a
metric such that ð�k xÞ : Q! Q is isometric for any x A Q. In other words, such
a smooth quandle Q is called a metrizable s-manifolds in the book [18]. Hence,
the topological type of such a Q is restricted, and is classified in some cases. For
example, if p1ðQÞ ¼ 0, the type is of finite order, and G is a simple Lie group,
then Q is a formal space in the sense of the rational homotopy theory; see [19]
and references therein.

3. Preliminaries on cubical manifolds and di¤erential n-forms

We introduce cubical manifolds, modifying the concept of k-sets of Fenn-
Rourke-Sanderson [12]. The discussion in this section is a cubical analogy of
simplicial manifolds [7, §2]. A cubical manifold is a sequence of Cy-manifolds
fXpgp AN together with face Cy-maps dei : Xp ! Xp�1, for e A f0; 1g and 1a ia p,

satisfying

d
h
j�1 � d

e
i ¼ dei � d

h
j ; for any 1a i < ja p and e; h A f0; 1g:

Let I be the interval ½0; 1� � R, and I p be the p-cube. Dually, for 1a ia p and
e A f0; 1g, we consider the map

dei : I
p�1 ! I p defined by dei ðt1; . . . ; tp�1Þ ¼ ðt1; . . . ; ti�1; e; ti; . . . ; tp�1Þ:
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Then the ( fat) realization kXk of a cubical manifold X is defined to be the
quotient space of

F
p I p � Xp subject to the relation ðdei ðtÞ; xÞ@ ðt; d

e
i ðxÞÞ; where

t A I p�1 and x A Xp with i ¼ f0; . . . ; pg and e A f0; 1g.

Example 3.1 (Rack space). Fenn-Rourke-Sanderson [12] introduced a clas-
sifying space as a cubical set, which is called the rack space. We will give the
rack space of manifold version. Fix a smooth quandle ðG;H; z0Þ as in Example
2.2, and a manifold Y which is acted on by G (possibly Y ¼ fpt:g, Y ¼ Q or
Y ¼ G). Then, we define Xp to be Y �Qp, and define dej by

d0j ðy; x1; . . . ; xpÞ ¼ ðy; x1; . . . ; xj�1; xjþ1; . . . ; xpÞ;

d1j ðy; x1; . . . ; xpÞ ¼ ðy � kðxjÞ; x1 k xj; . . . ; xj�1 k xj ; xjþ1; . . . ; xpÞ:

Then, the pair (X�; d
e
�) is a cubical manifold. Moreover, the realization kXk is

exactly the rack space defined in [12, 13]. We will denote kXk by BYQ. If Y is
a singleton, we write BQ for BYQ for simplicity. We remark that the canonical
projection BYQ! BQ is a fibration with fiber Y :

Next, we will establish terminology of Cy-forms on cubical manifolds.

Definition 3.2. (1) Let AnðI p � XpÞ be the set of n-forms on I p � Xp of
Cy-class which are extended to n-forms on Rp � Xp.

(2) Similarly, we define AnðI pÞ by the set of n-forms on I p of Cy-class
which are extended to n-forms on Rp, and define AnðXpÞ by the set of n-forms on
Xp of Cy-class.

(3) An n-form j on a cubical manifold is a sequence of n-forms fðpÞ A
AnðI p � XpÞ satisfying the conditions ðdei � idÞ�fðpÞ ¼ ðid� dei Þ

�
fðp�1Þ for any

i A f1; . . . ; pg and e A f0; 1g.
(4) We denote by AnðX Þ the set of all n-forms on X .

Then, the exterior di¤erential d and the wedge product on AnðI p � XpÞ can be
extended to those on AnðX Þ. Thus, A�ðX Þ is made into a di¤erential graded
algebra.

Next, we give bigraded complexes. Let q1 : I
p � Xp ! I p and q2 : I

p � Xp

! Xp be the natural projections. Given a cubical manifold X , we first de-
compose A�ðXÞ into a direct sum AnðXÞ ¼0

n¼kþl A
k;lðXÞ, where Ak;lðX Þ is

composed of the forms j of type ðk; lÞ, i.e., j restricted to I p � Xp is pre-

sented by q�1 ðf
ðkÞ
I Þ � q�2 ðf

ðlÞ
X Þ for some f

ðkÞ
I A AkðI pÞ and f

ðlÞ
X A AlðXpÞ. Also

let dk (resp. dX ) denote the pullback of exterior di¤erential on A�ðI pÞ (resp.
on A�ðXpÞ). Thus, we have a double complex ðAk;lðX Þ; dk; dX Þ, and the
total complex ðA�ðX Þ; dtotÞ, where dtot ¼ dkþ dX . Further, we can define an-
other double complex ðAk;lðXÞ; d; dX Þ, where Ak;lðXÞ ¼AlðXkÞ and d ¼Pp

i¼1ð�1Þ
iðd0i � d1i Þ:

Then, we later give an isomorphism between the (double) complexes
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Theorem 3.3 (A cubical version of [7, Theorem 2.3].) Assume that each Xp is
a paracompact Hausdor¤ space. For any l A N the chain complexes ðA�;lðXÞ; dkÞ
and ðA�;lðXÞ; dÞ are naturally chain homotopy equivalent. To be precise, there is

a map J : Ak;lðX Þ !Ak;lðXÞ which gives a homotopy equivalence.

Instead of giving the proof later (see Appendix A), we mention a corollary
from the spectral sequences associated with the two double complexes. Consider
the filtering with respect to the first index of the double complexes A��ðX Þ and
A��ðXÞ; we have the spectral sequences IðAÞ��r and IðAÞ��r , respectively. In
parallel, we have other spectral sequences IIðAÞ��r and IIðAÞ��r by filtering
with respect to the second index. As a consequence of Theorem 3.3, as a de
Rham theory of cubical sets, the de Rham cohomology of A�ðXÞ is isomor-
phic to the ordinary cohomology H �ðkXk;RÞ of the fat realization kXk. To be
precise,

Corollary 3.4. The map J induces natural isomorphisms IðAÞ��r G IðAÞ��r
for rb 2 and IIðAÞ��r G IIðAÞ��r for rb 1. In particular, they induce a canonical
isomorphism from the cohomology of the total complexes, KX : H �ðA�ðXÞ; dtotÞG
H �ðkXk;RÞ.

Moreover, we will show the multiplication, although we defer the proof into
Appendix A.

Theorem 3.5 (Cubical version of [7, Theorem 2.14].) Suppose that each Xp

is a paracompact Hausdor¤ space. Then the isomorphism KX : H �ðA�ðX Þ; dÞG
H �ðkXk;RÞ is multiplicative where the multiplication on the left (resp. right) hand
side is induced by the wedge-product (resp. the cup-product).

4. Note on rational cohomology of the rack spaces

In this section, we will compute the rational cohomology of the rack space
BQ. For this, we consider the invariant part, AnðQÞG, of n-forms, where the
action of G on Q is induced from the right actions in (2). We have the inclusion
AnðQÞG ,! AnðQÞ.

Proposition 4.1. Let Q be a smooth quandle of the form ðG;H; z0Þ. As-
sume that the inclusion AnðQÞG ,! AnðQÞ yields an isomorphism on cohomology.
Then, there are isomorphisms

HnðBQ;RÞG 0
n¼iþj

H iðQ j;RÞ; HnðBGQ;RÞG 0
n¼iþj

H iðG �Q j;RÞ:

Proof. We consider the spectral sequence IIðAÞ��r in §3, which strongly
converges to En

y GHnðA�ðBGQÞÞGHnðBGQ;RÞ:
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We will study the E
p;q
1 -term HpðA�ðQqÞÞ in detail. We let A�ðQqÞG

q

be
the set of Gq-invariant forms on Qq, where Gq acts on Qq componentwise. By

assumption, the inclusion A�ðQqÞG
q

,!A�ðQqÞ is a quasi-isomorphism for any

q. For any Gq invariant p-form c A ApðQqÞG
q

, we note ðd0i � d1i Þ
�ðcÞ ¼ 0 by

definition; therefore, d�ðcÞ ¼ ð
Pq

i¼1ð�1Þ
iðd0i � d1i ÞÞ

�ðcÞ ¼ 0. Thus, this spectral
sequence collapses at E

p;q
2 , i.e., E2 ¼ Ey. Hence, we can get the conclusion:

HnðBQ;RÞGHnðA�ðBQÞÞGEn
y G 0

n¼iþj
E

i; j
2 G 0

n¼iþj
H iðQ j;RÞ:

Next, we will show the second isomorphism in a similar way. Consider the
spectral sequence IIðAÞ��r in §3, where Xp ¼ G � X p: Then, we can readily see
that this spectral sequence E

p;q
2 abuts to E

p;q
y . To conclude, we have the second

claim as follows:

HnðBGQ;RÞGHnðA�ðBGQÞÞGEn
y G 0

n¼iþj
E

i; j
2 G 0

n¼iþj
H iðG �Q j;RÞ: r

Although the assumption in this proposition seems strong, there are many
examples.

Example 4.2. If Q is the 2m-sphere, and G is the orthogonal group
Oð2mþ 1Þ, then the generator of H 2mðS2mÞGR is represented by the Oð2mþ 1Þ-
invariant volume form. Thus, A�ðQÞG ,! A�ðQÞ is quasi-isomorphic.

As another example, consider the unitary group G ¼ UðmÞ and the Grass-
mann manifold Grðm; nÞ over C, where m; n A N with n < m. The cohomology
is generated by the Chern classes. Chern-Weil theory implies that the Chern
classes are invariant with respect to the action of UðmÞ. Hence, this situation
satisfies the assumption.

In general, if G is compact, the Cartan algebra of G=H enables us to
compute HnðG=H;RÞ with generators from some information of 5� g, where g is
the Lie algebra of G; see [25] and references therein for the details. Thus, we
can check whether G=H satisfies the assumption or not.

Remark 4.3. As seen in the proof, for Q ¼ ðG;H; z0Þ, the inclusion
AnðQÞG ,! AnðQÞ gives rise to a ring homomorphism H �ðBQ;RÞ !
0

n¼iþj H
iðQ j;RÞ. However, in general, it seems far from an isomorphism.

For example, if Q ¼ S2n�1 and G ¼ Oð2n� 1Þ, Q does not satisfy the as-
sumption. Moreover, as a private communication, Ishikawa pointed out that the
cohomology of BQ is far from the result of Proposition 4.1.

We give an example of computing H�ðBQÞ where Q is the 2m-sphere:

Example 4.4. Let Q be the 2m-sphere, S2m, as a symmetric space, i.e.,
a quandle of type 2. Then, Hk

dRðQÞGR if and only if k ¼ 0 and k ¼ 2m:
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Therefore, for k; jb 0, the dimension of H 2mjðQkÞ is equal to
k

j

� �
. Hence, the

Poincaré series
P

k dim HkðBQ;RÞsk is

Xy
j¼0

Xy
k¼0

s2mj k

j

� �
sk ¼

Xy
k¼0

Xk

j¼0
s2mjþk k

j

� �
¼

Xy
k¼0
ð1þ s2mkÞskð3Þ

¼ 1

1� s� s2mþ1
A Z½½s��:

5. Rational homotopy group of the rack spaces

We will show Theorem 5.1 of computing the rational homology of BQ.

Theorem 5.1. Let Q be a smooth quandle of the form ðG;H; z0Þ. Suppose
that G is connected and compact, and satisfies the same assumption in Proposition
4.1. Let ui ¼ dim piðBQÞnQ. Then, the following equality holds:

X
kb0

dimðHkðBQ;RÞÞsk ¼
Yy
i¼0

ð1þ s2iþ1Þu2iþ1
ð1� s2iÞu2i A Z½½s��:ð4Þ

Remark 5.2. The homotopy group piðBQÞ contains p�ðWS2Þ as a direct
summand. Indeed, letting P be the quandle on the single point, any maps Q! P
and P! Q are quandle homomorphisms, and BPFWS2 is shown [13, 14].

To prove the theorem, we review a monoid structure on BGQ, following [4].
For any n;m A N, we take a map m : ðI n � G �QnÞ � ðI m � G �QmÞ ! I nþm �
G �Qnþm defined by

mð½t1; . . . ; tn; g; x1 . . . ; xn�; ½t 01; . . . ; t 0m; h; x 01 . . . ; x 0m�Þ
:¼ ½t1; . . . ; tn; t 01; . . . ; t 0m; gh; x1h; . . . xnh; x 01 . . . ; x 0m�:

Regarding BGQ as a quotient of
F

pðI p � G �QpÞ, this m passes to a binary
operation BGQ� BGQ! BGQ, which makes BGQ into an associative topological
monoid with unit [4, §2.5]. Recall a well-known fact that there exists a simplicial
set Z such that BGQ is weak equivalent to a (based) loop space WZ as an
H-space.

Next, we will observe the equality (5) below from Milnor-Moore theorem.
Here, since Q and G are compact, BGQ is a CW-complex of finite type; hence,
so is Z (see [11] for more detail). Since the space BGQ is connected by as-
sumption, we notice p0ðZÞG 0 and p1ðZÞG p0ðBGQÞG 0, that is, the space Z is
simply connected. Since the cohomology group H �ðBGQ;RÞ is made into a
Hopf algebra, Milnor-Moore theorem (see [11, §21]) immediately implies the
isomorphisms

PrimðH �ðBGQ;QÞÞGPrimðH �ðWZ;QÞÞG p�ðWZÞnQG p�ðBGQÞnQ;
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where PrimðH �ðBGQ;QÞÞ means the subspace consisting of primitive elements of
H �ðBGQ;QÞ. Then, the Poincaré-Birko¤-Witt theorem (see [11, §33(c)]) directly
leads to

X
kb0

dimðHkðBGQ;RÞÞsk ¼
Yy
i¼0

ð1þ s2iþ1Þr2iþ1
ð1� s2iÞr2i A Z½½s��;ð5Þ

where ri ¼ dim piðBGQÞnQ.

Proof of Theorem 5.1. First, notice that the natural projection BGQ! BQ
is a principal (topological) G-bundle (see [12, §3] or [4, Proposition 6]). Let
i : G ! BGQ be the fiber inclusion. Then, we have the long exact sequence of
homotopy groups

� � � ! pnðGÞnQ!i� pnðBGQÞnQ! pnðBQÞnQ

! pn�1ðGÞnQ! � � � ðexactÞ:

Notice that BGQ includes the Lie group G as a topological submonoid by
definitions, and i is a monoid homomorphism. The induced map i : H�ðG;RÞ !
H�ðBGQ;RÞ is injective by Proposition 4.1. An observation of the primitive
elements implies the injectivity of i� : pnðGÞnQ! pnðBGQÞnQ. Thus, (5) is
divisible by

P
k dimðHkðG;RÞÞsk. Hence, dividing (5) by the Milnor-Moore

theorem on G, we have the conclusion (4). r

Example 5.3. If Q is S2m and G ¼ SOð2mþ 1Þ as in Example 4.4, we can
compute the rational homotopy from the Poincaré series (3). We focus only on
the cases of m ¼ 1; 2; 3, and give a list of rank pkðBS2Þ as follows.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rank pkðBS2Þ 1 1 1 1 1 2 2 2 3 5 6 7 11 27 47 85 151

rank pkðBS4Þ 1 1 0 0 1 1 1 1 1 2 2 2 3 7 11 16 23

rank pkðBS6Þ 1 1 0 0 0 0 1 1 1 1 1 1 1 3 5 7 10

6. Continuous R-value rack cocycles

In Sections 6–7, we focus on the rack space BX d, where X d means a smooth
quandle with descrete topology. The cohomology of BX d coincides with the
rack cohomology [12, 13, 14], and has applications to low-dimensional topology;
see, e.g., [2, 3, 15, 24].

For this, let us briefly review rack cohomology [12, 13, 14]. Let X be a
quandle. Then, CR

n ðXÞ is defined to be the free right Z-module generated by
X n. For ðx1; . . . ; xnÞ A X n, we define qR

n ðx1; . . . ; xnÞ by
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X
1aian

ð�1Þ iððx1; . . . ; xi�1; xiþ1; . . . ; xnÞ � ðx1 k xi; . . . ; xi�1 k xi; xiþ1; . . . ; xnÞÞ

A CR
n�1ðXÞ:

This yields a homomorphism qR
n : CR

n ðX Þ ! CR
n�1ðXÞ such that qR

n � qR
nþ1 ¼ 0:

Dually, for an abelian group A, we have the cochain complex Cn
RðX ;AÞ defined

by HomðCR
n ðXÞ;AÞ with the dual operation of qR

n . As seen in, e.g., [2, 3, 15],
for applications to low-dimensional topology, it is important to concretely de-
scribe an n-cocycle as a map X n ! A with na 4.

In this section, we will restrict on the continuous subcochain group. Let Q
be a smooth quandle of the form ðG;H; z0Þ. That is, we consider the sub-
complex of Cn

RðQ;RÞ defined by

Cn
contðQÞ :¼ f f : Qn ! R j f is continuousg;

which was first studied in [10], and the cohomology called the continuous
cohomology. Furthermore, we introduce a class of Q:

Definition 6.1 (cf. homogeneousness in [20]). Fix m A Z. The smooth
quandle Q is said to be semi-homogenous (of level m), if for any a A Q there is a
zero measure set Oa such that the Cy-map QnOa ! QnðakOaÞ which sends x to
ak x is a covering of degree m.

Example 6.2. For example, the quandle on the m-sphere Sm is semi-
homogenous of level 2. Indeed, letting q A Sm be the antipodal point against
a, and Oa be the equator between a and q, we can easily show the map QnOa !
Qnfqg is a covering of degree 2. In parallel, since the projective spaces RPm,
CPm are quotients of some spheres, we can easily see that RPm and CPm are
semi-homogenous.

More generally, we conjecture that, if X is the smooth quandle from
every compact symmetric space (explained in Example 2.1), X may be semi-
homogenous. In fact, T. Nagano [22] introduced the concept of ‘‘centrosome’’,
and he and M. S. Tanaka gave many examples of centrosome, which indicate the
existnece of zero-measure sets Oa satisfying Definition 6.1.

Example 6.3. We will consider the case where Q is semi-homogenous and
of finite order. Then, Oq must be the empty set; thus, the covering Q! Q
which sends x to ak x must be bijective. Namely m ¼ 1. This bijectivity was
called homogenous property in [20].

We will show a theorem, as a continuous version of [20, Theorem 1.1], which
assumes semi-homogeneousness.

Theorem 6.4. If a transitive smooth quandle Q ¼ G=H is semi-homogenous
and compact, every cocycle in Cn

contðQÞ is cohomologous to a constant map. In
particular, the cohomology Hn

contðQÞ is R:
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In conclusion, in order to obtain non-trivial rack cocycles of Q, we should
assume neither compactness of G nor the continuous R-value cochain. For
example, the quandle on Q ¼ R2 with xk y ¼ 2y� x has a non-trivial contin-
uous 2-cocycle X 2 ! R: see Corollary B.2. On the other hand, if Q ¼ R=Z ¼ S1

is a quandle with xk y ¼ 2y� x, then Proposition B.1 implies that the universal
2-cocycle from CR

2 ðQ;ZÞ is not continuous.
To prove Theorem 6.4, we need several lemmas. Hereafter we assume that

Q is semi-homogenous in this section. Using the Haar measure of G, we can
choose a metric dy on Q which is invariant with respect to the action of G. We
may assume

Ð
Q
dy ¼ 1.

Lemma 6.5 (cf. Lemmas 3.1 and 3.2 in [20]). For any x;w A Q and any
continuous function K : Q! R, the following equalities hold.ð

Q

Kðxk yÞ dy ¼
ð
Q

KððxkwÞk yÞ dy ¼
ð
Q

Kððxk yÞkwÞ dy:ð6Þ

Proof. We begin by computing the first term asð
Q

Kðxk yÞ dy ¼
ð
QnxkOx

Kðxk yÞ dy ¼ m

ð
QnOx

Kðy 0Þ dy 0 ¼ m

ð
Q

Kðy 0Þ dy 0:

By replacing x by xkw, we similarly have
Ð
Q
KððxkwÞk yÞ dy ¼

m
Ð
Q
Kðy 0Þ dy 0, which deduces the first equality in (6). By the right invariance

of dy, replacing y to yk�1 w impliesð
Q

Kððxk yÞkwÞ dy ¼
ð
Q

Kððxk ðyk�1 wÞÞkwÞ dy ¼
ð
Q

KððxkwÞk yÞ dy:

This is the second equality in (6) exactly. r

Next, we will prepare some maps. We introduce two maps q0n and q1n from
Cn

contðQÞ to Cnþ1
cont ðQÞ by setting

q0i ðhÞðx1; . . . ; xnþ1Þ ¼ hðx1; . . . ; xi�1; xiþ1; . . . ; xnþ1Þ;

q1i ðhÞðx1; . . . ; xnþ1Þ ¼ hðx1 k xi; . . . ; xi�1 k xi; xiþ1; . . . ; xnþ1Þ:

By definition, we should notice qR
n ðhÞ ¼

Pnþ1
i¼1 ð�1Þ

iðq0i ðhÞ � q1i ðhÞÞ. In addition,
for ja n, we define f j

n : C
n
contðQÞ ! Cn

contðQÞ by

f j
nðhÞðx1; . . . ; xnÞ :¼

ð
Q j

hðx1 k y1; . . . ; xj k yj ; xjþ1; . . . ; xnÞ dy1 � � � dyj;

f0
n by the identity map, and fnþ1

n by fn
n . Furthermore, we define D j

n : C
n
contðQÞ

! Cn�1
cont ðQÞ by
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D j
nðkÞðx1; . . . ; xn�1Þ

:¼
ð
Q j

kðx1 k y1; . . . ; xj�1 k yj�1; xj; yj ; xjþ1 . . . ; xn�1Þ dy1 � � � dyj;

for j < n, and Dn
n by the zero map. Here, we should compare [20]; Precisely,

if Q is of finite order, the maps f j
n and D j

n coincide with the maps defined in
[20, §3]. In addition, we give lemmas as relation among the above maps:

Lemma 6.6 (cf. Lemmas 3.3–3.8 in [20]). The following equalities hold.

q0i �D j
nðhÞ ¼ q1i �D j

nðhÞ for 1a ia ja n;

D
j
nþ1 � q

0
i ðhÞ ¼ D

j
nþ1 � q

1
i ðhÞ for 1a ia ja n;

q0jþ1 �D j
nðhÞ ¼ f j�1

n ðhÞ for 1a j < n;

q1jþ1 �D j
nðhÞ ¼ f j

nðhÞ for 1a j < n;

D
j
nþ1 � q

0
i ðhÞ ¼ q0iþ1 �D j

nðhÞ for 1a j < ia nþ 1;

D
j
nþ1 � q

1
i ðhÞ ¼ q1iþ1 �D j

nðhÞ for 1a j < ia nþ 1:

Proof. The proofs are almost the same as those of Lemmas 3.3–3.8 in [20],
respectively. Thus, we show only the first equality. We now denote ak b by ab

for simplicity. For i < j, we can easily show that q0i �D j
nðhÞðx1; . . . ; xnÞ is equal

to ð
Q j

hðxy1
1 ; . . . ; xyi�1

i�1 ; x
yiþ1
iþ1 ; . . . ; x

yj�1
j�1 ; xj; yj; xjþ1; . . . ; xnÞ dy1 � � � dyj;

and, that q1i �D j
nðhÞðx1; . . . ; xnÞ is equal toð

Q j

hðxy1
xikyi

1 ; . . . ; xyi�1
xikyi

i�1 ; xyiþ1
iþ1 ; . . . ; x

yj�1
j�1 ; xj; yj; xjþ1; . . . ; xnÞ dy1 � � � dyj :

In addition, if i ¼ j, we similarly have

q0j �D j
nðhÞ ¼

ð
Q j

hðxy1
1 ; . . . ; x

yj�1
j�1 ; yj; xjþ1; . . . ; xnÞ dy1 � � � dyj ;

q0j �D j
nðhÞ ¼

ð
Q j

hðxy1 k xj
1 ; . . . ; x

yj�1 k xj
j�1 ; yj; xjþ1; . . . ; xnÞ dy1 � � � dyj:

Applying Lemma 6.5 i � 1 times and Fubini theorem to the integrals, we obtain
the equality q0i �D j

nðhÞ ¼ q1i �D j
nðhÞ as required. r

Putting all this together, we have

Proposition 6.7 (cf. Proposition 3.1 in [20]). For j > 1, D j
n : C

�
contðQÞ !

C �þ1cont ðQÞ is a chain homotopy from f j
n to f j�1

n :
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Proof. The computation in the proof is same as that of Proposition 3.1 in
[20], by using Lemma 6.6. Thus we may omit the detailed computation. r

Proof of Theorem 6.4. This proposition implies that every cocycle in
Cn

contðQÞ is cohomologous to the map fn
n ðhÞ. By the proof of Lemma 6.5,

we noticeð
Qn

hðx1 k y1; . . . ; xn k ynÞ dy1 � � � dyn ¼ mn

ð
Qn

hðy 01; . . . ; y 0nÞ dy 01 � � � dy 0n:

Namely, this fn
n ðhÞ does not depend on x1; . . . ; xn, that is, a constant map. To

summarize, every cocycle in Cn
contðQÞ is cohomologous to a constant map, as

required. r

7. Rack cocycles from secondary characteristic classes

In order to get non-trivial rack cocycles of quandles, we will introduce an
algorithm to obtain C=Z-value rack cocycles from the secondary characteristic
classes.

Our approach in this section is based on the works of Dupont and Kamber
[7, 8, 9]. Thus, §7.1 reviews the works, and §7.2 describes the algorithm.

7.1. Review of Dupont [7, 8] on presentations of group cocycles
First, we prepare some homogenous complexes. Given a set X acted on by

a group G, let CD
n ðXÞ be the free Z-module generated by ðnþ 1Þ-tuples of X , that

is, CD
n ðX Þ ¼ ZhX nþ1i. This CD

n ðX Þ has a di¤erential operator qD
� defined by

qD
n ðx0; . . . ; xnÞ ¼

X
i:0aian

ð�1Þ iðx0; . . . ; xi�1; xiþ1; . . . ; xnÞ:

The action of G on X gives rise to the diagonal action on CD
n ðXÞ. Denote by

CD
n ðXÞG the coinvariant CD

n ðXÞnZ½G�Z. For example, if X ¼ G with natural

action of G, the complex CD
� ðGÞ gives a Z½G�-free resolution of the augmentation

Z½G� ! Z. Therefore, the homology of CD
� ðGÞG is isomorphic to the ordinary

group homology of G.
Next, we will explain Proposition 7.1 below. Let V be a manifold which is

ðq� 1Þ-connected for some q A Z, and G be a Lie group with transitive action
on V . Let C sing

� ðVÞ be the chain complex of smooth singular simplicies in V .
This chain complex is naturally made into a right Z½G�-module, and is acyclic of
length q� 1. Then, we can find a chain transformation s of G-modules, which
ensures the following commutative diagram:

Z CD
0 ðGÞ CD

1 ðGÞ � � � CD
q ðGÞ����

???ys

???ys

???ys

Z  ���q0
C

sing
0 ðVÞ  ���q1

C
sing
1 ðVÞ  ���q2 � � � ���qq

C sing
q ðVÞ:

ð7Þ

 ����qD
0  �����qD

1  ����qD
2  ����qD

q
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As is known as the comparison theorem, this s is unique up to homotopy.
Furthermore, for a G-invariant complex value q-form o, we define a cochain
CðoÞ A HomðCD

q ðGÞG;CÞ by

CðoÞðg0; g1; . . . ; gqÞ :¼
ð
sðg0;g1;...;gqÞ

o;ð8Þ

for g0; g1; . . . ; gq A G: The following is due to Stokes theorem.

Proposition 7.1 ([8, Proposition 10.4]). Suppose that o is closed, and that

the integral
Ð
z
o lies in Z for any z A C sing

q ðV ;ZÞ.
Then, the cochain CðoÞ is a q-cocycle mod Z. Furthermore, it is nullcoho-

mologous if o ¼ do 0 for some G-invariant ðq� 1Þ-form o 0:

As an insightful result, Dupont-Kamber [9] showed that this formulation
includes Chern-Simons classes as follows:

Example 7.2 ([9]). Let G be GLkðCÞ, and V be GLkðCÞ=GLk�1ðCÞ. By
Bott periodicity, V is ð2k � 2Þ-connected, and has H 2k�1ðV ;ZÞGZ. Since V
is the complexification of the compact homogeneous space UðkÞ=Uðk � 1Þ, the
generator of the ð2k � 1Þ-th cohomology group can be represented by a com-
plex value G-invariant ð2k � 1Þ-form ok. Then, the group cocycle CðokÞ A
H 2k�1ðGLnðCÞ;C=ZÞ is shown to be equal to the k-th Chern-Simons class.

7.2. Relation to secondary characteristic classes
Under the condition in the previous subsection, we will show that every

secondary characteristic class in the sense of [8, 9] produces an n-cocycle in the
rack complex.

For this, we review Inoue-Kabaya map [15]. Let Q be a smooth quandle of
the form ðG;H; z0Þ. For n A Znb2, consider the following set composed of maps:

In :¼ fi : f2; 3; . . . ; ng ! f0; 1gg:ð9Þ
For a tuple ðx0; . . . ; xnÞ A Qnþ1 and for each i A In, we define xði; iÞ A Q by

xði; iÞ :¼ ð� � � ððxi kiðiþ1Þ xiþ1Þkiðiþ2Þ xiþ2Þ � � �ÞkiðnÞ xn:

Here xk0 y ¼ y. Choose p A Q. If nb 2, we define a homomorphism

jn : C
R
n ðQ;ZÞ ! CD

n ðQÞG;
by setting

jnðx1; . . . ; xnÞ :¼
X
i A In

ð�1Þ ið2Þþið3Þþ���þiðnÞðp; xði; 1Þ; . . . ; xði; nÞÞ:

If n ¼ 1, we define j1ðaÞ ¼ ðp; aÞ: This jn is shown to be a chain map.
Namely, qD

n � jn ¼ jn�1 � qR
n .

Next, we review a ðG;HÞ-projectivity of the complex CD
n ðQÞ from [1, §3].

To this aim, an exact sequence N !i M !j L of right Z½G�-module homomor-

123de rham theory and cocycles of cubical sets from smooth quandles



phisms is ðG;HÞ-exact, if the kernel of j is a direct Z½H�-module summand of
M. A right Z½G�-module A is said to be ðG;HÞ-projective if, for every ðG;HÞ-
exact sequence 0! N !i M !j L! 0, and every Z½G�-homomorphism c : A! L,
there is a Z½G�-homomorphism c 0 : A!M such that q � c 0 ¼ c. Then, it is
shown [1, Proposition 3.10] that the above module CD

n ðQÞ is ðG;HÞ-projective,
and the following sequence is ðG;HÞ-exact:

� � � �!
qD
nþ1

CD
n ðQÞ �!

qD
n � � � ! CD

1 ðQÞ �!
qD
1

CD
0 ðQÞ ! Z! 0:

Moreover, we can easily verify that the bottom sequence in (7) is also
ðG;HÞ-exact. Thus, by ðG;HÞ-projectivity (see [1, Proposition 3.11]), the chain
map s factors through a chain Z½G�-map t : CD

n ðQÞ ! C sing
n ðQÞ for na q. Here,

the choice of t is unique up to homotopy. Hence, similarly, for any G-invariant
q-form o such that

Ð
z
o lies in Z for any z A C sing

q ðQ;ZÞ, it can be easily shown
that the following map is a q-cocycle modulo Z.

TðoÞ : Qqþ1 ! C=Z; ðx0; x1; . . . ; xqÞ 7!
ð
tðx0;x1;...;xqÞ

o:ð10Þ

On the other hand, since CD
q ðQÞ is a Z½G�-module, the above chain map t in (7)

factors through CD
q ðQÞ. In conclusion, we have

Proposition 7.3. Let o be the q-cocycle satisfying the assumption in Prop-
osition 7.1. Then, the pullback j�q ðTðoÞÞ A C

q
RðQ;C=ZÞ is a rack q-cocycle.

As mentioned in Example 7.2, the class of cocycles presented by TðoÞ
contains a class of generalized Chern-Simons classes. In summary, such gen-
eralized classes can be represented as rack cocycles. Hence, it is reasonable to
hope that this proposition produces many rack cocycles of X , when X is a sub-
quandle of V .

Example 7.4. In the paper of Inoue-Kabaya [15], they consider the case

ðPSL2ðCÞ;H; z0Þ, where H is the unipotent subgroup
1 b

0 1

� ����� b A C

� �
and

z0 ¼
1 1

0 1

� �
: We remark that G=H is bijective to ðC� Cnfð0; 0ÞgÞ=G. In

this case, the Chern-Simons 3-class ĈC3 is well-understood (see, e.g., [7, Charters
7–11] or [15, §7]), and is represented by a map ĈC3 : V

4 ! C=4p2Z with a cocycle
expression. Furthermore, ĈC3 has a close relation to complex volume of hyper-
bolic 3-manifolds. For this reason, the paper [15] presented ĈC3 as a rack
3-cocycle, and gave a result on the complex volume; see [15, Theorem 7.3].

A. Appendix; Proofs of Theorems 3.3 and 3.5

We will prove Theorems 3.3 and 3.5. The outline of the proofs is based
on [7, 4]: precisely, Dupont [7] showed a de Rham theory of simplicial manifolds,
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and Clauwens [4] constructed a triangulation of k-sets, which induced a ring
isomorphism on cohomology; As such, we give a bridge between their results, and
give the proof of the theorems.

For this purpose, we first set up notation on simplicial manifolds from
[7]. A simplicial manifold Y is defined as a sequence of manifolds Yn for n A N
together with face maps di : Yn ! Yn�1 for 0a ia n such that

dj�1di ¼ didj for any 0a i < ja n:

Let Dp � Rpþ1 be the standard simplex

Dp :¼ t ¼ ðt0; . . . ; tpÞ A Rpþ1 j ti b 0;
X

0aiap

ti ¼ 1

( )
;

and let � i : Dp�1 ! Dp be the i-th face map. Then, the fat realization kYkD of Y
is the quotient space of

F
pb0 Dp � Y , with the identifications

ð� iðtÞ; yÞ@ ðt; di yÞ; t A Dp�1; s A Yp; i ¼ 0; 1; . . . ; p:

Then, we denote A�
D ðYpÞ by the DGA consisting of n-forms on Dp � Yp which

are extended to Cy forms on ð
P

i ti ¼ 1Þ � Yp. Moreover, an n-form j on Y
is a sequence of n-forms fðpÞ A An

D ðYpÞ of Cy-class satisfying ð� i � idÞ�fðpÞ ¼
ðid� diÞ�fðp�1Þ for any i A f1; . . . ; pg. Then, we can define the de Rham coho-
mology of A�

D ðY�Þ. Furthermore, we decompose A�DðY Þ into a sum An
DðYÞ ¼

0
n¼kþl A

k;l
D ðY Þ, where Ak;l

D ðY Þ is composed of the forms j of type ðk; lÞ, i.e.,
j restricted to Dp � Yp is q�1 ðf

ðkÞ
I Þ � q�2 ðf

ðlÞ
Y Þ for some f

ðkÞ
I A Ak

D ðI pÞ and f
ðlÞ
Y A

Al
D ðYpÞ. Here q1 : D

p � Yp ! Dp and q2 : D
p � Yp ! Yp are the projections.

Also let dD (resp. dY ) denote the pullback of exterior di¤erential on A�
D ðDpÞ (resp.

on A�
D ðYpÞ). Thus, we have a double complex ðAk;l

D ðY Þ; dD; dY Þ, and the total
complex ðA�DðY Þ; dÞ, where d ¼ dD þ dY . Further, we consider another double

complex ðAk;l
D ðYÞ; d; dY Þ where d ¼

Pp
i¼1ð�1Þ

i
di:

Following [4, §3.2], we give a triangulation from a k-set. For n A N, let ½n�
denote the set f1; 2; . . . ; ng. A k-partition of ½n� is a sequence S ¼ ðS1;S2; . . . ;
SkÞ of nonempty subsets of ½n� which are mutually disjoint and satisfy ½n� ¼
S1 [ � � � [ Sk:

Given a cubical manifold X , we define a simplicial manifold TðX Þ, as a
manifold analogy of [4, §3]. The set of k-simplicies TðXÞk consists of the pairs
ðx;SÞ, where x A Xn and S is a k-partition of ½n�: The boundary maps are given
by

d0ðx;S1; . . . ;SkÞ ¼ ðd1S1
x; yS1

ðS2Þ; . . . ; yS1
ðSkÞÞ;ð11Þ

diðx;S1; . . . ;SkÞ ¼ ðx;S1; . . . ;Si�1;Si [ Siþ1;Siþ2; . . . ;SkÞ for 0 < i < k;ð12Þ

dkðx;S1; . . . ;SkÞ ¼ ðd0Sk
ðxÞ; ySk

ðS1Þ; . . . ; ySk
ðSk�1ÞÞ:ð13Þ

Here, for S � ½n�, we write yS for the unique order-preserving map from ½n� � S
to ½n�aðSÞ�. Then, it is not so hard to check that TðX Þ is a simplicial mani-
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fold by definitions. Although the definition of TðXÞ seems complicated, here is
Figure 1 on a triangulation with k ¼ 2 and k ¼ 3.

Next, we will show Lemma A.1. Given t ¼ ðt1; . . . ; tkÞ A ½0; 1�k, we may
choose a sequence St :¼ ði1; . . . ; ikÞ A f1; . . . ; kgk with 1b ti1 b � � �b tik b 0 such
that i1; . . . ; ik are mutually distinct. Then, for x A Xn, we make a correspondence
from Fðt1; . . . tk; xÞ to

ðð1� ti1 ; ti1 � ti2 ; . . . ; tik�1 � tik ; tik Þ; ðx; i1; . . . ; ikÞÞ A Dk � TðXÞk:
Then, we can verify, by (11) and (13), that the correspondence descends to a
continuous map F : kXk ! kTðXÞkD on geometric realizations. Furthermore,

Lemma A.1. For any cubical manifold X , the map F : kXk ! kTðX ÞkD is a
homeomorphism.

Proof. To construct the inverse mapping C, we prepare notations. Sup-
pose ðx;S1; . . . ;SkÞ with x A Xn and nb k. We take the composite map

mS1;...;Sk
:¼ �jS1jþjS2jþ���þjSk j � � � � � �jS1jþjS2j � �jS1j : Dk ! Dn:

Decompose ðS1; . . . ;SkÞ � ½n� as ðs1; . . . ; snÞ A Nn pointwise. Furthermore, we
regard this ðs1; . . . ; snÞ as a permutation s A Sn and set up another map defined
by

1 : Dn ! I n; ðt 00; . . . ; t 0nÞ 7! ðt 01 þ � � � þ t 0n; t
0
2 þ � � � þ t 0n; . . . ; t

0
n�1 þ t 0n; t

0
nÞ:

Denote by Pn;k the set of k-partitions of ½n� with discrete topology. Then, we
define a map C : Dk � X n � Pn;k ! I n � X n by

Cðt 00; . . . ; tk; x;S1; . . . ;SkÞ :¼ ð1 � s�1 � mS1;...;Sk
ðt 00; . . . ; t 0kÞ; xÞ A I n � X n

Then, by (11)–(13), this C defines a continuous map kTðXÞkD ! kXk. More-
over, it is not hard to check that C �F and F �C are identities by construction.
This completes the proof. r

Following the proof, we can define the pullback C�ðfÞ A Ak;lðTðX ÞÞ of any
form f A Ak;lðX Þ. Moreover, we can similarly verify that

Lemma A.2. The maps F� : A�;�D ðTðXÞÞ ! A�;�D ðXÞ and A�;�
D ðTðX ÞÞ !

A�;�ðXÞ are bigraded ring isomorphisms. Here, the inverse mappings are con-
structed from the pullback C�.

Figure 1. The canonically triangular decompositions of the square and the cube.
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We now use the above lemmas to prove the theorems.

Proof of Theorem 3.3. For any simplicial manifold Y , Dupont [7, Theorem
2.3] constructed a chain map T : Ak;l

D ðYÞ !Ak;l
D ðY Þ which gives a homotopy

equivalence. Hence, when Y ¼ TðX Þ, the composite F� �T �C� : A�;�ðX Þ !
A�;�ðXÞ plays a role of the desired chain-map. r

Proof of Theorem 3.5. Dupont [7, Theorem 2.14] considered the map in the

Ey-term induced from T : Ak;l
D ðYÞ !Ak;l

D ðY Þ, and the induced map A�DðY Þ !
A�DðkYkÞ is multiplicative. The above maps F and C are multiplicative by
definitions. Thus, the map in the Ey-term induced from F� �T �C� is also
multiplicative. This completes the proof. r

B. Some computation of quandle homology of smooth quandles

In this section, we will compute rack quandle homology of ‘‘linear’’ quandles.
Fix o A Rnf0; 1g and n A N. Let us assume that X is either a quandle on Rn

with xk y ¼ oxþ ð1� oÞy or a quandle on ðR=ZÞn with xk y ¼ 2y� x.
(cf. the classification of smooth homogenous manifolds of dimensiona 2; see
Ishikawa [16, §6]).

Proposition B.1. If o0G1 and o A Q, HR
2 ðX ;ZÞ is Z. On the other

hand, if o ¼ �1, HR
2 ðX ;ZÞ is isomorphic to ðRn5Q RnÞlZ.

If X ¼ ðR=ZÞn with xk y ¼ 2y� x, then HR
2 ðX ;ZÞ is isomorphic to

ðR=QÞn5Q ðR=QÞn lZ.

The key for the proof is the result of Clauwens [5]. Precisely, the paper com-
puted the rack homology from the isomorphism

HR
2 ðX ;ZÞGZl

X nZ X

fxn y� oyn xgx;y AX
; nða; bÞ 7! ðn; ½ða� bÞn b�Þ:ð14Þ

Proof. We will compute the right hand side in details. Recall elementary
computations

Q=ZnQ=Z ¼ 0; QnZ QGQ; and RnZ RGRnQ R:ð15Þ

Hence, if X ¼ Rn with o0G1, one has HR
2 ðX ;ZÞGZ, because xn y ¼

oxnoy ¼ o2xn y in (14). On the other hand, if o ¼ �1, the right hand
side of (14) turns out to be the exterior product as stated above.

Finally, we consider X ¼ ðR=ZÞn with xk y ¼ 2y� x. Notice R=ZG
Q=Zl ð0

l
QÞ as a Z-module, where l runs over an uncountable index set.

Thus, R=QG0
l
Q. Thus, the computation of HR

2 ðX ;ZÞ immediately follows
from (14) and (15). r
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Corollary B.2. Let Q ¼ R2 be the quandle with xk y ¼ 2y� x. Then,
the map C : Q2 ! R which takes ððx1; y1Þ; ðx2; y2ÞÞ to x1 y2 � x2 y1 is a continuous
2-cocycle and is not null-cohomologous.

Proof. Consider the Q-linear map q : R25Q R2 ! R which takes ðx; yÞ5
ðz;wÞ to xw� yz. According to (14), the map C 0 : Q2 ! R25Q R2 which sends
ða; bÞ to ða� bÞ5b gives a universal 2-cocycle. Thus, the composite q � C 0 is not
null-cohomologous. Noticing C ¼ q � C 0 completes the proof. r

Moreover, for a field F , we give a comment on the second cohomology
of XF (cf. Example 7.4). Here, this XF is the quandle on the homogenous set

G=H obteind from G ¼ PSL2ðF Þ, H ¼ 1 a

0 1

� �� �
a AF

and z0 ¼
1 1

0 1

� �
. In

addition, we recall from [24] the Milnor K2-group K2ðF Þ which is isomorphic
to F �nZ F �=fan ð1� aÞga AFnf0;1g. If F ¼ C, K2ðFÞ is known to be uniquely

divisible, i.e., a direct sum of Q’s,

Proposition B.3 (A special result of [24, Corollary 8.5]). If F ¼ C, then
HR

2 ðXF ;ZÞGZlClK2ðCÞ.
Furthermore, if F ¼ R, then HR

2 ðXF ;ZÞGZlZlRlK2ðCÞþ, where
K2ðCÞþ is the invariant part of K2ðCÞ with respect to the conjugate operation
: C! C.

Concerning quandles on the spheres, W. E. Clark and M. Saito [6] studied
some phenomena of quandle 2-cocycles, together with a relation to knot
invariants.
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