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Abstract

For a fixed integer nb 1, let p ¼ 2nlþ 1 be a prime number with an odd prime

number l, and let F ¼ Fp; l be the real abelian field of conductor p and degree l.

We show that the class number hF of F is odd when 2 remains prime in the real lth

cyclotomic field QðzlÞþ and l is su‰ciently large.

1. Introduction

For an odd prime number p, let h�p be the relative class number of the pth

cyclotomic field QðzpÞ and hþp the class number of the maximal real subfield
QðzpÞþ. For a while, let p ¼ 2lþ 1 with an odd prime number l. Then it is
conjectured that h�p is always odd by Davis [3]. The conjecture implies that hþp
is also odd by a theorem of Kummer (Washington [26, Theorem 10.2]). There
are several results on the conjecture. First Davis [3] showed that h�p is odd

when the prime 2 remains prime in QðzlÞ, namely when 2 is a primitive root
modulo l. After that Estes [4] showed that h�p is odd when 2 remains prime in

the maximal real subfield QðzlÞþ of QðzlÞ. The condition on l is equivalent to
saying (a) that 2 is a primitive root modulo l or (b) that l1 3 mod 4 and the
order of the class 2 mod l in the multiplicative group ðZ=lZÞ� equals ðl� 1Þ=2.
Two alternative proofs are given by Stevenhagen [24] and Metsänkylä [20]. This
result implies that hþp is also odd under the same assumption. At present, this
is the best result on the conjecture so far obtained.

The primary purpose of this paper is to give a generalization of the result
of Estes, Stevenhagen and Metsänkylä on the real class number hþp mentioned
above. We fix an integer nb 1, and deal with prime numbers p of the form p ¼
2nlþ 1 with an odd prime number l. Let F ¼ Fp;l be the real abelian field of
conductor p and degree l. We have F ¼ QðzpÞþ for the case n ¼ 1. We denote
by hN the class number of a number field N in the usual sense. For n ¼ 1 (resp.
2), it is known that hF is odd when 2 is a primitive root modulo l by [3] (resp.
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Metsänkylä [21, Corollary 2]). Recently, we obtain the following more general
result in [15, Theorem 2(II)].

Theorem 1 ([15]). Under the above notation, hF is odd if the following two
conditions are satisfied.

(i) 2 is a primitive root modulo l.
(ii) p ¼ 2nlþ 1 > ð2n� 1Þfð2nÞ.

Here, fð�Þ denotes the Euler function.

Using (a somewhat refined version of ) Theorem 1, we showed in [5, 6] with
the help of computer that for na 30, hF is odd whenever 2 is a primitive root
modulo l except for the case where ðn; lÞ ¼ ð27; 3Þ and p ¼ 163 and that hF
is even for the exceptional case. We shall strengthen this theorem and give the
following generalization of the result of Estes, Stevenhagen and Metsänkylä
on hþp .

Theorem 2. Under the above notation, hF is odd if the following two condi-
tions are satisfied.

(i) 2 remains prime in the real cyclotomic field QðzlÞþ.
(ii) p ¼ 2nlþ 1 > ð2n� 1Þfð2nÞ.

Tables of real abelian fields of prime conductor p < 10000 with even class
number are given in Cornacchia [2] and Koyama and Yoshino [19]. Using these
tables, we see that for each integer n with na 5, there is no prime number p ¼
2nlþ 1 < ð2n� 1Þfð2nÞ for which hF is even. Therefore, we obtain the following
assertion from Theorem 2.

Theorem 3. Under the above notation, let na 5. Then the class number hF
is odd whenever 2 remains prime in the real cyclotomic field QðzlÞþ.

Remark 1. There are several results on indivisibility of hF by an odd prime
number r. Some general results similar to Theorem 1 are obtained for an odd
prime number r in Jakubec, Pasteka and Schinzel [17] and [15] when r is a
primitive root modulo l (a condition corresponding to condition (i) in Theorem
1). In the special case n ¼ 1, it is shown in Jakubec and Trojovsky̆ [18, 25] that
for each prime number r with r < 104, hF is not divisible by r when r remains
prime in QðzlÞþ, which is a generalization of the result of Estes, Stevenhagen and
Metsänkylä on hþp . Thus Theorems 2 and 3 are generalization of the classical
result in another direction. One more type of generalization is given in [14,
Proposition 1] where prime numbers of the form p ¼ 2l f þ 1 are dealt with.

2. Iwasawa module

For a real abelian field F and a prime number r, let Fy=F be the cyclotomic
Zr-extension, and let My=Fy be the maximal pro-r abelian extension unra-
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mified outside r. We denote by GF ¼ GalðMy=FyÞ its Galois group. To show
Theorem 2, it is convenient to study the group GF for the case r ¼ 2. In this
section, we sharpen a result on this group obtained in the previous paper [15].
We work for a general prime number r in this section.

Let p, n, l, F ¼ Fp;l be as in Section 1. We fix a prime number r with
r0 p; l. For a number field N, we denote by hN , ClN and AN the class number,
the ideal class group of N in the usual sense, and the r-part of ClN , respectively.
Let Zr, Qr and Qr be the ring of r-adic integers, the field of r-adic rationals and
a fixed algebraic closure of Qr, respectively. We put D ¼ GalðF=QÞ, which is
a cyclic group of order l. For a Qr-valued character c of D, let QrðcÞ be the
subfield of Qr generated by the values of c over Qr and let Oc ¼ Zr½c� be the
ring of integers of QrðcÞ. For a Qr-valued character c of D, we denote by

ec ¼ 1

jDj
X
d AD

TrQrðcÞ=Qr
ðcðd�1ÞÞd A Zr½D�

the idempotent of Zr½D� corresponding to c, where Tr is the trace map. For
a Zr½D�-module M (such as GF , AF ), let MðcÞ ¼ Mec (or ecM) be its c-part,
which we naturally regard as an Oc-module. Let FF be a fixed complete set of
representatives of the Qr-conjugacy classes of the non-trivial Qr-valued characters
of D. Then we have

X
w AFF

ew þ ew0 ¼ 1Dð1Þ

where w0 is the trivial character of D and 1D is the identity element of D. It
follows from (1) that

AF ¼ 0
w AFF

AF ðwÞð2Þ

since AF ðw0Þ ¼ AQ is trivial. It is known that GF ðw0Þ ¼ GQ is also trivial ([15,
Lemma 1(II)]). Hence, it follows from (1) that

GF ¼ 0
w AFF

GF ðwÞ:ð3Þ

In this section, we prove the following theorem by slightly modifying the
proof of [15, Theorem 1].

Theorem 4. Under the above setting, assume that

p > maxððrn� 2Þfð2nÞ; 2n�1nðr� 1ÞÞ or p > ð2n� 1Þfð2nÞ

according as rb 3 or r ¼ 2. Then there exists some w A FF such that GF ðwÞ is
trivial.

The following corollary is a main result in [15].
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Corollary 1 ([15, Theorem 1]). Under the setting and assumption of
Theorem 4, assume further that r is a primitive root modulo l. Then GF ¼ f0g.

Proof. The assertion follows from Theorem 4 and (3) because FF consists
of just one character when r is a primitive root modulo l. r

In [15, Theorem 1], we assumed one more condition for the case r ¼ 2 that 2
does not split in F . However, this assumption is not necessary because of the
following lemma:

Lemma 1. The prime number 2 does not split in F if p > ð2n� 1Þfð2nÞ.

Proof. Assume that 2 splits in F . Then it follows that 22n 1 1 mod p, and
hence that p divides 2n þ 1 or 2n � 1. In particular, we obtain p < 2n because
the case p ¼ 2n þ 1 does not happen as p ¼ 2nlþ 1. It follows that n > 1. We
see from p < 2n and the assumption of the lemma that

2 > ð2n� 1Þmn with mn ¼ fð2nÞ=n:ð4Þ

First we deal with the case where n ð> 1Þ is odd. Let p1; . . . ; pt be the (odd)
prime numbers dividing n. We can easily show that

mn ¼
Yt
i¼1

1� 1

pi

� �
b

Yt

i¼1

1� 1

2i þ 1

� �
b

2

3t
:

Then we observe that

ð2n� 1Þmn > ðp1 � � � ptÞmn b ð3 tÞ2=3t ¼
ffiffiffi
9

3
p

> 2

and that the inequality (4) does not hold. When n is even, it is shown similarly.
r

To prove Theorem 4, we first recall some notation and results in [15]. Let w
be a character in FF , which is often regarded as a primitive Dirichlet character.
It is known that the Ow-module GF ðwÞ is finitely generated and free over Ow. For
this, see [15, Lemma 1(I)] for instance (and Remark 2 at the end of this section).
Iwasawa constructed a power series gwðTÞ A Ow½½T �� related to the Kubota-
Leopoldt r-adic L-function Lrðs; wÞ with

gwðð1þ ~rrpÞs � 1Þ ¼ 1

2
Lrðs; wÞ

for s A Zr (see [26, Theorem 7.10]). Here, ~rr ¼ r or 4 according as rb 3 or r ¼ 2.
It is known that the power series gwðTÞ is not divisible by r, which follows from
Theorems 7.13–7.15 of [26]. We denote by l�

w the lambda invariant of the power

series gwðTÞ. We have GF ðwÞGO
ll�

w
w by virtue of the Iwasawa main conjecture.

For the Iwasawa main conjecture and several of its equivalent forms, see Gillard
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[7, §6], Greither [9]. Thus we obtain the equivalence

GF ðwÞ ¼ f0g , l�
w ¼ 0ð5Þ

for each w A FF .
For a number field N, let N̂N ¼

Q
} N} be the product of the completions

of N at the prime ideals } of N over r, and put ÔON ¼
Q

} O} where O} is the ring
of integers of N}. Denote by UN the subgroup of the multiplicative group
ÔO�
N consisting of elements ðx}Þ} with x} 1 1 mod m} for all } where m} is the

maximal ideal of O}. Namely, UN is the group of semi-local principal units
of N at r. We regard N as embedded in N̂N diagonally. In the following, we
abbreviate UF simply to U. Let CF be the group of cyclotomic units of F in
the sense of Sinnott (the one denoted by C1 in [23, page 209]), and let C be the
topological closure of CF \U in U. In [15, Lemma 2], we showed that the
equivalence

l�
w b 1 , CðwÞ � UðwÞrð6Þ

holds for each w A FF when rb 3 or when r ¼ 2 and 2 does not split in F by
using some results in [7].

Let L ¼ QðzpÞ, and let OL be the ring of integers of L. We choose and fix a
primitive root g modulo p, and we put

x ¼ xn ¼
Yn�1

a¼0

ðzg la

p þ 1Þ;

which is a cyclotomic unit of L.
As L=Q is unramified at r ð0 pÞ, we can define the Frobenius automorphism

f ¼ fr of L at the prime r. By definition, it satisfies a f 1 a r mod rOL for every
a A OL. The following lemma is shown in [15, Lemma 4].

Lemma 2. Let a A OL be such that a A ðL̂L�Þr. Then a f 1 ar mod r2OL.

Lemma 3. Assume that rb 3 or that r ¼ 2 and 2 does not split in F .
Assume further that the w-part GF ðwÞ is non-trivial for all w A FF . Then the
cyclotomic unit x ¼ xn satisfies the congruence

x f 1
x r mod r2OL; when rb 3;

Gx2 mod 4OL; when r ¼ 2:

�

Proof. As gln 1�1 mod p, we observe that

NrL=F ðzp þ 1Þ ¼
Y2n�1

a¼0

ðzg la

p þ 1Þ ¼
Yn�1

a¼0

ðzg la

p þ 1Þðzg lðaþnÞ

p þ 1Þ

¼
Yn�1

a¼0

ðzg la

p þ 1Þðz�g la

p þ 1Þ ¼ z2xp x2
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for some integer x A Z. Here, Nr denotes the norm map. Hence we see that
x 0 ¼ zxp x A C ¼ CF from the definition of Sinnott’s C1. As r0 p, it follows that
x (resp. �x) is an rth power in L̂L if and only if so is x 0 (resp. �x 0).

Assume that GF ðwÞ is non-trivial for all w A FF . Then, by (5) and (6), we
observe that CðwÞ � Ur for all w A FF . On the other hand, we see from (1) that

l � 1D � TrD ¼ l
X
w AFF

ew with TrD ¼
X
d AD

d:

It follows that x 0l or �x 0l is contained in l wCðwÞ and hence in Ur according
as x 0TrD ¼ NrF=Qðx 0Þ ¼ 1 or �1. As r0 l, this implies that x 0 or �x 0 is an rth
power in U and hence in L̂L. Noting that �1 ¼ ð�1Þr for rb 3, we observe that
x is an rth power in L̂L for rb 3 and that x or �x is a square in L̂L for r ¼ 2.
Now the assertion follows from Lemma 2. r

Proof of Theorem 4. We already proved that the congruence in Lemma 3
does not hold under the assumption of Theorem 4 in [15, §4]. (See Proofs of
Theorems 2 and 3 for the case n ¼ 1 and Proofs of Theorems 2 and 3 for the
case n > 1 in [15, §4].) Hence, we obtain Theorem 4 from Lemma 3 noting that
when r ¼ 2, 2 does not split in F because of Lemma 1. r

Remark 2. The group GF is naturally regarded as a module over the com-
pleted group ring L ¼ Zr½½GalðFy=F Þ��. In the proof of [15, Lemma 1(I)], we
have used the fact that the L-module GF has no non-trivial finite L-submodule.
For this fact, we should have referred to Greenberg [8, Theorem] not only to
Iwasawa [16, Theorem 18].

3. Proof of Theorem 2

We begin with the following corollary of Theorem 4 for a general prime
number r.

Corollary 2. Under the setting and assumption of Theorem 4, AF ðwÞ is
trivial for some w A FF .

Proof. This follows immediately from Theorem 4 because the cyclotomic
Zr-extension Fy=F is totally ramified at r. r

In the case r ¼ 2, we can derive from Theorem 4 the following stronger
consequence. Let k be the imaginary subfield of L ¼ QðzpÞ of degree a power of
2, and put K ¼ k � F . We denote by A�

K the kernel of the norm map AK ! AKþ ,
which we naturally regard as a module over D. Here, Kþ is the maximal real
subfield of K .

Remark 3. In other literatures such as [9], minus class group of an imag-
inary abelian field K is defined to be the kernel A�

K of the map 1þ J : AK ! AK
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where J denotes the complex conjugation. Clearly A�
K � A�

K . In general, these
two class groups do not necessarily coincide. However, in our setting where K ¼
k � F is a subfield of QðzpÞ, we have A�

K ¼ A�
K . This is because the natural map

AKþ ! AK is injective in the setting for instance by [10, Lemma 2] together with
[26, Theorem 10.4(b)].

Proposition 1. Let r ¼ 2. (I) Let w be a character in FF , and assume
that GF ðwÞ is trivial. Then both of AF ðwÞ and AF ðw�1Þ are trivial, and A�

K ðw�1Þ is
trivial.

(II) In particular, under the assumption of Theorem 4, both of AF ðwÞ and
AF ðw�1Þ are trivial for some w A FF .

Proof of Theorem 2. We see that condition (i) of Theorem 2 implies that
FF ¼ fwg or fw; w�1g for some w. Hence, Theorem 2 follows from Proposition
1(II) and (2). r

To show Proposition 1, we need some preliminaries. Let W=F be the max-
imal abelian extension over F of exponent 2, and let G ¼ GalðW=FÞ. Let V ¼
F �=ðF �Þ2. We denote by ½v� the class in V containing an element v A F �. The
groups G and V are naturally regarded as modules over D ¼ GalðF=QÞ. The
Kummer pairing

G � V ! fG1g; ðg; ½v�Þ ! hg; vi ¼ ð
ffiffiffi
v

p
Þg�1

is nondegenerate and satisfies hgd; vdi ¼ hg; vi for g A G, ½v� A V and d A D. It
follows that the subpairing

GðwÞ � Vðw�1Þ ! fG1gð7Þ

is also nondegenerate for each w A FF . Let WðwÞ be the subextension of W=F
corresponding to

Q
w 0 Gðw 0Þ � Gðw0Þ by Galois theory where w 0 runs over the

characters in FF with w 0 0 w. Then GalðWðwÞ=F Þ is naturally isomorphic to
GðwÞ. The pairing (7) implies that

WðwÞ ¼ F ð
ffiffiffi
v

p
j ½v� A Vðw�1ÞÞ:ð8Þ

We see that WðwÞ \ Fy ¼ F since w is non-trivial. In particular, Fyð
ffiffiffi
v

p
Þ=Fy is a

quadratic extension for ½v� A Vðw�1Þ with v B ðF �Þ2. Similary to WðwÞ, we define
MyðwÞ to be the subextension of My=Fy corresponding to

Q
w 0 GF ðw 0Þ � GF ðw0Þ

by Galois theory so that GalðMyðwÞ=FyÞ ¼ GF ðwÞ.
Let E ¼ EF be the group of units of F , and let Eþ be the subgroup of E

consisting of totally positive units. Clearly, we have E2 � Eþ. It is known that
ðE=E2ÞðwÞGO=2O for each w A FF by a theorem on units of a Galois extension
(Narkiewicz [22, Theorem 3.26a]). Therefore, from the exact sequence

0 ! Eþ=E
2 ! E=E2 ! E=Eþ ! 0;

we obtain the following:

105class number parity of an abelian field



Lemma 4. For each w A FF , either ðE=EþÞðwÞGO=2O or ðEþ=E
2ÞðwÞG

O=2O holds.

Let ~AAF be the 2-part of the class group of F in the narrow sense, and let F �
>0

be the subgroup of F � consisting of totally positive elements. Then we have the
following exact sequence compatible with the action of D.

0 ! F �=EF �
>0 ! ~AAF ! AF ! 0:ð9Þ

Proof of Proposition 1. It su‰ces to show the assertion (I) by virtue of
Theorem 4. Let w A FF , and assume that GF ðwÞ is trivial. Then we see that
AF ðwÞ is trivial since the extension Fy=F is totally ramified at r ¼ 2.

Let us first show that

ðE=EþÞðw�1ÞGO=2O:ð10Þ

In view of Lemma 4, assume to the contrary that ðEþ=E
2Þðw�1ÞGO=2O. Then

there exists a unit e such that ½e� A ðEþ=E
2Þðw�1Þ and e B ðF �Þ2. We observe

that the quadratic extension F ð
ffiffi
e

p
Þ=F is unramified outside 2 as e is a totally

positive unit and that Fð
ffiffi
e

p
Þ � WðwÞ by (8). It follows that Fyð

ffiffi
e

p
Þ=Fy is a

quadratic extension and contained in MyðwÞ. However, this is impossible as
GF ðwÞ ¼ GalðMyðwÞ=FyÞ is trivial.

To show that AF ðw�1Þ is trivial, let us assume to the contrary that AF ðw�1Þ
is non-trivial. Then there exists an ideal A of F such that the ideal class c ¼ ½A�
is contained in AF ðw�1Þ and the order of c is 2. We have A2 ¼ aOF for some
a A F �. We may as well assume that ½a� A Vðw�1Þ. Further, because of (10),
we may as well assume that a is totally positive by replacing a with ha for some
unit h with ½h� A ðE=EþÞðw�1Þ ¼ ðE=E2Þðw�1Þ. Then we see that Fð

ffiffiffi
a

p
Þ=F is a

quadratic extension because the order of the ideal class c is 2, and that it is un-
ramified outside 2 and F ð

ffiffiffi
a

p
Þ � WðwÞ by (8). Hence, Fyð

ffiffiffi
a

p
Þ=Fy is a quadratic

extension with Fyð
ffiffiffi
a

p
Þ � MyðwÞ. This is impossible as GF ðwÞ is trivial. Thus

we have shown that AF ðw�1Þ ¼ f0g.
Finally, let us show that A�

K ðw�1Þ is trivial. To show this, it su‰ces to show
that ~AAF ðw�1Þ is trivial by [11, Theorem 2]. We already know that AF ðw�1Þ is
trivial. Further we see that ðF �=EF �

>0Þðw�1Þ is trivial by (10). Therefore, it
follows from the exact sequence (9) that ~AAF ðw�1Þ is trivial. r

4. Alternative proof for the case n ¼ 1; 3

In this section, we give an alternative proof of Theorem 3 for the case n ¼ 1
or 3. We start with a general setting, and we show an assertion on the minus
class group analogous to Corollary 2. Let nb 1 be a fixed odd integer, and let
p ¼ 2nlþ 1 be a prime number with an odd prime number l. As p1 3 mod 4,
k ¼ Qð ffiffiffiffiffiffiffi�p

p Þ � QðzpÞ. Let F ¼ Fp;l be as in the previous sections, and put
K ¼ Fk. We naturally identify D ¼ GalðF=QÞ with GalðK=kÞ. Let r be a prime
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number with r0 p; l, and let A�
K be the kernel of the norm map AK ! AKþ .

We can naturally regard A�
K as a module over Zr½D�. The following assertion

sharpens [13, Theorem 2].

Proposition 2. Under the above setting, assume that rb n� 1. Then A�
K ðwÞ

is trivial for some w A FF .

Alternative proof of Theorem 3 for the case n ¼ 1 and 3. Let r ¼ 2. It is
shown in Cornacchia [1, Theorem 1] that both of AF ðwÞ and AF ðw�1Þ are trivial
if and only if at least one of A�

K ðwÞ and A�
K ðw�1Þ is trivial. (An alternative proof

is given in [12, Theorem 4].) Assume that 2 remains prime in QðzlÞþ, namely
that condition (i) in Theorem 2 is satisfied. Then we have FF ¼ fwg or fw; w�1g
for some w. We can apply Proposition 2 to the case r ¼ 2 as n ¼ 1 or 3, and we
see that A�

K ðwÞ or A�
K ðw�1Þ is trivial for the above w. Hence the assertion follows

from [1, Theorem 1] mentioned above. r

Proof of Proposition 2. For each w A FF , we put

bw ¼
1

2
B1; dw ¼

1

2p

Xp�1

a¼1

adðaÞwðaÞ A QrðzlÞ

where d is the quadratic character associated to k ¼ Qð ffiffiffiffiffiffiffi�p
p Þ. We have

jA�
K ðwÞj ¼ jOw=bw�1Owjð11Þ

by virtue of the Iwasawa main conjecture ([9, Theorem A]).
First let us deal with the case where n ¼ 1 (and p ¼ 2lþ 1). Let g be an

arbitrary primitive root modulo p. For an integer x A Z, spðxÞ A Z denotes the
unique integer such that spðxÞ1 x mod p and 0a spðxÞa p� 1. As n ¼ 1, we
easily see that

fa j 1a aa p� 1g ¼ fspðg2uþlvÞ j 0a ua l� 1; v ¼ 0; 1g:

Then, noting that gl 1�1 mod p and that d is odd, we observe that

bw ¼
1

2p

Xl�1

u¼0

X1

v¼0

spðg2uþlvÞdðglvÞwðg2uÞ

¼ 1

2p

Xl�1

u¼0

ðspðg2uÞ � spð�g2uÞÞwðg2uÞ

¼ 1

p

Xl�1

u¼0

spðg2uÞwðg2Þu A QrðzlÞ:

Here, the third equality holds because spð�xÞ ¼ p� spðxÞ for an integer x with
pF x. Since p ¼ 2lþ 1, we can choose g ¼ 2 or �2 according as p1 3 or
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7 mod 8. Therefore, putting

GðTÞ ¼
Xl�1

u¼0

spð4uÞT u;ð12Þ

we obtain from the above that

bw ¼
1

p
GðzlÞ with zl ¼ wð4Þ:ð13Þ

On the coe‰cients spð4uÞ of the polynomial GðTÞ, let us show that

gcdðspð4uÞ � 1 j 1a ua l� 1Þ ¼ 1:ð14Þ

We have p ¼ 7; 11; 23; 47; . . . as p ¼ 2lþ 1. As h�p ¼ 1 for p ¼ 7 or 11, we may
as well assume that pb 23. Then, since spð4uÞ ¼ 4 and 16 for u ¼ 1 and 2
respectively, we see that the gcd equals 1 or 3. If the gcd equals 3, then we
see that for 1a ua l� 1, spð4uÞ ¼ 1þ 3cu with some integer cu. We see that
cu 0 cu 0 if u0 u 0 because the order of the class 4 mod p in the multiplica-
tive group ðZ=pZÞ� is l. Further, the integer cu necessarily satisfies 1a cu a
ðp� 1Þ=3 for each 1a ua l� 1. However, this is impossible because ðp� 1Þ=3
< l� 1. Thus (14) is shown.

Now assume that A�
K ðwÞ is non-trivial for all w A FF . Then it follows from

(11) and (13) that Gðwð4ÞÞ1 0 mod rZr½zl� for all w A FF . This implies that
GðTÞ is a multiple of the lth cyclotomic polynomial FlðTÞ in Fr½T � where
Fr ¼ Z=rZ. Therefore, it follows from (12) that spð4uÞ1 1 mod r for all 1a ua
l� 1. However, this is impossible by (14). Thus we have shown that A�

K ðwÞ is
trivial for some w.

Next let nb 3. Formulas corresponding to (12)–(14) are already obtained
in [13]. Let us recall them to deal with the case nb 3. We write n ¼ qls for
some integer q with lF q and some sb 0, so that p ¼ 2qlsþ1 þ 1. Let g be
an arbitrary primitive root modulo p, and set e ¼ g2q and h ¼ g2l

sþ1

. For each
0a ua l� 1, we put

eu ¼
1

p

Xq�1

b¼0

Xl s�1

v¼0

spðhbelvþuÞ:

We see that eu A Z because n ¼ ql s b 3 and the elements hbelv mod p in the sum
with 0a ba q� 1 and 0a va ls � 1 are the nth roots of unity in the multi-
plicative group ðZ=pZÞ�. Further we have

1a eu a n� 1ð15Þ
by [13, eq (8)]. We put

HðTÞ ¼
Xl�1

u¼0

euT
u A Z½T �:ð16Þ
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Similarly to (13), we have

bw ¼ HðzlÞ with zl ¼ wðeÞð17Þ

by [13, eq (6)]. Here note that wðeÞ is actually a primitive lth root of unity
because the order of w is l and the order of e ¼ g2q mod p in the multiplicative
group ðZ=pZÞ� is lsþ1 ¼ ðp� 1Þ=2q.

Now assume that rb n� 1 and that A�
K ðwÞ is non-trivial for all w A FF .

Then, by (11) and (17), we have HðwðeÞÞ1 0 mod rZr½zl� for all w A FF . This
implies that HðTÞ is a multiple of FlðTÞ in Fr½T �. It follows from (16) that
eu 1 e0 mod r for all 1a ua l� 1. This congruence implies the equality eu ¼ e0
for all 1a ua l� 1 because of the inequality (15) and rb n� 1. Now it fol-
lows from (16) and (17) that bw ¼ 0. However, this is impossible because it is
well known that bw 0 0 (see [26, page 38]). r

Remark 4. Now we have five (!) di¤erent proofs for the classical theorem
of Estes [4] on hþp for prime numbers of the form p ¼ 2lþ 1; three proofs due
to Estes himself, Stevenhagen and Metsänkylä, respectively, and two ones given
in this paper.

Acknowledgement. The author is grateful to the referee for valuable com-
ments, thanks to which he added Remarks 2 and 3.
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[21] T. Metsänkylä, On the parity of the class numbers of real abelian fields, Acta Math. Info.

Univ. Ostraviernsis 6 (1998), 159–166.

[22] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 3rd ed., Springer,

Berlin, 2004

[23] W. Sinnott, On the Stickelberger ideal and circular units of an abelian field, Invent. Math.

62 (1980), 181–234.

[24] P. Stevenhagen, Class number parity of the pth cyclotomic field, Math. Comp. 63 (1994),

773–784.
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