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NOTE ON CLASS NUMBER PARITY OF AN ABELIAN FIELD
OF PRIME CONDUCTOR, II

Humio ICHIMURA

Abstract

For a fixed integer n > 1, let p =2n/ + 1 be a prime number with an odd prime
number /, and let F = F, , be the real abelian field of conductor p and degree /.
We show that the class number /g of F is odd when 2 remains prime in the real /th
cyclotomic field Q({,)" and ¢ is sufficiently large.

1. Introduction

For an odd prime number p, let /1, be the relative class number of the pth
cyclotomic field Q({,) and h; the class number of the maximal real subfield
Q(Cp)+. For a while, let p =2/ + 1 with an odd prime number /. Then it is
conjectured that /2, is always odd by Davis [3]. The conjecture implies that h]f
is also odd by a theorem of Kummer (Washington [26, Theorem 10.2]). There
are several results on the conjecture. First Davis [3] showed that &, is odd
when the prime 2 remains prime in Q((,), namely when 2 is a primitive root
modulo /. After that Estes [4] showed that /1, is odd when 2 remains prime in
the maximal real subfield Q({,)* of Q({,). The condition on / is equivalent to
saying (a) that 2 is a primitive root modulo / or (b) that / = 3 mod 4 and the
order of the class 2 mod 7 in the multiplicative group (Z//Z)” equals (£ —1)/2.
Two alternative proofs are given by Stevenhagen [24] and Metsdnkyld [20]. This
result implies that h; is also odd under the same assumption. At present, this
is the best result on the conjecture so far obtained.

The primary purpose of this paper is to give a generalization of the result
of Estes, Stevenhagen and Metsinkyld on the real class number 4 mentioned
above. We fix an integer n > 1, and deal with prime numbers p of the form p =
2n/ + 1 with an odd prime number /. Let F' = F,, be the real abelian field of
conductor p and degree /. We have F = Q(Cp)+ for the case n = 1. We denote
by iy the class number of a number field N in the usual sense. For n =1 (resp.
2), it is known that Ar is odd when 2 is a primitive root modulo / by [3] (resp.
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Metsénkyld [21, Corollary 2]). Recently, we obtain the following more general
result in [15, Theorem 2(II)].

THEOREM 1 ([15]). Under the above notation, hr is odd if the following two
conditions are satisfied.

(i) 2 is a primitive root modulo /.

(i) p=2n/+1> 2n—1)".
Here, ¢(x) denotes the Euler function.

Using (a somewhat refined version of) Theorem 1, we showed in [5, 6] with
the help of computer that for n < 30, /ip is odd whenever 2 is a primitive root
modulo / except for the case where (n,/) = (27,3) and p =163 and that hp
is even for the exceptional case. We shall strengthen this theorem and give the
following generalization of the result of Estes, Stevenhagen and Metsdnkyld
on h.

THEOREM 2. Under the above notation, hg is odd if the following two condi-
tions are satisfied.

(i) 2 remains prime in the real cyclotomic field Q((,)™.

(i) p=2n/+1> 2n—1)"

Tables of real abelian fields of prime conductor p < 10000 with even class
number are given in Cornacchia [2] and Koyama and Yoshino [19]. Using these
tables, we see that for each integer n with n < 5, there is no prime number p =
2t +1 < (2n—1)"® for which hy is even. Therefore, we obtain the following
assertion from Theorem 2.

THEOREM 3. Under the above notation, let n < 5. Then the class number hg
is odd whenever 2 remains prime in the real cyclotomic field Q({,)™.

Remark 1. There are several results on indivisibility of 4y by an odd prime
number r. Some general results similar to Theorem 1 are obtained for an odd
prime number r in Jakubec, Pasteka and Schinzel [17] and [15] when r is a
primitive root modulo / (a condition corresponding to condition (i) in Theorem
1). In the special case n = 1, it is shown in Jakubec and Trojovsky [18, 25] that
for each prime number r with r < 104, Ay is not divisible by r when r remains
prime in Q({,)", which is a generalization of the result of Estes, Stevenhagen and
Metsénkyld on /7. Thus Theorems 2 and 3 are generalization of the classical
result in another direction. One more type of generalization is given in [14,
Proposition 1] where prime numbers of the form p =2// 4+ 1 are dealt with.

2. Iwasawa module

For a real abelian field F and a prime number r, let F, /F be the cyclotomic
Z,-extension, and let M, /F, be the maximal pro-r abelian extension unra-
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mified outside r. We denote by 9r = Gal(M,/F,,) its Galois group. To show
Theorem 2, it is convenient to study the group %r for the case r =2. In this
section, we sharpen a result on this group obtained in the previous paper [15].
We work for a general prime number r in this section.

Let p, n, {/, F=F,, be as in Section 1. We fix a prime number r with
r # p,/. For a number field N, we denote by &y, Cly and Ay the class number,
the ideal class group of N in the usual sense, and the r-part of Cly, respectively.
Let Z,, Q, and Q, be the ring of r-adic integers, the field of r-adic rationals and
a fixed algebraic closure of Q,, respectively. We put A = Gal(F/Q), which is
a cyclic group of order /. For a Q,-valued character y of A, let Q,(y) be the
subfield of Q, generated by the values of Y over Q, and let Oy = Z,[y] be the
ring of integers of Q,(y). For a Q,-valued character  of A, we denote by

1 —
W= XZTrQrw/)/Q,(W(& Mo e Z,[A]
| |56A

the idempotent of Z,[A] corresponding to ¥, where Tr is the trace map. For
a Z.[A]-module M (such as %p, Ar), let M(y) = M (or e, M) be its y-part,
which we naturally regard as an ()y-module. Let ®p be a fixed complete set of
representatives of the Q,-conjugacy classes of the non-trivial Q,-valued characters
of A. Then we have

(1 S e e, — L
x€DPF

where y, is the trivial character of A and 1, is the identity element of A. It
follows from (1) that

2) Ar= @ 4r(x)

LEDF

since Ap(yy) = Ag is trivial. It is known that %r(y,) = % is also trivial ([15,
Lemma 1(IT)]). Hence, it follows from (1) that

3) Gr= D 9r(x)-

2€Dp

In this section, we prove the following theorem by slightly modifying the
proof of [15, Theorem 1].

THEOREM 4. Under the above setting, assume that
p>max((m—2)" 2" n(r = 1)) or p>(@2n—1)""

according as r >3 or r=2. Then there exists some y € Op such that Gr(y) is
trivial.

The following corollary is a main result in [15].
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CorOLLARY 1 ([15, Theorem 1]). Under the setting and assumption of
Theorem 4, assume further that r is a primitive root modulo (. Then 9r = {0}.

Proof. The assertion follows from Theorem 4 and (3) because ®r consists
of just one character when r is a primitive root modulo /. O

In [15, Theorem 1], we assumed one more condition for the case r = 2 that 2
does not split in F. However, this assumption is not necessary because of the
following lemma:

LemMA 1. The prime number 2 does not split in F if p > (2n — 1)¢(2">.

Proof. Assume that 2 splits in F. Then it follows that 2 = 1 mod p, and
hence that p divides 2" + 1 or 2” — 1. In particular, we obtain p < 2" because
the case p = 2" + 1 does not happen as p = 2n/ + 1. It follows that n > 1. We
see from p < 2" and the assumption of the lemma that

(4) 2> (2n—1)" with m, = ¢(2n)/n.

First we deal with the case where n (> 1) is odd. Let py,..., p, be the (odd)
prime numbers dividing n. We can easily show that

m”:ﬂ( ) ﬁ( 2z+1) %

i=1 i=1

Y

Then we observe that
@n=1)" > (1 p)"™ = (3N =0 >2

and that the inequality (4) does not hold. When # is even, it is shown similarly.

O

To prove Theorem 4, we first recall some notation and results in [15]. Let y
be a character in @y, which is often regarded as a primitive Dirichlet character.
It is known that the ¢,-module %x(x) is finitely generated and free over ¢,. For
this, see [15, Lemma 1( )] for instance (and Remark 2 at the end of this section).
Iwasawa constructed a power series g¢,(7T) € O,[[T]] related to the Kubota-
Leopoldt r-adic L-function L,(s,y) with

91 +70)° — 1) = 3 L(5.2)

for s € Z, (see [26, Theorem 7.10]). Here, 7 = r or 4 according as r > 3 or r = 2.
It is known that the power series g,(7) is not divisible by r, which follows from
Theorems 7.13-7.15 of [26]. We denote by 4, the lambda invariant of the power
series ¢,(7T). We have 9p(y) = Cf « by Vlrtue of the Iwasawa main conjecture.
For the Iwasawa main conjecture and several of its equivalent forms, see Gillard
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[7, §6], Greither [9]. Thus we obtain the equivalence
() (1) ={0} & 2, =0

for each y € ®p.

For a number field N, let N = H( N, be the product of the completlons
of N at the prime ideals p of N over r, and put Oy = H O, where 0, is the ring
of integers of N,. Denote by %y the subgroup of the multiplicative group
Oy consisting of elements (x,), with x, =1 mod m,, for all o where m,, is the
maximal ideal of ¢, Namely, %y is the group of semi-local principal units
of N at r. We regard N as embedded in N diagonally. In the following, we
abbreviate % simply to %. Let Cr be the group of cyclotomic units of F in
the sense of Sinnott (the one denoted by C; in [23, page 209]), and let € be the
topological closure of CF,N% in %. In [15, Lemma 2|, we showed that the
equivalence

(6) dy 21 e C(x) CUx)

holds for each y € ®F when r > 3 or when » =2 and 2 does not split in F by
using some results in [7].

Let L = Q((,), and let (7 be the ring of integers of L. We choose and fix a
primitive root g modulo p, and we put

n—1

t=é =l +,

a=0

which is a cyclotomic unit of L.

As L/Q is unramified at r (# p), we can define the Frobenius automorphism
f=1, of L at the prime r. By definition, it satisfies «' = o mod r(@; for every
o€ Op. The following lemma is shown in [15, Lemma 4].

LEmMMA 2. Let o€ O be such that o€ (L*)". Then o = o” mod r?0y.

LemMMA 3. Assume that r >3 or that r=2 and 2 does not split in F.
Assume further that the y-part Gg(y) is non-trivial for all y € ®p. Then the
cyclotomic unit & = ¢, satisfies the congruence

o= {f’ mod 20y,  when r >3,
T +¢£% mod 40;, when r=2.

Proof. As g/" = —1 mod p, we observe that

2n—1

NrL/F(Cp + 1) = H (C;]/" -+ 1)

a=0

:H@" +DEG ) =

1

&+

N
|

/(a+n)

I}
Il
=)
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for some integer x € Z. Here, Nr denotes the norm map. Hence we see that
& —C ¢ e C = Cr from the deﬁmtlon of Sinnott’s C;. As r # p, it follows that
4 (resp —¢) is an rth power in L if and only if so is & (resp. —¢&).

Assume that %p(y) is non-trivial for all y € ®r. Then, by (5) and (6), we
observe that €(y) C #" for all y € ®r. On the other hand, we see from (1) that

(1a—Tra=() e, with Tra=» 0.

1€QF oeA

It follows that ¢ or —¢” is contained in @ ,%(y) and hence in %" according
as &M = Nrp/(¢') =1 or —1. As r#/, this implies that ¢’ or —¢' is an rth
power in % and hence in L. Noting that —1 = (—1)" for r > 3, we observe that
¢ is an rth power in L for r >3 and that ¢ or —¢ is a square in L for r = 2.
Now the assertion follows from Lemma 2. O

Proof of Theorem 4. We already proved that the congruence in Lemma 3
does not hold under the assumption of Theorem 4 in [15, §4]. (See Proofs of
Theorems 2 and 3 for the case n =1 and Proofs of Theorems 2 and 3 for the
case n > 1 in [15, §4].) Hence, we obtain Theorem 4 from Lemma 3 noting that
when r =2, 2 does not split in F because of Lemma 1. O

Remark 2. The group % is naturally regarded as a module over the com-
pleted group ring A = Z,[[Gal(F,,/F)]]. In the proof of [15, Lemma I(I)], we
have used the fact that the A-module %r has no non-trivial finite A-submodule.
For this fact, we should have referred to Greenberg [8, Theorem] not only to
Iwasawa [16, Theorem 18].

3. Proof of Theorem 2

We begin with the following corollary of Theorem 4 for a general prime
number r.

COROLLARY 2. Under the setting and assumption of Theorem 4, Ap(y) is
trivial for some y € O.

Proof. This follows immediately from Theorem 4 because the cyclotomic
Z,-extension F, /F is totally ramified at r. O

In the case » =2, we can derive from Theorem 4 the following stronger
consequence. Let k be the imaginary subfield of L = Q({,) of degree a power of
2,and put K =k-F. We denote by Ay the kernel of the norm map Ax — Ak,
which we naturally regard as a module over A. Here, K* is the maximal real
subfield of K.

Remark 3. In other literatures such as [9], minus class group of an imag-
inary abelian field K is defined to be the kernel Ay of the map 1+ J: Ax — Ak
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where J denotes the complex conjugation. Clearly Ay C Ax. In general, these
two class groups do not necessarily coincide. However, in our setting where K =
k- F is a subfield of Q({,), we have Ay = Ag. This is because the natural map
Ag+ — Ak is injective in the setting for instance by [10, Lemma 2] together with
[26, Theorem 10.4(b)].

ProposITION 1. Let r=2. (1) Let y be a character in ®p, and assume
that 9r(y) is trivial.  Then both of Ar(y) and Ap(y~") are trivial, and Ag(y~") is
trivial.

(I) In particular, under the assumption of Theorem 4, both of Ap(y) and
Ar(x~1) are trivial for some y e ®p.

Proof of Theorem 2. We see that condition (i) of Theorem 2 implies that
®f = {y} or {y,x"'} for some y. Hence, Theorem 2 follows from Proposition

I(II) and (2). O

To show Proposition 1, we need some preliminaries. Let Q/F be the max-
imal abelian extension over F of exponent 2, and let G = Gal(Q/F). Let V =
F*/(F*)?. We denote by [1] the class in ¥ containing an element v € F*. The
groups G and V are naturally regarded as modules over A = Gal(F/Q). The
Kummer pairing

GxV—{£l}; (g.[t]) = <g,v>=(Vv)*"

is nondegenerate and satisfies {(g°,v°> = (g,v) for ge G, [v)e V and e A. It
follows that the subpairing

(7) G(y)x V(x") — {£1}

is also nondegenerate for each y € ®r. Let Q(y) be the subextension of Q/F
corresponding to [, G(x') x G(x,) by Galois theory where ' runs over the
characters in ®p with y' # y. Then Gal(Q(y)/F) is naturally isomorphic to
G(y). The pairing (7) implies that

(®) Q(x) = F(Vollle V(x ™).

We see that Q(y) N F,, = F since y is non-trivial. _In particular, F.,(1/v)/F is a
quadratic extension for [v] € V(y 1) with v ¢ (F*)?. Similary to Q(y), we define
M (y) to be the subextension of M /F., corresponding to [, 9r(x") x 9r(xy)
by Galois theory so that Gal(M (x)/Fx) = %r(y).

Let E = Er be the group of units of F, and let E, be the subgroup of E
consisting of totally positive units. Clearly, we have E> C E,. It is known that
(E/E*)(y) = 0/20 for each y € @ by a theorem on units of a Galois extension
(Narkiewicz [22, Theorem 3.26a]). Therefore, from the exact sequence

0— E,/E*— E/E*> - E/E, — 0,

we obtain the following:
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LeMMA 4. For each ye @, either (E/E.)(y) = 0/20 or (E./E*)(y) =
020 holds.

Let Ar be the 2-part of the class group of F in the narrow sense, and let FZ
be the subgroup of F* consisting of totally positive elements. Then we have the
following exact sequence compatible with the action of A.

9) 0 — F*/EFY, — Ar — Ar — 0.

Proof of Proposition 1. 1t suffices to show the assertion (I) by virtue of
Theorem 4. Let y € @, and assume that %p(y) is trivial. Then we see that
Ar(y) is trivial since the extension F.,/F is totally ramified at r = 2.

Let us first show that

(10) (E/E) (") = 0/20.

In view of Lemma 4, assume to the contrary that (E./E*)(x~') = ¢/20. Then
there exists a unit & such that [¢] € (E,/E?)(y~') and e¢ (F*)*. We observe
that the quadratic extension F(./¢)/F is unramified outside 2 as ¢ is a totally
positive unit and that F(\/e) C Q(x) by (8). It follows that F.(\/e)/F., is a
quadratic extension and contained in M. (y). However, this is impossible as
Gr(x) = Gal(M,(y)/Fy) is trivial.

To show that Ax(y~") is trivial, let us assume to the contrary that Az(y~")
is non-trivial. Then there exists an ideal 2 of F such that the ideal class ¢ = [2]
is contained in Az(y~') and the order of ¢ is 2. We have A* = a(r for some
ae F*. We may as well assume that [a] € V(y~!). Further, because of (10),
we may as well assume that a is totally positive by replacing a with na for some
unit  with [7] € (E/E)(x™") = (E/E*)(x~"). Then we see that F(y/a)/F is a
quadratic extension because the order of the ideal class ¢ is 2, and that it is un-
ramified outside 2 and F(y/a) C Q(y) by (8). Hence, F.,(v/a)/F., is a quadratic
extension with F.,(y/a) C My (y). This is impossible as %p(y) is trivial. Thus
we have shown that Ar(y~!) = {0}.

Finally, let us show that Ag(y ') is trivial. To show this, it suffices to show
that Ap(y~') is trivial by [11, Theorem 2]. We already know that Ax(y~') is
trivial. Further we see that (F*/EFX))(x~!) is trivial by (10). Therefore, it
follows from the exact sequence (9) that Ap(y~!) is trivial. O

4. Alternative proof for the case n=1,3

In this section, we give an alternative proof of Theorem 3 for the case n = 1
or 3. We start with a general setting, and we show an assertion on the minus
class group analogous to Corollary 2. Let n > 1 be a fixed odd integer, and let
p =2n/+1 be a prime number with an odd prime number /. As p = 3 mod 4,
k=Q(y/=p) €Q(,). Let F=F,, be as in the previous sections, and put
K = Fk. We naturally identify A = Gal(F/Q) with Gal(K/k). Let r be a prime
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number with r # p,/, and let Ay be the kernel of the norm map Ax — Ag+.
We can naturally regard A as a module over Z,[A]. The following assertion
sharpens [13, Theorem 2].

PROPOSITION 2. Under the above setting, assume that r > n— 1. Then Ag(y)
is trivial for some y € Op.

Alternative proof of Theorem 3 for the case n=1 and 3. Let r=2. Itis
shown in Cornacchia [1, Theorem 1] that both of Ar(y) and Ap(x~') are trivial
if and only if at least one of Ax(y) and Ag(x~ ') is trivial. (An alternative proof
is given in [12, Theorem 4].) Assume that 2 remains prime in Q(,)"*, namely
that condition (i) in Theorem 2 is satisfied. Then we have ®r = {y} or {y, 7'}
for some y. We can apply Proposition 2 to the case r =2 as n =1 or 3, and we
see that Ag(y) or Ag(x~") is trivial for the above y. Hence the assertion follows
from [1, Theorem 1] mentioned above. O

Proof of Proposition 2. For each y € ®p, we put

=

ﬂ Bl O = Z E Qr(g/)

where J is the quadratic character associated to k = Q(,/—p). We have
(11) [Ax GOl =G/ B Gy

by virtue of the Iwasawa main conjecture ([9, Theorem A]).

First let us deal with the case where n =1 (and p =2/+1). Let g be an
arbitrary primitive root modulo p. For an integer x € Z, 5,(x) € Z denotes the
unique integer such that s,(x) =xmod p and 0 <s,(x) <p—1. Asn=1, we
easily see that

{all<a<p—1}={s(¢*™")|0<u</-1,0v=0,1}.

Then, noting that ¢ = —1 mod p and that 6 is odd, we observe that

1 -\ 2u+{L v 2

=D sle 9" )x(g™)

Zp u=0 v=0

1 — 2 2 2
— s5,(g uy s,(—g u %(g u

5 u:o( (97) = sp(=97))x(9™)

=—Zsp x(g)" € Q,(Ly).

Here, the third equality holds because s,(—x) = p —s,(x) for an integer x with
pAx. Since p=2/+1, we can choose g =2 or —2 according as p =3 or
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7 mod 8. Therefore, putting

/-1
(12) G(T)= ) s(4")T",
u=0
we obtain from the above that
1 .
(13) B, = ;G(Q) with {, = x(4).

On the coefficients s,(4") of the polynomial G(T), let us show that
(14) ged(s,(4) —1|1<u</-1)=1

We have p=7,11,23,47,...as p=2/+1. Ash, =1 for p=7or 11, we may
as well assume that p >23. Then, since s,(4*) =4 and 16 for u=1 and 2
respectively, we see that the gcd equals 1 or 3. If the gcd equals 3, then we
see that for 1 <u </ —1, s5,(4%) =1+ 3¢, with some integer ¢,. We see that
¢, # ¢y if u+#u' because the order of the class 4 mod p in the multiplica-
tive group (Z/pZ)™ is /. Further, the integer ¢, necessarily satisfies 1 < ¢, <
(p—1)/3foreach | <u</—1. However, this is impossible because (p — 1)/3
<¢—1. Thus (14) is shown.

Now assume that A (x) is non-trivial for all y € ®r. Then it follows from
(11) and (13) that G(x(4)) =0 mod rZ,.[{,] for all y € ®p. This implies that
G(T) is a multiple of the /th cyclotomic polynomial ®,(7") in F,[T] where
F, =Z/rZ. Therefore, it follows from (12) that 5,(4*) = Imodr forall 1 <u <
¢/ — 1. However, this is impossible by (14). Thus we have shown that Az (y) is
trivial for some y.

Next let n > 3. Formulas corresponding to (12)-(14) are already obtained
in [13]. Let us recall them to deal with the case n > 3. We write n = g/* for
some integer ¢ with /¥ ¢ and some s> 0, so that p=2¢/*"' +1. Let g be
an arbitrary primitive root modulo p, and set ¢ = g2 and # = ¢g*""'. For each
0<u</-1, we put

We see that e, € Z because n = ¢/* > 3 and the elements #”¢’* mod p in the sum

with 0 <b<qg—1 and 0 <v </°—1 are the nth roots of unity in the multi-
plicative group (Z/pZ)*. Further we have

(15) l<e,<n-1
by [13, eq (8)]. We put

(16) H(T) :SeuT“eZ[T].
u=0
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Similarly to (13), we have

(17) B, =H() with £ = x(e)

by [13, eq (6)]. Here note that y(¢) is actually a primitive /th root of unity
because the order of y is # and the order of ¢ = g* mod p in the multiplicative
group (Z/pZ)” is /**' = (p—1)/2¢.

Now assume that r >n—1 and that Ax(y) is non-trivial for all y € ®p.
Then, by (11) and (17), we have H(x(¢)) = 0 mod rZ,[(,] for all y € ®p. This
implies that H(T) is a multiple of ®,(T) in F,[T]. It follows from (16) that
e, =eomodrforalll <u<¢—1. This congruence implies the equality e, = ey
for all 1 <u </ —1 because of the inequality (15) and r >n—1. Now it fol-
lows from (16) and (17) that 8, = 0. However, this is impossible because it is
well known that g, # 0 (see [26, page 38]). O

Remark 4. Now we have five (!) different proofs for the classical theorem
of Estes [4] on i for prime numbers of the form p =2/ + 1; three proofs due
to Estes himself, Stevenhagen and Metsidnkyld, respectively, and two ones given
in this paper.

Acknowledgement. The author is grateful to the referee for valuable com-
ments, thanks to which he added Remarks 2 and 3.
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