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SOME REMARKS ON RIEMANNIAN MANIFOLDS WITH

PARALLEL COTTON TENSOR
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Abstract

We give some su‰cient conditions for stochastically complete Riemannian mani-

folds with parallel Cotton tensor to be either Einstein or of constant sectional curvature,

and obtain an optimal pinching theorem. In particular, when n ¼ 4, we give a full

classification.

1. Introduction and main results

Constant sectional curvature manifolds and Einstein manifolds play an im-
portant role in global di¤erential geometry (see [3, 29]). It is therefore a natural
and interesting problem to explore su‰cient (and possibly necessary) conditions
to ensure that a given Riemannian manifold belongs to either one of the two
classes. Thus it is one of the most important problem in the study of di¤er-
ential geometry, but is very di‰cult. Under various geometric conditions, many
scholars have given some partial results to this problem [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 17, 19, 21, 22, 24, 26, 27, 28, 30]. In the compact case, for example,
Tani [28] proved that any compact orientable conformally flat Riemannian space
with constant scalar curvature and positive Ricci curvature must be a space of
constant curvature, which had been improved by Goldberg [15]. Later it was
proved by Tachibana [27] that any compact Riemannian manifold with positive
curvature operator and harmonic curvature (i.e., the divergence of the Rieman-
nian curvature tensor Rm vanishes, see [3]) must be a space of constant curvature.
Moreover, under some (optimal) integral pinching conditions, it has been clas-
sified for conformally flat manifolds (e.g., [6, 11, 14, 17, 30]) and the manifolds
with harmonic curvature (e.g., [5, 9, 10, 14, 21]). In the geodesically complete
case, Pigola, Rigoli and Setti [24] obtained some characterizations of constant
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curvature spaces (see also [11, 12, 14, 30]). In 2013, Mastrolia, Monticelli and
Rigoli [22] studied the pinching problem for stochastically complete manifolds
(possibly not geodesically complete) with positive curvature operator with the aid
of the weak maximum principle at infinity. Recently, Chu and Fang [8] proved
a rigidity theorem for stochastically complete manifolds with parallel Cotton
tensor which improves Theorems 1.5 and 1.7 in [22]. In this note, we improve
the rigidity theorem given by Chu and Fang to the optimal pinching condition.
In particular, when n ¼ 4, we give a full classification. In order to state our
conclusions, we need to make some preparations.

In what follows, we adopt, without further comment, the moving frame
notation with respect to a chosen local orthonormal frame.

Let ðMn; gÞ be a Riemannian n-manifold. The Riemannian curvature
tensor Rm of ðMn; gÞ is defined as in [3] by

RmðX ;YÞZ ¼ ‘Y‘XZ � ‘X‘YZ þ ‘½X ;Y �Z

and

Rijkl ¼ hRmðei; ejÞek; eli;

where feig is a local orthonormal frame field. The decomposition of the Rie-
mannian curvature tensor Rm into irreducible components yields

Rijkl ¼ Wijkl þ
1

n� 2
ðRikdjl � Rildjk þ Rjldik � RjkdilÞð1:1Þ

� R

ðn� 1Þðn� 2Þ ðdikdjl � dildjkÞ

¼ Wijkl þ
1

n� 2
ðR̊ikdjl � R̊ildjk þ R̊jldik � R̊jkdilÞ

þ R

nðn� 1Þ ðdikdjl � dildjkÞ

¼ Wijkl þ
1

n� 2
ðAikdjl � Aildjk þ Ajldik � AjkdilÞ;

where R is the scalar curvature, and Wijkl , Rij , R̊ij and Aij denote the components
of the Weyl curvature tensor W , the Ricci tensor Ric, the trace-free Ricci tensor

Ric̊ ¼ Ric� R

n
g and the Schouten tensor A ¼ Ric� R

2ðn� 1Þ g, respectively.

Then the Cotton tensor C is defined as

Cijk ¼ ‘iAjk � ‘jAik;ð1:2Þ

which is related to the divergence of W by

Wijkl;l ¼ � n� 3

n� 2
Cijkð1:3Þ
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in view of the second Bianchi identity. ðMn; gÞ is said to has parallel Cotton
tensor if the covariant derivative of C vanishes. It is easy to see that every
Riemannian manifold with parallel Ricci tensor or harmonic Weyl curvature (i.e.,
the divergence of W vanishes, see [3]) has parallel Cotton tensor.

Recall that a Riemannian manifold ðMn; gÞ is said to be stochastically
complete if the Brownian motion on ðMn; gÞ has the property that the total
probability of the particle to be found in the state space is constantly equal to
one. That is to say, stochastical completeness is the property of a stochastic
process to have infinite life time (see [16]). We must pay particular attention
to that the properties of stochastic completeness and geodesic completeness are
independent of each other. In 1974, Azencott [2] gave the first examples of
Riemannian manifolds which are geodesically complete but stochastically incom-
plete. In 1978, Yau [31] showed that a geodesically complete Riemannian mani-
fold with a lower Ricci curvature bound is stochastically complete. In 2003,
Pigola, Rigoli and Setti [23] proved that stochastic completeness is equivalent
to the validity of a weak form of the Omori-Yau maximum principle for the
Laplace-Beltrami operator D, i.e., for every function u A C2ðMnÞ with u� ¼
supMn u < y, there exists a sequence fxkg A Mn such that

ðiÞ uðxkÞ > u� � 1

k
; ðiiÞ suðxkÞ <

1

k
:

for all k A N. A Riemannian manifold ðMn; gÞ is called parabolic if every sub-
harmonic function on ðMn; gÞ with an upper bound is a constant. In particular,
every parabolic Riemannian manifold is stochastically complete.

In this note, we give some su‰cient conditions for stochastically complete
Riemannian manifolds with parallel Cotton tensor to be either Einstein or of
constant sectional curvature and obtain the following rigidity theorems.

Theorem 1.1. Let ðMn; gÞ ðnb 3Þ be a stochastically complete Riemannian
n-manifold with parallel Cotton tensor and positive constant scalar curvature R. If

jW j2 þ 2n

ðn� 2Þ jRic̊j
2 <

2

ðn� 2Þðn� 1ÞR
2;ð1:4Þ

then ðMn; gÞ is Einstein. In particular, ðM 3; gÞ has positive constant sectional
curvature. Moreover, if nb 4 and

jW j2 þ 2n

ðn� 2Þ jRic̊j
2 <

4

n2CðnÞ2
R2;ð1:5Þ

where CðnÞ is defined in Lemma 2.3, then ðMn; gÞ has positive constant sectional
curvature.

Theorem 1.2. Let ðMn; gÞ ðnb 3Þ be a parabolic Riemannian n-manifold
with parallel Cotton tensor and positive constant scalar curvature R. If

jW j2 þ 2n

ðn� 2Þ jRic̊j
2
a

2

ðn� 2Þðn� 1ÞR
2;ð1:6Þ
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then ðMn; gÞ is Ricci parallel. Furthermore, if at one point the strict inequality in
(1.6) holds, then ðMn; gÞ is Einstein.

Remark 1.3. The pinching condition of Theorem 1.1 is optimal. The
equality in (1.4) really holds on R1 � Sn�1 with the product metric. When
n ¼ 4, the equality in (1.5) really holds on CP2 with the Fubini-Study metric. It
is easy to see that Theorems 1.1 and 1.2 improve Theorem 1.1 given by Chu
and Fang in [8]. If ðMn; gÞ ðnb 4Þ is a compact Riemannian n-manifold with
harmonic curvature and positive scalar curvature, then the first author gave a
Ln=2 integral pinching condition in [9] which is close to (1.4).

Theorem 1.4. Let ðM 4; gÞ be a parabolic Riemannian 4-manifold with par-
allel Cotton tensor and positive constant scalar curvature R. Assume that ðM 4; gÞ
is geodesically complete. If

jW j2 þ 4jRic̊j2 a 1

3
R2;ð1:7Þ

then the universal covering Riemannian manifold of ðM 4; gÞ is one of the following:
i) a round S4;
ii) a CP2 with the Fubini-Study metric;
iii) a S2 � S2 with product metric;
iv) a R1 � S3 with product metric.

Theorem 1.5. Let ðM 5; gÞ be a parabolic Riemannian 5-manifold with par-
allel Cotton tensor and positive constant scalar curvature R. If

jW j2 þ 10

3
jRic̊j2 a 1

40
R2;ð1:8Þ

then ðM 5; gÞ is Einstein and locally symmetric. Moreover, if ðM 5; gÞ is geodesi-
cally complete, then the universal covering Riemannian manifold of ðM 5; gÞ is a
round S5.

2. Proofs of Theorems

Let ðMn; gÞ ðnb 3Þ be a Riemannian n-manifold with parallel Cotton tensor
and constant scalar curvature. Then by the Bianchi identities, from (1.2) and
(1.3) we have

Wijkl; l ¼ � n� 3

n� 2
Cijk ¼ � n� 3

n� 2
ðRjk; i � Rik; jÞ ¼

n� 3

n� 2
Rijkl; l :ð2:1Þ

By (2.1), the condition that Cotton tensor is parallel implies

Rijkl; lp ¼ Wijkl; lp ¼ 0; Ep ¼ 1; 2; . . . ; n:ð2:2Þ
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From (1.1), by the Bianchi identities and (1.2), we obtain

Wijkl;mp þWijlm;kp þWijmk; lp ¼ 0:ð2:3Þ

Lemma 2.1. Let ðMn; gÞ ðnb 3Þ be a Riemannian n-manifold with parallel
Cotton tensor and constant scalar curvature. Then

sjRic̊j2 b 2j‘Ric̊j2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

2ðn� 1Þ

s
jW j2 þ 2n

n� 2
jRic̊j2

� �1=2

jRic̊j2ð2:4Þ

þ 2
R

n� 1
jRic̊j2:

Remark 2.2. Replacing the parallel Cotton tensor and constant scalar cur-
vature with the harmonic curvature, the estimate (2.4) is obtained in [9]. There
is no essential di¤erence between the two proofs. For completeness, we write the
proof of Lemma 2.1 out.

Proof. We compute

sjRic̊j2 ¼ 2j‘Ric̊j2 þ 2hRic̊;sRic̊i ¼ 2j‘Ric̊j2 þ 2R̊ijR̊ij;kk:ð2:5Þ

Since the Cotton tensor is parallel, by the Ricci identities, we obtain

R̊ij;kk ¼ R̊ik; jk ¼ R̊ki;kj þ R̊liRlkjk þ R̊klRlijkð2:6Þ

¼ R̊kk; ij þ R̊liRlkjk þ R̊klRlijk

¼ R̊liRlkjk þ R̊klRlijk;

which gives

sjRic̊j2 ¼ 2j‘Ric̊j2 þ 2R̊ijR̊ij;kk ¼ 2j‘Ric̊j2 þ 2R̊ijR̊liRlkjk þ 2R̊ijR̊klRlijk:ð2:7Þ

We compute

sjRic̊j2 ¼ 2j‘Ric̊j2 þ 2Wkijl R̊ijR̊kl þ 2
n

n� 2
R̊ijR̊jl R̊li þ 2

R

n� 1
jRic̊j2:ð2:8Þ

By Lemma 2.5 in [9] (see also Proposition 2.1 in [7]), from (2.8) we get (2.4).
r

Lemma 2.3. Let ðMn; gÞ ðnb 4Þ be a Riemannian n-manifold with parallel
Cotton tensor and constant scalar curvature. Then

sjW j2 b 2j‘W j2 � 2CðnÞjW j3 � 4

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
jW j2jRic̊j þ 4R

n
jW j2;ð2:9Þ

where
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CðnÞ ¼

ffiffiffi
6

p

2
; n ¼ 4

8ffiffiffiffiffi
10

p ; n ¼ 5

2ðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn

p þ n2 � n� 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þðn� 1Þnðnþ 1Þ

p ; nb 6:

8>>>>>>>>><
>>>>>>>>>:

Remark 2.4. Replacing the parallel Cotton tensor and constant scalar cur-
vature with the harmonic curvature, the estimate (2.9) is obtained in [9]. But,
when nb 6, the estimate (2.9) is stronger than the one obtained in [9] for CðnÞ is
smaller. Note that by the inequality proved by Li and Zhao [21], similar esti-
mates can be improved in [9, 12, 13, 14], which lead to improving some corre-
sponding rigidity theorems in [9, 12, 13, 14].

Proof. By the Ricci identities, we obtain from (2.2) and (2.3)

sjW j2 ¼ 2j‘W j2 þ 2hW ;sWi ¼ 2j‘W j2 þ 2WijklWijkl;mmð2:10Þ

¼ 2j‘W j2 þ 2WijklðWijkm; lm þWijml;kmÞ

¼ 2j‘W j2 þ 4WijklWijkm; lm

¼ 2j‘W j2 þ 4WijklðWijkm;ml þWhjkmRhilm þWihkmRhjlm

þWijhmRhklm þWijkhRhmlmÞ

¼ 2j‘W j2 þ 4WijklðWhjkmRhilm þWihkmRhjlm

þWijhmRhklm þWijkhRhmlmÞ

¼ 2j‘W j2 þ 4WijklðWhjkmWhilm þWihkmWhjlm

þWijhmWhklm þWijkhWhmlmÞ

þ 4

n� 2
Wijkl ½WhjkmðR̊hldim � R̊hmdil þ R̊imdhl � R̊ildhmÞ

þWihkmðR̊hldjm � R̊hmdjl þ R̊jmdhl � R̊jldhmÞ

þWijhmðR̊hldkm � R̊hmdkl þ R̊kmdhl � R̊kldhmÞ

þWijkhðR̊hldmm � R̊hmdml þ R̊mmdhl � R̊mldhmÞ�

þ 4R

nðn� 1ÞWijklðWljki þWilkj þWijlkÞ þ
4R

n
jW j2

¼ 2j‘W j2 þ 4Wijkl 2WhjkmWhilm � 1

2
WijhmWklhm

� �

þ 4R

n
jW j2 þ 4WijklWijkhR̊hl
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b 2j‘W j2 � 4 2WijlkWjhkmWhiml þ
1

2
WijklWhmijWklhm

� �

þ 4R

n
jW j2 � 4

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

r
jW j2jRic̊j;

in which we use Lemma 2.4 of [18] for the inequality.

Case 1. When n ¼ 4, it was proved in Lemma 3.5 of [18] that

2WijlkWjhkmWhiml þ
1

2
WijklWhmijWklhm

����
����a

ffiffiffi
6

p

4
jW j3:

Case 2. When n ¼ 5, Jack and Parker [20] have proved that WijklWhmijWklhm

¼ 2WijlkWjhkmWhiml . By Lemma 2.4 of [18], we consider W as a self adjoint
operator on 52 V , and obtain

2WijlkWjhkmWhiml þ
1

2
WijklWhmijWklhm

����
���� ¼ 3

2
jWijklWhmijWklhmja

4ffiffiffiffiffi
10

p jW j3:

Case 3. When nb 6, using the inequality (14) of [21] and Lemma 2.4 of
[18] to estimate the first term and the second term in the right-hand side of the
following first formula respectively, we have

2WijlkWjhkmWhiml þ
1

2
WijklWhmijWklhm

����
����

a 2jWijlkWjhkmWhiml j þ
1

2
jWijklWhmijWklhmj

a
ðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn

p þ n2 � n� 4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þðn� 1Þnðnþ 1Þ

p
" #

jW j3:

Combining (2.10) with Cases 1, 2 and 3, we get (2.9). r

Proof of Theorem 1.1. Note that the stochastically completeness of ðMn; gÞ
implies that the weak maximum principle for the Laplace-Beltrami operator
s holds on ðMn; gÞ. Since R is a positive constant, from (1.4) we know
that jRic̊j� ¼ supMn jRic̊j < y. Writing jW jðxyÞ ¼ limk!yjW jðxkÞ for xk A Mn

ðk ¼ 1; 2; . . .Þ satisfying the weak maximum principle for s on Mn and applying
the weak maximum principle to (2.4), we have

0b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

2ðn� 1Þ

s
jW j2ðxyÞ þ 2n

n� 2
ðjRic̊j�Þ2

� �1=2

ðjRic̊j�Þ2 þ R

n� 1
ðjRic̊j�Þ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

2ðn� 1Þ

s
ðjRic̊j�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ðn� 2Þðn� 1Þ

s
R� jW j2ðxyÞ þ 2n

n� 2
ðjRic̊j�Þ2

� �1=2
" #

b 0:
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From the above, by (1.4), we have that jRic̊j� ¼ 0, i.e., ðMn; gÞ is Einstein.
When n ¼ 3, ðMn; gÞ has positive constant sectional curvature.

It is easy to see that (1.5) implies (1.4). Under the assumption (1.5), by the
above result we get that ðMn; gÞ is Einstein. When nb 4, by Lemma 2.3, we
have

sjW j2 b 2j‘W j2 � 2CðnÞjW j3 þ 4R

n
jW j2:ð2:11Þ

Based on (2.11), using the same argument as in the proof of the first part of
Theorem 1.1, we get W ¼ 0, i.e., ðMn; gÞ is conformally flat. Hence we obtain
that ðMn; gÞ has positive constant sectional curvature. r

Proof of Theorem 1.2. From (1.6) and (2.4), we get jRic̊j < y and

sjRic̊j2 b 2j‘Ric̊j2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

2ðn� 1Þ

s
jRic̊j2ð2:12Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðn� 2Þðn� 1Þ

s
R� jW j2 þ 2n

n� 2
jRic̊j2

� �1=2
" #

b 0:

Hence jRic̊j is a bounded above subharmonic function on ðMn; gÞ. Since
ðMn; gÞ is parabolic, jRic̊j is constant. By (2.12) and Mn has constant scalar
curvature, we deduce that ðMn; gÞ is Ricci parallel. If at one point the strict
inequality in (1.6) holds, from (2.12) we get that at one point Ric̊ ¼ 0. Since
ðMn; gÞ is Ricci parallel, we obtain Ric̊ ¼ 0. i.e., ðMn; gÞ is Einstein. r

Proof of Theorem 1.4. By Theorem 1.2, ðM 4; gÞ is Ricci parallel. Thus we
divide into two cases: ðM 4; gÞ is Einstein or not.

Case 1. ðM 4; gÞ is Einstein. Since ðM 4; gÞ is geodesically complete and the
scalar curvature R > 0, we see from Myers’ Theorem that the universal covering
Riemannian manifold ~MM 4 of ðM 4; gÞ is compact. If W ¼ 0, ~MM 4 is a round
S4. By the Chern-Gauss-Bonnet formula (see Equation 6.31 of [3])ð

~MM 4

jW j2 � 2

ð
~MM 4

jRic̊j2 þ 1

6

ð
~MM 4

R2 ¼ 32p2wð ~MM 4Þ;

where wð ~MM 4Þ is the Euler-Poincaré characteristic of ~MM 4, we get from (1.7) thatð
~MM 4

jW j2 a 64p2wð ~MM 4Þ
3

:

It is easy to see that an Einstein manifold has harmonic Weyl curvature. Hence
by Theorems 1.4 and 1.5 in [10], ~MM 4 is either a CP2 with the Fubini-Study metric
or a S2 � S2 with product metric for W 0 0.
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Case 2. ðM 4; gÞ is not Einstein. By Theorem 1 in [25], we have that ~MM 4 is
either a R1 � S3 with product metric or a ðS1; g1Þ � ðS2; g2Þ with product metric,
where the surface ðSi; giÞ has constant Gauss curvature ki, k1 0 k2 and k1 þ k2 >
0. If ðM 4; gÞ is the latter, by computing (1.1), we get that W1212 ¼ W3434 ¼
k1 þ k2

3
, W1313 ¼W1414 ¼W2323 ¼W2424 ¼ � k1 þ k2

6
, R̊11 ¼ R̊22 ¼ �R̊33 ¼ �R̊44 ¼

k1 � k2

2
. Thus we have

jW j2 þ 4jRic̊j2 ¼ 8
ðk1 þ k2Þ2

9
þ 16

ðk1 þ k2Þ2

36
þ 4ðk1 � k2Þ2ð2:13Þ

¼ 4
ðk1 þ k2Þ2

3
þ 4ðk1 � k2Þ2;

and
1

3
R2 ¼ 4

ðk1 þ k2Þ2

3
. Hence by (1.7) we get k1 ¼ k2, i.e., ðM 4; gÞ is Einstein.

This is a contradiction. r

Proof of Theorem 1.5. By Theorem 1.1, ðM 5; gÞ is Einstein. By Lemma
2.3, we have

sjW j2 b 2j‘W j2 þ 4R

5
� 16ffiffiffiffiffi

10
p jW j

� �
jW j2:ð2:14Þ

Hence jW j is a bounded above subharmonic function on ðM 5; gÞ. Since ðM 5; gÞ
is parabolic, jW j is constant. From (2.14) we deduce that ‘W ¼ 0, and ‘Rm ¼
0. Hence M 5 is locally symmetric. If M 5 is complete, since the scalar cur-
vature R > 0, the universal covering Riemannian manifold ~MM 5 of ðM 5; gÞ is
compact. Since ~MM 5 is Einstein and jW j2 a 1

40R
2, by Theorem 2.1 and Lemma

3.1 in [4] (jW j2 in [4] has a 1
4 di¤erence to ours), the first Betti number and the

second Betti number are both zero. By the Smale’s work, ~MM 5 is homeomorphic
to a round S5. Combining with the classification of homogeneous Einstein
5-manifolds given by [1], ~MM 5 is a round S5. r

Acknowledgement. The authors would like to thank the referee for helpful
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