H.-P. FU, G.-B. XU AND Y.-Q. TAO
KODAI MATH. J.
42 (2019), 64-74

SOME REMARKS ON RIEMANNIAN MANIFOLDS WITH
PARALLEL COTTON TENSOR

Ha1-PINng Fu, Gao-Bo XU AND YONG-QIaN Tao*

Abstract

We give some sufficient conditions for stochastically complete Riemannian mani-
folds with parallel Cotton tensor to be either Einstein or of constant sectional curvature,
and obtain an optimal pinching theorem. In particular, when n =4, we give a full
classification.

1. Introduction and main results

Constant sectional curvature manifolds and Einstein manifolds play an im-
portant role in global differential geometry (see [3, 29]). It is therefore a natural
and interesting problem to explore sufficient (and possibly necessary) conditions
to ensure that a given Riemannian manifold belongs to either one of the two
classes. Thus it is one of the most important problem in the study of differ-
ential geometry, but is very difficult. Under various geometric conditions, many
scholars have given some partial results to this problem [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 17, 19, 21, 22, 24, 26, 27, 28, 30]. In the compact case, for example,
Tani [28] proved that any compact orientable conformally flat Riemannian space
with constant scalar curvature and positive Ricci curvature must be a space of
constant curvature, which had been improved by Goldberg [15]. Later it was
proved by Tachibana [27] that any compact Riemannian manifold with positive
curvature operator and harmonic curvature (i.e., the divergence of the Rieman-
nian curvature tensor Rm vanishes, see [3]) must be a space of constant curvature.
Moreover, under some (optimal) integral pinching conditions, it has been clas-
sified for conformally flat manifolds (e.g., [6, 11, 14, 17, 30]) and the manifolds
with harmonic curvature (e.g., [5, 9, 10, 14, 21]). In the geodesically complete
case, Pigola, Rigoli and Setti [24] obtained some characterizations of constant
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curvature spaces (see also [11, 12, 14, 30]). In 2013, Mastrolia, Monticelli and
Rigoli [22] studied the pinching problem for stochastically complete manifolds
(possibly not geodesically complete) with positive curvature operator with the aid
of the weak maximum principle at infinity. Recently, Chu and Fang [8] proved
a rigidity theorem for stochastically complete manifolds with parallel Cotton
tensor which improves Theorems 1.5 and 1.7 in [22]. In this note, we improve
the rigidity theorem given by Chu and Fang to the optimal pinching condition.
In particular, when n =4, we give a full classification. In order to state our
conclusions, we need to make some preparations.

In what follows, we adopt, without further comment, the moving frame
notation with respect to a chosen local orthonormal frame.

Let (M",g) be a Riemannian n-manifold. The Riemannian curvature
tensor Rm of (M",g) is defined as in [3] by

RW[(A/7 Y)Z = VyVXZ — VXVYZ + V[X, Y]Z
and
Rijkl = <Rm(€j7€j)€k,31>,

where {e;} is a local orthonormal frame field. The decomposition of the Rie-
mannian curvature tensor Rm into irreducible components yields

1
(L.1) Ryt = Wiga + - — (Ricdjt = Rudj + Ridin — Rjedin)
R
— m (0ikdjt — Sidjc)

1 . . . o

= Wi + P (Ridjt — Ridjr + Ridie — Rixdir)

R
(8404 — 840
+n(n— 1)( 01 — 0ii0jk)

1

= Wi + pa— (Aiudjy — Audje + Ajidic — Ajdir),

where R is the scalar curvature, and Wy, Ry, R; and 4; denote the components

of the Weyl curvature tensor W, the Ricci tensor Ric, the trace-free Ricci tensor

. R .
Ric = Ric — —g¢g and the Schouten tensor A4 = Ric — respectively.
n

5. 9
2(n—1)
Then the Cotton tensor C is defined as

(12) Cljk = VjAjk - Vink7

which is related to the divergence of W by

n—3
1. Wi = —
(1.3) il ==

Cijk
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in view of the second Bianchi identity. (M", g) is said to has parallel Cotton
tensor if the covariant derivative of C vanishes. It is easy to see that every
Riemannian manifold with parallel Ricci tensor or harmonic Weyl curvature (i.e.,
the divergence of W vanishes, see [3]) has parallel Cotton tensor.

Recall that a Riemannian manifold (M",g) is said to be stochastically
complete if the Brownian motion on (M" g) has the property that the total
probability of the particle to be found in the state space is constantly equal to
one. That is to say, stochastical completeness is the property of a stochastic
process to have infinite life time (see [16]). We must pay particular attention
to that the properties of stochastic completeness and geodesic completeness are
independent of each other. In 1974, Azencott [2] gave the first examples of
Riemannian manifolds which are geodesically complete but stochastically incom-
plete. In 1978, Yau [31] showed that a geodesically complete Riemannian mani-
fold with a lower Ricci curvature bound is stochastically complete. In 2003,
Pigola, Rigoli and Setti [23] proved that stochastic completeness is equivalent
to the validity of a weak form of the Omori-Yau maximum principle for the
Laplace-Beltrami operator A, ie., for every function ue C*>(M") with u* =
sup, u < 0o, there exists a sequence {x;} € M”" such that

(1) u(xg) >u" — %; (i) Au(xy) < %
for all ke N. A Riemannian manifold (M",g) is called parabolic if every sub-
harmonic function on (M", g) with an upper bound is a constant. In particular,
every parabolic Riemannian manifold is stochastically complete.

In this note, we give some sufficient conditions for stochastically complete
Riemannian manifolds with parallel Cotton tensor to be either Einstein or of
constant sectional curvature and obtain the following rigidity theorems.

THEOREM 1.1. Let (M",g) (n = 3) be a stochastically complete Riemannian
n-manifold with parallel Cotton tensor and positive constant scalar curvature R. If
2 2
n 7R27
(n—2) (n=2)(n—-1)
then (M",g) is Einstein. In particular, (M3,g) has positive constant sectional
curvature.  Moreover, if n >4 and

2n 22 4 2
Ric> < — R,
(”‘2)| | n2C(n)*

where C(n) is defined in Lemma 2.3, then (M",g) has positive constant sectional
curvature.

(1.4) \W|* + |Ric|* <

(1.5) W+

THEOREM 1.2. Let (M”",g) (n=3) be a parabolic Riemannian n-manifold
with parallel Cotton tensor and positive constant scalar curvature R. If
2 2

(1.6) |W|2+m|Rl?C‘2 < mRz’
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then (M",g) is Ricci parallel.  Furthermore, if at one point the strict inequality in
(1.6) holds, then (M",g) is Einstein.

Remark 1.3. The pinching condition of Theorem 1.1 is optimal. The
equality in (1.4) really holds on R' xS"! with the product metric. When
n =4, the equality in (1.5) really holds on CP? with the Fubini-Study metric. It
is easy to see that Theorems 1.1 and 1.2 improve Theorem 1.1 given by Chu
and Fang in [8]. If (M",g9) (n>4) is a compact Riemannian n-manifold with
harmonic curvature and positive scalar curvature, then the first author gave a
L"? integral pinching condition in [9] which is close to (1.4).

THEOREM 1.4. Let (M*,g) be a parabolic Riemannian 4-manifold with par-
allel Cotton tensor and positive constant scalar curvature R.  Assume that (M*,g)
is geodesically complete. If

o 1
(1.7) |W|* + 4|Ric|* < = R?,

98]

then the universal covering Riemannian manifold of (M*,g) is one of the following:
i) a round S*;
ii) a CP? with the Fubini-Study metric;
iii) @ S? x 8% with product metric;
iv) a R x S* with product metric.

TueorReM 1.5.  Let (M?,g) be a parabolic Riemannian 5-manifold with par-
allel Cotton tensor and positive constant scalar curvature R. If

10 . » 1
1.8 W|* +—|Ric|* < —R?
(1) W+ IRl < 3 R,
then (M?,g) is Einstein and locally symmetric. ~Moreover, if (M?>,g) is geodesi-
cally complete, then the universal covering Riemannian manifold of (M?,g) is a
round S°.

2. Proofs of Theorems

Let (M",g) (n> 3) be a Riemannian n-manifold with parallel Cotton tensor
and constant scalar curvature. Then by the Bianchi identities, from (1.2) and
(1.3) we have

n—3 n—3 n—3
(2.1) Wiki,1 = —-— Cije = = (Rik,i — Rixj) = ,

n_2 n_2 o Rl

By (2.1), the condition that Cotton tensor is parallel implies
(2.2) Riii.ip = Wigp =0, Vp=1,2,...,n
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From (1.1), by the Bianchi identities and (1.2), we obtain
(23) I/Vijkl,mp + I/Vijlm,kp + I/Vijmk,lp =0.

LemMa 2.1. Let (M",g) (n>3) be a Riemannian n-manifold with parallel
Cotton tensor and constant scalar curvature. Then

(24)  A|Ric|* > 2|VRic|* =2 n=2 W +2—"\Ri’c|2 1/2|Ri"c\2
- 2(n—1) n—2
R .
+2——|Ric|*.
n—1

Remark 2.2. Replacing the parallel Cotton tensor and constant scalar cur-
vature with the harmonic curvature, the estimate (2.4) is obtained in [9]. There
is no essential difference between the two proofs. For completeness, we write the
proof of Lemma 2.1 out.

Proof. We compute
(2.5) A|Ric|* = 2|VRic|* + 2{Ric, ARicy = 2|VRic|* + 2R; Ry i
Since the Cotton tensor is parallel, by the Ricci identities, we obtain
(2.6) kﬁ,klc = Ry, k= jéki‘kj + jéliR/kjk + kklR/yk
= Rkk,ij + Iélilejk + RklRl[jk
= Rlilejk + IékIRlijka
which gives
(2.7)  A|Ric|* = 2|VRic|” + 2R Ry i = 2|VRic|” + 2Ry Ry Ryjr + 2Ry Ry Ry

We compute

o o o o o o o R .
(2.8)  Al|Ric|* = 2|VRic|* + 2Wiu Ry Ry + 2%RijlRli +2— |Ric|.
By Lemma 2.5 in [9] (see also Proposition 2.1 in [7]), from (2.8) we get (2.4).
O

LemmA 2.3. Let (M",g) (n>4) be a Riemannian n-manifold with parallel
Cotton tensor and constant scalar curvature. Then

1 . 4R
(2.9) A\W|222|VW\2—2C(n)\W|3—4,/"T|W|2|Ric|+7|W|2,

where
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V6
5 "=t
8
C(n) = Witk n=>5
2(n—2) n*—n—4
+ , n>0.
Vo= =2 D+ 1)

Remark 2.4. Replacing the parallel Cotton tensor and constant scalar cur-
vature with the harmonic curvature, the estimate (2.9) is obtained in [9]. But,
when n > 6, the estimate (2.9) is stronger than the one obtained in [9] for C(n) is
smaller. Note that by the inequality proved by Li and Zhao [21], similar esti-
mates can be improved in [9, 12, 13, 14], which lead to improving some corre-
sponding rigidity theorems in [9, 12, 13, 14].

Proof. By the Ricci identities, we obtain from (2.2) and (2.3)

(2.10) AW =2AVW | + 2{W, AW = 2AVW|* + 2Wisa Wikt om

=2/VIW|* + 2Wigd (Wi, im + Wipmi, kom)

= 2\VW|* + 4 Wt Wi, im

= 2\VW | + AWyt (Wigtam.mt + Wijim Riitm + Winn Rijim
+ I/Vt_‘/'hmthlm + I/V[/'khj"zhmlm)

= 2|V W|2 +4 I/Vijk/ ( Vthkahilm + I/Vihkm]{hjlm
+ I/Vl_‘]'hmthlm + I/V[/'khl‘zhm]m)

= 2|V W| : +4 I/Vijkl ( Vthkm Whitm + Winkm Whjlm
+ I/Vijhm I/th/m + I/thjkh Whmlm)

4 . o o o
+ nj VVijkl[W/y'km(Rhléim - Rhméil + Rimfshl - Riléhm)

+ Winkm (Rhl(sjm - Iéhm(sjl + Iéjméhl - Iéjl(shm)

+ mjhm(}ozh/(skm - Iéhmékl + Iékméhl - }ozkléhm)

+ I/Vijkh(]féhl&mm - iehméml + ]ogmméh/ - Iémléhrn)]
4R

4R 2
ijl ki ilkj ijl
I’l(l’l— 1) ]k/(”/Jk 2 Ikj 2 jl/f) n |” ‘

1
= 2|V W| : +4 I/Vijkl (2 Whjkm Whilm - E I/Vijhm Wklhm)

AR o
T | W 4 4 Wiiga Wiign Rut
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1
> 2(VW|* —4 <2 Wik Winiom Whimi + =

2
4R —1 .
Y e LRI
n n

in which we use Lemma 2.4 of [18] for the inequality.

Wit Whimij Wklhm)

Case 1. When n =4, it was proved in Lemma 3.5 of [18] that

1 V6
’2 Wit Wit Whimt + = Wit Whinig Witim| < T WP

2

Case 2. When n = 5, Jack and Parker [20] have proved that Wi Wi Wicnm
= 2Wij Wintn Whimi. By Lemma 2.4 of [18], we consider W as a self adjoint
operator on A%V, and obtain

1
2 I/Vl'jlk I/thkm W himi + 5

3
I/Vijkl Whmij Witim| = 5 | I/Vijkl I/thij Wkl/1m| < —

W,
\/_

Case 3. When n > 6, using the inequality (14) of [21] and Lemma 2.4 of
[18] to estimate the first term and the second term in the right-hand side of the
following first formula respectively, we have

I/Vijkl Vthij Wklhm

1
‘2 Witk Witk Whimi + 3

1
< 2| I/th/']k VV_/'hkm Whiml | + 5 | I/Vijkl I/th[j Wklhm|

(n—2) n’>—n—4 W)’
V(n—1)n 2\/11— Y(n—1Dn(n+1) ‘
Combining (2.10) with Cases 1, 2 and 3, we get (2.9). O

Proof of Theorem 1.1. Note that the stochastically completeness of (M",g)
implies that the weak maximum principle for the Laplace-Beltrami operator
A holds on (M",g). Since R is a positive constant, from (1.4) we know
that |Ric|* = sup,,.|Ric| < 0. ertmg [W|(x) = hmk_,go|W|(xk) for xp e M"
(k=1,2,...) satlsfymg the weak maximum principle for A on M" and applying
the weak maximum principle to (2.4), we have

02— <=2 (W) + 2 (Ricl ) l/2<\Rfc|*>2+i<lRfcl*>2
= \2m-1) P n=2 n—1

_ n—2 o w\2 ; B 2 2_n o2 1/2
B 2(n—1)(|R’C|)[ CEFCED ('W|(°O)+n—z(|R |)> 1
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From the above, by (1.4), we have that |Ric|* =0, ie., (M”", g) is Einstein.
When n =3, (M" g) has positive constant sectional curvature.

It is easy to see that (1.5) implies (1.4). Under the assumption (1.5), by the
above result we get that (M”,g) is Einstein. When n >4, by Lemma 2.3, we
have

(2.11) AW = 2lVW |2 = 2C(n)|W|? LR |W|

Based on (2.11), using the same argument as in the proof of the first part of
Theorem 1.1, we get W =0, i.e., (M",g) is conformally flat. Hence we obtain

that (M™", g) has positive constant sectional curvature. O
Proof of Theorem 1.2. From (1.6) and ( we get |Rfc'| < oo and
(2.12) A|Ric|* = 2|VRic|* + 2, | =——|Ric|?

1
m <|W| +—|R |)1/2]

Hence |ch| is a bounded above subharmonic function on (M" g). Since
(M",g) is parabolic, |Ric| is constant. By (2.12) and M” has constant scalar
curvature, we deduce that (M" g) is Ricci parallel. If at one point the strict
inequality in (1.6) holds, from (2.12) we get that at one point Ric =0. Since
(M™",g) is Ricci parallel, we obtain Ric =0. ie., (M" g) is Einstein. O

> 0.

Proof of Theorem 1.4. By Theorem 1.2, (M*, g) is Ricci parallel. Thus we
divide into two cases: (M*, g) is Einstein or not.

Case 1. (M* g) is Einstein. Since (M*, g) is geodesically complete and the
scalar curvature R > 0, we see from Myers’ Theorem that the universal covering
Riemannian manifold M* of (M* g) is compact. If W =0, M* is a round
S* By the Chern-Gauss-Bonnet formula (see Equation 6.31 of [3])

o 1 -
Jw \w? -2 Jw |Ric|* + EJW R? = 32717y (M*),

where y(M*) is the Euler-Poincaré characteristic of M*, we get from (1.7) that

642y (M*
J w2 < SFAM)
14 3
It is easy to see that an Einstein manifold has harmonic Weyl curvature. Hence

by Theorems 1.4 and 1.5 in [10], M* is either a CP* with the Fubini-Study metric
or a 8? x S? with product metric for W # 0.
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CASE 2. (M*, g) is not Einstein. By Theorem 1 in [25], we have that M* is
either a R! x S* with product metric or a (£;,¢1) x (£2,9>) with product metric,
where the surface (¥;,¢;) has constant Gauss curvature k;, k| # ky and k) + ky >
0. If (M*%g) is the latter, by computing (1.1), we get that Wiy = Wigg =

ki + k» ki+ky ; : ;
, Wisia=Wisia = Wapy = Wuu=———, Ri1 =Ry =—Ry3 = —Ryy =

3 6

l ;kz. Thus we have

. ki + k»)? ki +k)?
213) WP+ 4R =8 ‘+9 2)” 4 16! ‘:6 ) L 4k — o)

ki + ka)?
= 4%+ 4(ky — k)?,
1 ki + k»)? . o

and §R2 = 4% Hence by (1.7) we get kj = k, i.e., (M*,g) is Einstein.
This is a contradiction. O

Proof of Theorem 1.5. By Theorem 1.1, (M3, g) is Einstein. By Lemma
2.3, we have

4R 16 ,
2.14 AW 22IVW|" + | ———=|W] | |W]".
2.14) = 2w (S-S

Hence |W| is a bounded above subharmonic function on (M?,g). Since (M?>,g)
is parabolic, |W| is constant. From (2.14) we deduce that VW = 0, and VRm =
0. Hence M?> is locally symmetric If M° is complete, since the scalar cur-
vature R >0, the universal covering Rlemanman manifold M> of (M?3,g) is
compact Smce M is Emstem and \W| < 4R, by Theorem 2.1 and Lemma
3.1 in [4] (|W|* in [4] has a 1 difference to ours) the first Betti number and the
second Betti number are both zero. By the Smale’s work, M> is homeomorphic
to a round S°. Combining with the classification of homogeneous Einstein
5-manifolds given by [1], M° is a round S°. O
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