THE EFFECT OF FENCHEL-NIELSEN COORDINATES UNDER ELEMENTARY MOVES

Dong Tan, Peijia Liu and Xuewen Liu

Abstract

We describe the effect of Fenchel-Nielsen coordinates under elementary move for hyperbolic surfaces with geodesic boundaries, punctures and cone points, which generalize Okai's result for surfaces with geodesic boundaries. The proof relies on the parametrization of the Teichmüller space of surface of type $(1,1)$ or $(0,4)$ as a sub-locus of an algebraic equation in \mathbf{R}^{3}. As an application, we show that the hyperbolic length functions of closed curves are asymptotically piecewise linear functions with respect to the Fenchel Nielsen coordinates in the Teichmüller spaces of surfaces with cone points.

1. Introduction

Let S be an oriented surface of genus $g \geq 2$ and $\mathscr{T}(S)$ be the Teichmüller space of hyperbolic structures on S.

A pants decomposition of S is a maximal set of mutually disjoint simple closed curves which decompose the surface into pairs of pants. Let $\mathscr{P}=\left\{\alpha_{i}\right\}_{i=1}^{3 g-3}$ be a pants decomposition of S. Associated with \mathscr{P} is a homeomorphism $\Psi_{\mathscr{P}}[1]$:

$$
\begin{aligned}
\Psi_{\mathscr{P}}: \mathscr{T}(S) & \rightarrow\left(\mathbf{R}_{+} \times \mathbf{R}\right)^{3 g-3} \\
X & \mapsto\left(\ell_{\alpha_{i}}(X), \tau_{\alpha_{i}}(X)\right),
\end{aligned}
$$

where $\ell_{\alpha_{i}}$ is the hyperbolic length function of α_{i} and $\tau_{\alpha_{i}}$ is the twist coordinate of α_{i}. The parametrization of $\mathscr{T}(S)$ under $\Psi_{\mathscr{P}}$ is called the Fenchel-Nielsen coordinates of $\mathscr{T}(S)$ (associated with $\mathscr{P})$.

By work of Wolpert [10], the Kähler form of Weil-Petersson metric on $\mathscr{T}(S)$ has a simple expression in terms of the Fenchel-Nielsen coordinates:

$$
\omega_{\mathrm{WP}}=\sum_{i=1}^{3 g-3} d l_{\alpha_{i}} \wedge d \tau_{\alpha_{i}} .
$$

[^0]

Figure 1. α and β intersect minimally: $i(\alpha, \beta)=2$ if α separates the surface and $i(\alpha, \beta)=1$ if α does not separate the surface.

Let \mathscr{P} and \mathscr{P}^{\prime} be two distinct pants decompositions of S. An interesting question is to understand the transition relation:

$$
\Psi_{\mathscr{P}^{\prime}} \circ \Psi_{\mathscr{P}}^{-1}
$$

Recall that two pants decompositions \mathscr{P} and \mathscr{P}^{\prime} are differed by an elementary move if there exists $\alpha \in \mathscr{P}, \beta \in \mathscr{P}^{\prime}$ such that
(1) $\mathscr{P}^{\prime}=(\mathscr{P} \backslash\{\alpha\}) \cup\{\beta\}$;
(2) α and β intersect minimally (see Figure 1).

Theorem 1.1 (Hatcher-Thurston [2]). There exists a finite sequence of pants decompositions $\left\{\mathscr{P}_{0}, \ldots, \mathscr{P}_{n}\right\}$ such that $\mathscr{P}_{0}=\mathscr{P}, \mathscr{P}_{n}=\mathscr{P}^{\prime}$, and \mathscr{P}_{i} and $\mathscr{P}_{i+1}, 0 \leq$ $i \leq n-1$ are differed by an elementary move.

By Theorem 1, we have

$$
\Psi_{\mathscr{P}^{\prime}} \circ \Psi_{\mathscr{P}}^{-1}=\left(\Psi_{\mathscr{P}_{n}} \circ \Psi_{\mathscr{P}_{n-1}}^{-1}\right) \circ \cdots \circ\left(\Psi_{\mathscr{P}_{1}} \circ \Psi_{\mathscr{P}_{0}}^{-1}\right) .
$$

As a result, the question reduces to:
Understand the transition relation $\Psi_{\mathscr{P}^{\prime}} \circ \Psi_{\mathscr{P}}^{-1}$ in the case that \mathscr{P} and \mathscr{P}^{\prime} are differed by an elementary move.

Assuming that $\mathscr{P}^{\prime}=(\mathscr{P} \backslash\{\alpha\}) \cup\{\beta\}$ as above. Note that $\Psi_{\mathscr{P}}$ and $\Psi_{\mathscr{P}^{\prime}}$ only differ on the coordinates $\left(\ell_{\alpha}, \tau_{\alpha}\right)$ and $\left(\ell_{\beta}, \tau_{\beta}\right)$. As a result, one may assume that S is a hyperbolic surface with geodesic boundary of type $(1,1)$ or $(0,4)$. Then the above question is studied by Okai [5] where the equation for $\Psi_{\mathscr{P}^{\prime}} \circ \Psi_{\mathscr{P}}^{-1}$ is given explicitly.

In this paper, we shall first introduce the language of [4], where the Teichmüller space of surface of type $(1,1)$ or $(0,4)$ is parameterized in \mathbf{R}^{3} as a sub-locus of a equation, and the length and twist coordinates are expressed by the above parameters. Then by a detailed analysis, we describe the effect of Fenchel-Nielsen coordinates under elementary move for hyperbolic surfaces with geodesic boundaries, punctures and cone points. The precise result which is the main result of this paper will be stated in §3. The result generalize Okai's result [5] for surfaces with geodesic boundaries. And also this give a new proof of

Okai's result. Okai's result is useful to understand the locally structure of quasiconformal Teichmüller space [6]. An interesting question is to extend the result to complex Fenchel-Nilesen coordinates [7].

As an application of the main result, we show that the hyperbolic length functions of closed curves are asymptotically piecewise linear functions with respect to the Fenchel Nielsen coordinates in the Teichmüller spaces of surfaces with cones. This result is a generalization of Mirzakhani's result [3] for closed surfaces.

2. Preliminaries

2.1. Definitions and notations. Let $S=S_{g, n}$ be a oriented surface of genus g with n boundary components. A hyperbolic structures on S is a metric of constant curvature -1 such that each boundary component of S is a totally geodesic closed curve, a puncture or a cone-point.

In polar co-ordinates around a cone-point, the metric has the form $d r^{2}+\sinh ^{2} r d \eta^{2}$ where r is the distance from the cone-point, η is the angular measure around the cone-point, which is measured modulo θ for some $\theta \in(0,2 \pi)$. There is some $r_{0}>0$ such that the quotient

$$
\left\{(r, \eta) \mid 0<r<r_{0}, 0 \leq \eta \leq \theta\right\} /(r, 0) \sim(r, \theta)
$$

is isometric to a neighborhood of the cone-point. This θ is called the angle around the cone-point.

Endow S with a hyperbolic structure R. We shall assign a number to a cone-point, a puncture or a geodesic boundary component of R in the following way: for a cone-point, we let the number be the angle; for a puncture, we let the number be 0 ; for a geodesic boundary component of length L, we let the number be $i L$. Let $\theta_{1}, \ldots, \theta_{n}$ be the numbers assigned to the cone-points, punctures and geodesic boundary components. We call the tuple $\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ the signature of R.

The Teichmüller space $\mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ parameterizes hyperbolic structures of signature $\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ on S up to isotopy. Points in $\mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ are pairs (f, X), where X is a hyperbolic structures on S of signature $\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ equipped with a homeomorphism $f: S \rightarrow X$, up to the equivalence $(f, X) \sim$ (g, Y) if there is an isometry $\phi: X \rightarrow Y$ such that $\phi \circ f \simeq g$.

A simple closed curve on S is essential if it is not homotopic to a boundary component of S or to a point in the interior of S. Let γ be an essential simple closed curve on S. Given any hyperbolic structure X on S, there is a unique simple closed geodesic γ^{X} isotopic to γ. Denote by $\ell_{\gamma}(X)$ the length of γ^{X} in X. $\ell_{\gamma}(X)$ is called the hyperbolic length of γ in X. The definition only depends on the isotopy class of γ and the isotopy class of X in Teichmüller space.

A pants decomposition of S is a maximal set of mutually disjoint essential simple closed curves which decompose S into pairs of pants. Let $\mathscr{P}=\left\{\alpha_{i}\right\}_{i=1}^{3 g-3+n}$ be a pants decomposition of S. Endow S with a hyperbolic structure X of
signature $\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$. Without loss of generality, we shall assume that α_{i} is its geodesic representation in X. Along each α_{i}, there is a twist parameter $\tau_{\alpha_{i}}(X)$ measures the relative twist amount between the two generalized hyperbolic pair of pants (which might be the same) having α_{i} in common.

More precisely, we follow the convention in [9]. In this description, we fix a small tubular neighborhood N_{i} for every geodesic α_{i} and an orientation of α_{i}, and we also fix two points x_{i}, y_{i} on α_{i}. For every hyperbolic pairs of pants $P \subset$ $X \backslash \bigcup_{i=1}^{3 g-3} \alpha_{i}$, we consider three disjoint arcs that join the boundary components, with endpoints on the chosen points. Every pair of distinct boundary components of P are joined by a unique geodesic (called a seam) that is perpendicular to the boundary components. By performing an isotopy, we can deform the chosen arcs such that they coincide with the corresponding seams outside the union of the neighborhoods N_{i}, and such that in every neighborhood N_{i} they just spin around the cylinder (see [9], Figure 4.19). Using the orientation of α_{i}, we can then compute the amount of spinning of each of these arcs, as in Figure 4.20 of [9]. For every curve α_{i}, the twist parameter $\tau_{\alpha_{i}}(X)$ is then defined as the difference between the amount of spinning of two of the chosen arcs from the two sides of α_{i} (we need to use the orientation of α_{i} to choose the order of subtraction).

A pants decomposition $\mathscr{P}=\left\{\alpha_{i}\right\}_{i=1}^{3 g-3+n}$ determines a Fenchel-Nielsen coordinates

$$
\begin{aligned}
\mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right) & \rightarrow\left(\mathbf{R}_{+} \times \mathbf{R}\right)^{3 g-3+n} \\
X & \mapsto\left(\ell_{\alpha_{i}}(X), \tau_{\alpha_{i}}(X)\right) .
\end{aligned}
$$

2.2. Parameterizing the space $\mathscr{T}\left(2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$. Next we state the parameterization of the space $\mathscr{T}\left(0 ; 2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$. For reference we refer to [4].

We assume that $S=S_{0,4}$ is a sphere with four holes. Let $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4} \in$ $[0, \pi / 2] \cup i \mathbf{R}_{+}$and denote by

$$
\mathscr{T}\left(2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)=\mathscr{T}\left(0 ; 2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)
$$

the Teichmüller space of hyperbolic structures of signature $\left(0 ; 2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$ on S. We only treat the case where $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are numbers in $[0, \pi / 2]$. Other cases where some $\theta_{i} \in i \mathbf{R}_{+}$follow the same way by slight modifications.

Let α be an essential simple closed curve on S. Note that $\{\alpha\}$ is a pants decomposition of S. Denote by $\left(\ell_{\alpha}, \tau_{\alpha}\right)$ the Fenchel-Nielsen coordinates associated to α.

Let $X \in \mathscr{T}\left(2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$ be a hyperbolic structure with $\tau_{X}(\alpha)=0$. Denote by $\ell=\ell_{\alpha}(X)$. Consider a fundamental domain of X in \mathbf{H}^{2} (see Figure 2). We may assume that $i \mathbf{R}_{+}$is a lift of α. Let L_{0} and L_{1} be the geodesics obtained by the circles $|z|=1$ and $|z|=e^{\ell / 2}$, respectively. Choose a point $P=$ $-u+i v \in L_{0}, 0 \leq u \leq 1, v=\sqrt{1-u^{2}}$. Let L_{2} be the geodesic that intersects with L_{0} at P and also intersects with L_{1} at some point.

Figure 2. Fundamental domain.

We claim that L_{2} does not meet L_{1} in the right half plane. Note that if we denote the angle from L_{0} to L_{2} by θ_{1} and the angle from L_{2} to L_{1} by θ_{2}, then this claim is equivalent to the following inequality:

$$
\begin{equation*}
\cos \theta_{1}+\cosh \frac{\ell}{2} \cos \theta_{2} \geq 0 \tag{1}
\end{equation*}
$$

As we can not find a reference for this result, we give a proof of it.
Let us consider the case that L_{2} meets $i \mathbf{R}_{+}$at the point $i e^{\ell / 2}$. There is a geodesic triangle surrounded by L_{0}, L_{2} and $i \mathbf{R}_{+}$. The angles of the triangle are $\theta_{1}, \pi / 2$ and $\theta_{2}-\pi / 2$. Moreover, the length of the opposite side of θ_{1} is equal to $\ell / 2$. By formula of hyperbolic triangle (ref. [1]), we have

$$
\cosh \ell / 2=\frac{\cos \theta_{1}}{\sin \left(\theta_{2}-\pi / 2\right)}=\frac{\cos \theta_{1}}{-\cos \theta_{2}} .
$$

Hence

$$
\cos \theta_{1}+\cosh \frac{\ell}{2} \cos \theta_{2}=0
$$

Note that $\cos \theta_{1}+\cosh \frac{\ell}{2} \cos \theta_{2}$ is a strictly decreasing function of θ_{1} and θ_{2}. θ_{2} is increasing as L_{2} move from the left to the right. As a result, if L_{2} meets L_{1} in the right half plane, then

$$
\cos \theta_{1}+\cosh \frac{\ell}{2} \cos \theta_{2}<0
$$

If L_{2} meets L_{1} in the left half plane, then

$$
\cos \theta_{1}+\cosh \frac{\ell}{2} \cos \theta_{2}>0
$$

By our assumption, $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4} \in[0, \pi / 2]$. So (1) is always satisfied.
Note that each geodesic line in the upper half plane gives rise a reflection, which is an isometry of the Poincare metric. We denote by r_{0}, r_{1}, r_{2} the reflections correspond to L_{0}, L_{1}, L_{2}, respectively.

Let $A=r_{2} r_{0}$ and $H_{\ell}=r_{1} r_{0}$. Then A is the Möbius transformation corresponds the rotation at P with rotation angle $2 \theta_{1}$, and H_{ℓ} corresponds to the hyperbolic transformation $z \rightarrow e^{\ell} z$. Let us write down the matrix representation of A and H_{ℓ} in $\mathrm{SL}_{2}(\mathbf{R})$ (recall that $\left.P=-u+i v\right)$:

$$
\begin{gather*}
A=\left(\begin{array}{cc}
\cos \theta_{1}-u v^{-1} \sin \theta_{1} & v^{-1} \sin \theta_{1} \\
-v^{-1} \sin \theta_{1} & \cos \theta_{1}+u v^{-1} \sin \theta_{1}
\end{array}\right), \tag{2}\\
H_{l}=\left(\begin{array}{cc}
-e^{\ell / 2} & 0 \\
0 & -e^{\ell / 2}
\end{array}\right) \tag{3}
\end{gather*}
$$

Set $B=A^{-1} H_{l}$, the matrix for B is

$$
B=\left(\begin{array}{cc}
-e^{\ell / 2} \cos \theta_{1}+u v^{-1} \sin \theta_{1} & e^{-\ell / 2} v^{-1} \sin \theta_{1} \tag{4}\\
-e^{\ell / 2} v^{-1} \sin \theta_{1} & -e^{-\ell / 2} \cos \theta_{1}-u v^{-1} \sin \theta_{1}
\end{array}\right) .
$$

where

$$
\begin{align*}
& u=\frac{\left|\cos \theta_{2}+\cosh \frac{l}{2} \cos \theta_{1}\right|}{\left(\cosh ^{2} \frac{l}{2}+2 \cosh \frac{l}{2} \cos \theta_{1} \cos \theta_{2}+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}-1\right)^{1 / 2}}, \tag{5}\\
& v=\frac{\sinh \frac{l}{2} \sin \theta_{1}}{\left(\cosh ^{2} \frac{l}{2}+2 \cosh \frac{l}{2} \cos \theta_{1} \cos \theta_{2}+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}-1\right)^{1 / 2}}
\end{align*}
$$

By (1), thus the numerator of the first expression in (5) does not need absolutevalues.

Similarly, by replacing $\left(\theta_{1}, \theta_{2}\right)$ by $\left(\theta_{4}, \theta_{3}\right)$, we may define \tilde{A}, \tilde{B} in the same way as we defined A, B through equations (2)-(4). These \tilde{A}, \tilde{B} correspond to (negative) rotations at the cone-points with angles $2 \theta_{4}$ and $2 \theta_{3}$, respectively.

Let $X_{s} \in \mathscr{T}\left(2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$ be the hyperbolic surface obtained from X by the s-twist along α, that is, $\ell_{\alpha}\left(X_{s}\right)=\ell, \tau_{\alpha}\left(X_{s}\right)=s$. Note that under the s-twist deformation, $L_{0}\left(\right.$ and $\left.L_{1}\right)$ becomes a piece-wise geodesic arc. See Figure 3.

Let $E(z)=-1 / z, H_{s}(z)=e^{s} z$. We denote D and C by the conjugation of \tilde{A}^{-1} and \tilde{B}^{-1} by $H_{s} r_{0} E$, respectively. Then we have

$$
\begin{gathered}
C=\left(\begin{array}{cc}
-e^{-l / 2}\left(\cos \theta_{4}-\xi \eta^{-1} \sin \theta_{4}\right) & e^{s} e^{-l / 2} \eta^{-1} \sin \theta_{4} \\
-e^{s} e^{l / 2} \eta^{-1} \sin \theta_{4} & -e^{l / 2}\left(\cos \theta_{4}+\xi \eta^{-1} \sin \theta_{4}\right)
\end{array}\right), \\
D=\left(\begin{array}{cc}
\cos \theta_{4}+\xi \eta^{-1} \sin \theta_{4} & e^{s} \eta^{-1} \sin \theta_{4} \\
-e^{-s} \eta^{-1} \sin \theta_{4} & \cos \theta_{4}-\xi \eta^{-1} \sin \theta_{4}
\end{array}\right)
\end{gathered}
$$

Figure 3. Twist.
where

$$
\begin{aligned}
& \xi=\frac{\left|\cos \theta_{3}+\cosh \frac{\ell}{2} \cos \theta_{4}\right|}{\left(\cosh ^{2} \frac{\ell}{2}+2 \cosh \frac{\ell}{2} \cos \theta_{3} \cos \theta_{4}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1\right)^{1 / 2}}, \\
& \eta=\frac{\sinh \frac{\ell}{2} \sin \theta_{4}}{\left(\cosh ^{2} \frac{\ell}{2}+2 \cosh \frac{\ell}{2} \cos \theta_{3} \cos \theta_{4}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1\right)^{1 / 2}}
\end{aligned}
$$

Note that D and C correspond to the rotations at the cone-points with angles $2 \theta_{4}$ and $2 \theta_{3}$, respectively. In particular, when $s=0, D=\tilde{A}^{-1}, C=\tilde{B}^{-1}$.

In conclusion, A, B, C, D correspond to the rotations around the cone-points and each of which can be considered as a matrix-function of the Fenchel-Nielsen coordinates $\left(\ell_{\alpha}, \tau_{\alpha}\right)$.

Denote $x=-\frac{1}{2} \operatorname{tr} B C, y=-\frac{1}{2} \operatorname{tr} C A, z=-\frac{1}{2} \operatorname{tr} A B . \quad$ Let $a=\cos \theta_{1} \cos \theta_{4}+$ $\cos \theta_{2} \cos \theta_{3}, \quad b=\cos \theta_{2} \cos \theta_{4}+\cos \theta_{1} \cos \theta_{3}, \quad c=\cos \theta_{3} \cos \theta_{4}+\cos \theta_{1} \cos \theta_{2}$ and $d=4 \cos \theta_{1} \cos \theta_{2} \cos \theta_{3} \cos \theta_{4}+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1$.

Proposition 2.1 ([4]). With the above notations, X_{s} satisfies the following algebraic equation in \mathbf{R}^{3} :

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-2 x y z+2 a x+2 b y+2 c z+d=0 \tag{7}
\end{equation*}
$$

and $x>1, y>1, z>1$. Moreover, the set T represents the Teichmüller space $\mathscr{T}\left(2 \theta_{1}, 2 \theta_{2}, 2 \theta_{3}, 2 \theta_{4}\right)$ where

$$
T=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x>1, y>1, z>1 \text { and satisfy }(7)\right\} .
$$

If we denote

$$
L=\frac{x+\cos \theta_{1} \cos \theta_{4}-u \xi^{-1} v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4}}{v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4}}
$$

From [4], we know that

$$
\begin{equation*}
\ell_{\alpha}=\ell=2 \log \left(z+\sqrt{z^{2}-1}\right), \quad \tau_{\alpha}=s=\log \left(L+\sqrt{L^{2}-1}\right) \tag{8}
\end{equation*}
$$

Remark 2.1. In the above discussion, we have assumed that $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are numbers in $[0, \pi / 2]$. To include the cases where some $\theta_{i} \in i \mathbf{R}_{+}$, we could follow the same way by slight modifications. Note that $\cos (i \theta)=\cosh \theta$ and we don't need to change the notations in the above equations.

3. Statement and proof of the main result

In this section, we will prove the formula for the effect of Fenchel-Nielsen coordinates under elementary move. We will assume that $S=S_{0,4}$ and apply the notations and results in Section 3.

Suppose that α^{\prime} is an essential simple closed curve on S differs from α by an elementary move. Denote by $\left(\ell^{\prime}, \tau^{\prime}\right)$ the Fenchel-Nielsen coordinates of X_{τ} associated to α^{\prime}. Recall that X_{τ} is the hyperbolic surface obtained from X by τ-twist deformation along α.

Note that α^{\prime} separates the cone-points of angles $2 \theta_{1}, 2 \theta_{4}$ with the cone-points of angles $2 \theta_{2}, 2 \theta_{3}$ (recall Figure 3). The hyperbolic transformation corresponding to α^{\prime} is given by $B C$. We can replace $\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)$ by $\left(\theta_{4}, \theta_{1}, \theta_{2}, \theta_{3}\right)$ (and replace x, y, z, a, b, c, d by $\left.x^{\prime}, y^{\prime}, z^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ and follow the same proof as in Section 3 to show that

$$
\begin{equation*}
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-2 x^{\prime} y^{\prime} z^{\prime}+2 a^{\prime} x^{\prime}+2 b^{\prime} y^{\prime}+2 c^{\prime} z^{\prime}+d^{\prime}=0 . \tag{9}
\end{equation*}
$$

By the corresponding between cone angles, we have $x^{\prime}=z, y^{\prime}=y, z^{\prime}=x$ and $a^{\prime}=c, b^{\prime}=b, c^{\prime}=a, d^{\prime}=d$. As a result, (9) is equivalent to (7). Similar to (8), we have

$$
\begin{align*}
& \ell^{\prime}=2 \log \left(z^{\prime}+\sqrt{\left(z^{\prime}\right)^{2}-1}\right)=2 \log \left(x+\sqrt{x^{2}-1}\right) \tag{10}\\
& \tau^{\prime}=\log \left(L^{\prime}+\sqrt{\left(L^{\prime}\right)^{2}-1}\right)
\end{align*}
$$

Theorem 3.1 ([Main result]). We have the following formulae for the transition map $\Phi_{\alpha^{\prime}}^{-1} \circ \Phi_{\alpha}$:
(i) ℓ^{\prime} satisfies

$$
\begin{aligned}
\cosh \left(\ell^{\prime} / 2\right)= & \sinh (\ell / 2)^{-2}\left\{\cos \theta_{1} \cos \theta_{4}+\cos \theta_{2} \cos \theta_{3}\right. \\
& +\cosh (\ell / 2)\left(\cos \theta_{1} \cos \theta_{3}+\cos \theta_{2} \cos \theta_{4}\right)+\cosh (\tau)\left(\cosh ^{2}(\ell / 2)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+2 \cos \theta_{1} \cos \theta_{2} \cosh (\ell / 2)+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}-1\right)^{1 / 2}\left(\cosh (\ell / 2)^{2}\right. \\
& \left.\left.+2 \cos \theta_{3} \cos \theta_{4} \cosh (\ell / 2)+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1\right)^{1 / 2}\right\} .
\end{aligned}
$$

(ii) $\left|\tau^{\prime}\right|$ satisfies

$$
\begin{aligned}
\cosh \left(\tau^{\prime}\right)= & \left\{\cos ^{2} \theta_{1}+\cos ^{2} \theta_{4}+2 \cos \theta_{1} \cos \theta_{4} \cosh \left(\ell^{\prime} / 2\right)+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2} \\
& \times\left\{\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}+2 \cos \theta_{2} \cos \theta_{3} \cosh \left(\ell^{\prime} / 2\right)+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2} \\
\times & \left\{\sinh \left(\ell^{\prime} / 2\right)^{2} \cosh (\ell / 2)-\cos \theta_{1} \cos \theta_{2}-\cos \theta_{3} \cos \theta_{4}\right. \\
& \left.-\left(\cos \theta_{1} \cos \theta_{3}+\cos \theta_{2} \cos \theta_{4}\right) \cosh \left(\ell^{\prime} / 2\right)\right\}
\end{aligned}
$$

Proof. By (8), $L=\cosh (\tau)$. Using the equation of L, we get $x=\cos \theta_{1} \cos \theta_{4}-u \xi v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4}+v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4} \cosh (s)$.
Note that (10) implies that $x=\cosh \left(l^{\prime} / 2\right)$. Hence $\cosh \left(l^{\prime} / 2\right)=\cos \theta_{1} \cos \theta_{4}-u \xi v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4}+v^{-1} \eta^{-1} \sin \theta_{1} \sin \theta_{4} \cosh (s)$.
Combining the above equation with the equations of u, v, ξ, η, a detailed calculation shows that

$$
\begin{aligned}
\cosh \left(\ell^{\prime} / 2\right)= & \sinh (\ell / 2)^{-2}\left\{\cos \theta_{1} \cos \theta_{4}+\cos \theta_{2} \cos \theta_{3}\right. \\
& +\cosh (\ell / 2)\left(\cos \theta_{1} \cos \theta_{3}+\cos \theta_{2} \cos \theta_{4}\right)+\cosh (\tau)\left(\cosh ^{2}(\ell / 2)\right. \\
& \left.+2 \cos \theta_{1} \cos \theta_{2} \cosh (\ell / 2)+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}-1\right)^{1 / 2}\left(\cosh ^{2}(\ell / 2)\right. \\
& \left.\left.+2 \cos \theta_{3} \cos \theta_{4} \cosh (\ell / 2)+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1\right)^{1 / 2}\right\} .
\end{aligned}
$$

This proves (i). To prove (ii), we only need to replace ℓ, τ in (i) with $l^{\prime}, \tau^{\prime}$ and exchange θ_{2} with θ_{4}.

Our main result is a slight generalization of Okai's result. In the case that the boundary of $S_{0,4}$ are totally geodesic boundary with length $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$, we let $\theta_{i}=\frac{i \ell_{i}}{2}$. Then $\cos \theta_{i}=\cosh \left(\ell_{i} / 2\right)$ and we get the original formulae of Okai [5] by the above theorem:

$$
\begin{aligned}
\cosh \left(\ell^{\prime} / 2\right)= & \sinh (\ell / 2)^{-2}\left\{\cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{4} / 2\right)+\cosh \left(\ell_{2} / 2\right) \cosh \left(\ell_{3} / 2\right)\right. \\
& +\cosh (\ell / 2)\left(\cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{3} / 2\right)+\cosh \left(\ell_{2} / 2\right) \cosh \left(\ell_{4} / 2\right)\right) \\
& +\cosh (\tau)\left(\cosh ^{2}(\ell / 2)+2 \cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{2} / 2\right) \cosh (\ell / 2)\right. \\
& \left.+\cosh ^{2}\left(\ell_{1} / 2\right)+\cosh ^{2}\left(\ell_{2} / 2\right)-1\right)^{1 / 2} \\
& \times\left(\cosh ^{2}(\ell / 2)+2 \cosh \left(\ell_{3} / 2\right) \cosh \left(\ell_{4} / 2\right) \cosh (\ell / 2)\right. \\
& \left.\left.+\cosh ^{2}\left(\ell_{3} / 2\right)+\cosh ^{2}\left(\ell_{4} / 2\right)-1\right)^{1 / 2}\right\},
\end{aligned}
$$

$$
\begin{aligned}
\cosh \left(\tau^{\prime}\right)= & \left\{\cosh ^{2}\left(\ell_{1} / 2\right)+\cosh ^{2}\left(\ell_{4} / 2\right)+2 \cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{4} / 2\right) \cosh \left(\ell^{\prime} / 2\right)\right. \\
& \left.+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2}\left\{\cosh ^{2}\left(\ell_{2} / 2\right)+\cosh ^{2}\left(\ell_{3} / 2\right)\right. \\
& \left.+2 \cosh \left(\ell_{2} / 2\right) \cosh \left(\ell_{3} / 2\right) \cosh \left(\ell^{\prime} / 2\right)+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2} \\
& \times\left\{\sinh ^{2}\left(\ell^{\prime} / 2\right) \cosh (\ell / 2)-\cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{2} / 2\right)\right. \\
& -\cosh \left(\ell_{3} / 2\right) \cosh \left(\ell_{4} / 2\right)-\left(\cosh \left(\ell_{1} / 2\right) \cosh \left(\ell_{3} / 2\right)\right. \\
& \left.+\cosh \left(\ell_{2} / 2\right) \cosh \left(\ell_{4} / 2\right) \cosh \left(\ell^{\prime} / 2\right)\right\} .
\end{aligned}
$$

Remark 3.1. Our proof is different from Okai's proof. So we give a new proof of Okai's result. Okai [5] also proved that $\operatorname{sign}(\tau)=-\operatorname{sign}\left(\tau^{\prime}\right)$.

We make a few comment about the case that $S=S_{1,1}$ is a torus with one hole. Let $\mathscr{T}(2 \theta)$ be the Teichmüller space of hyperbolic structures on $S_{1,1}$ with cone angle $2 \theta \in[0, \pi] \cup i \mathbf{R}_{+}$. There is a natural identification of $\mathscr{T}(2 \theta)$ with $\mathscr{T}(\pi, \pi, \pi, \theta)$ (ref. [4]). Apply $\mathscr{T}(\pi, \pi, \pi, \theta)$ to Theorem 3.1, we have

$$
\cosh \left(\ell^{\prime} / 2\right)=\sinh (\ell / 2)^{-1} \cosh (\tau / 2)\left\{\frac{\cosh (\ell)+\cos \theta}{2}\right\}^{1 / 2}
$$

and

$$
\begin{aligned}
\cosh \left(\tau^{\prime} / 2\right)= & \cosh (\ell / 2)\left\{\cosh ^{2}(\tau / 2)(\cosh (\ell)+\cos \theta)-2 \sinh ^{2}(\ell / 2)\right\}^{1 / 2} \\
& \times\left\{\cosh ^{2}(\tau / 2)\left(\cosh ^{2}(\ell / 2)+\cos \theta\right)+\sinh ^{2}(\ell / 2) \cos \theta\right\}^{-1 / 2} .
\end{aligned}
$$

In case that $\theta=i \frac{\ell_{0}}{2}$, we have

$$
\cosh \left(\ell^{\prime} / 2\right)=\sinh (\ell / 2)^{-1} \cosh (\tau / 2)\left\{\frac{\cosh (\ell)+\cosh \left(\ell_{0} / 2\right)}{2}\right\}^{1 / 2}
$$

and

$$
\begin{aligned}
\cosh \left(\tau^{\prime} / 2\right)= & \cosh (\ell / 2)\left\{\cosh ^{2}(\tau / 2)\left(\cosh (\ell)+\cos \left(\ell_{0} / 2\right)\right)-2 \sinh ^{2}(\ell / 2)\right\}^{1 / 2} \\
& \times\left\{\cosh ^{2}(\tau / 2)\left(\cosh ^{2}(\ell / 2)+\cos \left(\ell_{0} / 2\right)\right)+\sinh ^{2}(\ell / 2) \cos \left(\ell_{0} / 2\right)\right\}^{-1 / 2} .
\end{aligned}
$$

The above formula is also given by Okai [5].
As an application, we consider the 2 -form $d \ell \wedge d \tau$. Using (8), we have

$$
d \ell \wedge d \tau=\frac{4 d z \wedge d x}{\sqrt{x^{2} z^{2}-x^{2}-z^{2}-2 b x z-2 a x-2 c x+b^{2}-d}} .
$$

By (7), the denominator is equal to $x z-y-b$, and then

$$
d \ell \wedge d \tau=\frac{4 d z \wedge d x}{x z-y-b} .
$$

By (7) again, we know that

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y, \quad d x=\frac{\partial x}{\partial y} d y+\frac{\partial x}{\partial z} d z
$$

where

$$
\frac{\partial z}{\partial y}=\frac{x z-y-b}{z-x y+c}, \quad \frac{\partial x}{\partial y}=\frac{x z-y-b}{x-y z+a} .
$$

Hence

$$
\frac{4 d z \wedge d x}{x z-y-b}=\frac{4 d x \wedge d y}{x y-z-c}=\frac{4 d y \wedge d z}{y z-x-a} .
$$

Since $\frac{4 d x \wedge d y}{x y-z-c}$ is equal to $d l^{\prime} \wedge d \tau^{\prime}$, we have

$$
d \ell \wedge d \tau=d \ell^{\prime} \wedge d \tau^{\prime}
$$

As a result, the two form $d \ell_{\alpha} \wedge d \tau_{\alpha}$ is independent of the choice of α. It is a generalization of the Weil-Petersson symplectic form studied by Wolpert [10].

4. An application

Mirzakhani [3] proved the following theorem:
Theorem 4.1. Let γ be a closed curve on $S_{g, n}$. The length function

$$
\begin{gathered}
l_{\gamma}: \mathscr{T}(g ; 0, \ldots, 0) \rightarrow \mathbf{R}_{+} \\
X \mapsto l_{\gamma}(X)
\end{gathered}
$$

is an asymptotically piecewise linear function of rational type with respect to the Fenchel-Nielsen coordinates.

Our goal is to generalize the above theorem to surfaces with cone points by using Theorem 3.1. We'll prove the following theorem.

Theorem 4.2. Let γ be a closed curve on $S_{g, n}$ and $0 \leq \theta_{i}<\pi, 1 \leq i \leq n$. Then the length function

$$
\begin{gathered}
l_{\gamma}: \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right) \rightarrow \mathbf{R}_{+} \\
X \mapsto l_{\gamma}(X)
\end{gathered}
$$

is an asymptotically piecewise linear function with respect to the Fenchel-Nielsen coordinates.

Remark 4.1. In the case the surfaces without cone points, the length function of a closed curve is an asymptotically piecewise linear function of rational
type with respect to the Fenchel-Nielsen coordinates. Then in the case the surfaces with cone points, the length function of a closed curve is an asymptotically piecewise linear function with respect to the Fenchel-Nielsen coordinates but it's not necessarily of rational type. Because the cone points can cause some irrational coefficients.
4.1. Definitions and lemmas. We give the following definitions and lemmas that appeared in [3] for completeness. Let \mathscr{C} denote a closed cone in \mathbf{R}^{m}.

Definition 4.1 (Asymptotically linear [3]). Let $F: \mathscr{C} \rightarrow \mathbf{R}$ be a function, we say F is asymptotically linear with respect to coordinates x_{1}, \ldots, x_{m} iff there are linear functions $\mathscr{R}_{1}, \ldots, \mathscr{R}_{m^{\prime}}, \mathscr{L}: \mathbf{R}^{m} \rightarrow \mathbf{R}$ and $c \in \mathbf{R}^{+}$such that

$$
F\left(x_{1}, \ldots, x_{m}\right)-\mathscr{L}\left(x_{1}, \ldots, x_{m}\right) \rightarrow c
$$

uniformly as $\min _{1 \leq i \leq m^{\prime}}\left\{\mathscr{R}_{i}\left(x_{1}, \ldots, x_{m}\right)\right\}_{i=1}^{m^{\prime}} \rightarrow \infty$.
Definition 4.2 (Asymptotically piecewise linear [3]). Let $F: \mathscr{C} \rightarrow \mathbf{R}$ be a function, we say F is asymptotically piecewise linear iff there are linear functions $\mathscr{W}_{1}, \ldots, \mathscr{W}_{k}$ such that for any $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{m}\right), \epsilon_{i}=1$ or -1 . The restriction of F on each sub-cone defined by $\mathscr{C}_{\epsilon}=\left\{x \mid \operatorname{Sign}\left(\mathscr{W}_{i}(x)\right)=\epsilon\right\}$ is asymptotically linear.

Moreover, if $\mathscr{R}_{1}, \ldots, \mathscr{R}_{m^{\prime}}, \mathscr{W}_{1}, \ldots, \mathscr{W}_{k}$ and \mathscr{L} can be chosen to all having rational coefficients, then we call F is of rational type.

For $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}$, we define $e_{i}: \mathbf{R}^{k} \rightarrow \mathbf{R}$ by $e_{i}(x)=e^{x_{i}}$. Let \mathscr{F}_{k}^{*} to be the smallest family of functions $\mathbf{R}^{k} \rightarrow \mathbf{R}$ containing the functions e_{i} for $1 \leq i \leq k$ such that the following holds: for any two $f, g \in F_{k}^{*}$ and $m \in N, c \in R$ we have

$$
\left\{f+g, f-g, f \times g, \frac{f}{g}, f^{1 / m}, c f\right\} \subset \mathscr{F}_{k}^{*}
$$

Moreover we define

$$
\mathscr{F}^{*}=\bigcup_{k \geq 1} \mathscr{F}_{k}^{*} .
$$

Then for any $P \in \mathscr{F}_{k}^{*}$, we have

$$
F(x)=\operatorname{Arccosh}(P(x))
$$

is asymptotically piecewise linear on any cone where it is defined.
Let F_{1}, \ldots, F_{k} in \mathscr{F}_{k}^{*}. For $P \in \mathscr{F}_{k}^{*}$, we define a function

$$
G(x)=P\left(F_{1}^{\prime}(x), \ldots, F_{k}^{\prime}(x)\right),
$$

where $F_{i}^{\prime}(x)=\operatorname{Arcsinh}\left(F_{i}(x)\right)$ or $F_{i}^{\prime}(x)=\operatorname{Arccosh}\left(F_{i}(x)\right)$. Then $G \in \mathscr{F}_{k}^{*}$ and $\operatorname{Arccosh}(G(x))$ is also asymptotically piecewise linear on any cone where it is defined.

Let

$$
\mathscr{A}^{*}=\left\{G: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m} \mid \cosh \left(\pi_{i}(G)\right) \in \mathscr{F}^{*} \text { or } \sinh \left(\pi_{i}(G)\right) \in \mathscr{F}^{*}\right\}
$$

where $\pi_{i}: \mathbf{R}^{m} \rightarrow \mathbf{R}$ is the natural projection map to the i th coordinate.
With the above notations, the following lemma is from [3]:
Lemma 4.3.

- Any function $G \in \mathscr{A}^{*}$ is asymptotically piecewise linear.
- The composition $G_{1} \circ G_{2}$ of any two maps in \mathscr{A}^{*} is again in \mathscr{A}^{*}.
4.2. An application. Now we give an application of the main Theorem 3.1. For convenience we let

$$
\begin{gathered}
A_{1}=\cos \theta_{1} \cos \theta_{4}+\cos \theta_{2} \cos \theta_{3}, \quad A_{2}=\cos \theta_{1} \cos \theta_{3}+\cos \theta_{2} \cos \theta_{4} . \\
A_{3}=2 \cos \theta_{1} \cos \theta_{2}, \quad A_{4}=\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}-1 . \\
A_{5}=2 \cos \theta_{3} \cos \theta_{4}, \quad A_{6}=\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}-1 . \\
B_{1}=\cos ^{2} \theta_{1}+\cos ^{2} \theta_{4}, \quad B_{2}=2 \cos \theta_{1} \cos \theta_{4} . \\
B_{3}=\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}, \quad B_{4}=2 \cos \theta_{2} \cos \theta_{3} . \\
B_{5}=\cos \theta_{1} \cos \theta_{2}+\cos \theta_{3} \cos \theta_{4}, \quad B_{6}=\cos \theta_{1} \cos \theta_{3}+\cos \theta_{2} \cos \theta_{4} .
\end{gathered}
$$

It is clear that $A_{i}, B_{i} \in R, i=1, \ldots, 6$. And the formulas from Theorem 3.1 can be simplified as:

$$
\begin{aligned}
\cosh \left(\ell^{\prime} / 2\right)= & \sinh (\ell / 2)^{-2}\left\{A_{1}+A_{2} \cosh (\ell / 2)+\cosh (\tau)\right. \\
& \times\left[\cosh ^{2}(\ell / 2)+A_{3} \cosh (\ell / 2)+A_{4}\right]^{1 / 2} \\
& \left.\times\left[\cosh (\ell / 2)^{2}+A_{5} \cosh (\ell / 2)+A_{6}\right]^{1 / 2}\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
\cosh \left(\tau^{\prime}\right)= & \left\{B_{1}+B_{2} \cosh \left(\ell^{\prime} / 2\right)+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2} \\
& \times\left\{B_{3}+B_{4} \cosh \left(\ell^{\prime} / 2\right)+\sinh ^{2}\left(\ell^{\prime} / 2\right)\right\}^{-1 / 2} \\
& \times\left\{\sinh \left(\ell^{\prime} / 2\right)^{2} \cosh (\ell / 2)-B_{5}-B_{6} \cosh \left(\ell^{\prime} / 2\right)\right\} .
\end{aligned}
$$

It is clear that $\cosh \left(\ell^{\prime} / 2\right) \in \mathscr{F}^{*}$ and $\cosh \left(\tau^{\prime}\right) \in \mathscr{F}^{*}$. By Lemma 4.3 we know that $\ell^{\prime} / 2$ and τ^{\prime} are asymptotically piecewise linear. This implies that the asymptotic piecewise linearity does not depend on the choice of the FenchelNielsen coordinates. Then the Theorem 4.2 is clearly true for the case that γ is a simple closed curve because one can take Fenchel-Nielsen coordinates by using γ.

To prove the Theorem 4.2 for the case that γ has self-intersections $(\gamma$ is a closed curve but is not a simple closed curve), we need to generalize the Lemma 3.11 in [8] from hyperbolic surface without cone points to hyperbolic surface with cone points. We express this generalization as following.

Figure 4. Hyperbolic cone surface.

Lemma 4.4. Let α be a closed curve on $S_{g, n}$ with $i(\alpha, \alpha)>0$. There are closed curves $\alpha_{1}, \alpha_{2}, \alpha_{3}$ on $S_{g, n}$ such that $i\left(\alpha_{j}, \alpha_{j}\right)<i(\alpha, \alpha)$ for $1 \leq j \leq 3$ and for any $X \in \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$ we have:

$$
\cosh \frac{l_{\alpha}(X)}{2}=2 \cosh \frac{l_{\alpha_{1}}(X)}{2} \cosh \frac{l_{\alpha_{2}}(X)}{2}+\varepsilon \cosh \frac{l_{\alpha_{3}}(X)}{2} .
$$

where $\varepsilon \in\{1,-1\}$.
Remark 4.2. For each intersection $p \in \alpha$, we have two operations: separating resolution and non-separation resolution. Let α_{1} and α_{2} respectively denote the two components of the separation of α at p, and let α_{3} denote the component of the non-separating resolution of α at p. See [8] for more details.

We can not give a proof of the above lemma directly by using the idea of the proof of the Lemma 3.11 in [8], since we do not know the metric structure of the universal cover of hyperbolic surface with cones. But we can view the hyperbolic cone surface as the subsurface of the corresponding complete surface in some senses. For this purpose, we need to do some preparations.

First we can find a simple closed geodesic β separating the surface into two parts as show in Figure 4: one of them is a hyperbolic surface P_{1} with punctures and geodesic boundaries; the other is a hyperbolic surface P_{2} with cone points and geodesic boundaries, and the genus of P_{2} is zero. Let c_{1}, \ldots, c_{m} denote the cone points. We can find some geodesic arcs $\gamma_{i, i+1} i=1, \ldots, m-1$, satisfy the following conditions:

- $\gamma_{i, i+1}$ connects the cone points c_{i} and c_{i+1}.
- $\gamma_{i, i+1} \cap \gamma_{j, j+1}=\emptyset, i \neq j$.

Here the surface S endows with a hyperbolic structure R. For simplicity, in the following we denote S as a surface with hyperbolic structure. That is, S is a hyperbolic surface. Then we cut the hyperbolic surface S along the geodesic arcs $\gamma_{i, i+1} i=1, \ldots, m-1$, and obtain a new hyperbolic surface S^{*} with boundaries. Here the boundary component $\gamma_{1,2}^{\prime} \cup \gamma_{2,3}^{\prime} \cup \cdots \cup \gamma_{m-1, m}^{\prime} \cup \gamma_{m-1, m}^{\prime \prime} \cup \cdots \cup \gamma_{1,2}^{\prime \prime}$ is

Figure 5. S^{*} as a subsurface of S^{\prime}.

Figure 6. Universal cover of S^{\prime}.
piecewise geodesic arcs. Let S^{\prime} denote the completion of P_{1}. It is clearly that the hyperbolic surface S^{*} can be isometrically embedded into S^{\prime} as show in Figure 5.

Then we consider the universal cover of S^{\prime} as show in Figure 6, here the grey shaded parts denote the lifts of P_{2} as the subsurface of S^{\prime}. We will need the following lemma about the hyperbolic surface with cones.

Lemma 4.5. With the above notations and $0 \leq \theta_{i}<\pi, 1 \leq i \leq n$, we have:

- Let α be a closed geodesic of $X \in \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$. If $\alpha \cap \gamma_{i, i+1}=\emptyset$ for all $\gamma_{i, i+1} i=1, \ldots, m-1$. Then $\alpha \subset P_{1}$.
- Let α be a closed geodesic of $X \in \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$. Then $c_{i} \notin \alpha$ for any cone point c_{i}.

Figure 7. Generalized triangle.

Lemma 4.6. Let α be a closed curve of $X \in \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$, and $p \in \alpha$. Assume α also satisfies the following two conditions:

- $\alpha \backslash p$ is a smooth geodesic arc,
- The angle of α at p is θ.

Let α^{\prime} denote the geodesic representation of α in the homotopy class. Then we have:

$$
\cos (\theta)=\frac{-\cosh l_{\alpha^{\prime}}(X)+\sinh ^{2} \frac{l_{\alpha}(X)}{4}}{\cosh ^{2} \frac{l_{\alpha}(X)}{4}}
$$

In case that α is isotopic to a cone point with cone angle φ, we denote $l_{\alpha^{\prime}}(X)=i \varphi$.

Proof. If $\alpha \cap \gamma_{i, i+1}=\emptyset$ for all $\gamma_{i, i+1} i=1, \ldots, m-1$. By using the above lemma we know that $\alpha \subset P_{1}$. Then the proof is done by applying the cosine law on the generalized triangles PJIQ or PKLMN as in the Figure 7.

If $\alpha \cap \gamma_{i, i+1} \neq \emptyset$ for some $\gamma_{i, i+1}$. Let $\tilde{\alpha}$ and $\tilde{\alpha}^{\prime}$ be the lifts of α and α^{\prime} in the universal cover \tilde{S}^{\prime} of S^{\prime}, respectively. Let ρ denote the hyperbolic metric of \tilde{S}^{\prime}. Then the lifts $\tilde{\alpha}$ and $\tilde{\alpha}^{\prime}$ are divided into some geodesic arcs $\widetilde{\alpha_{i}}, i=1, \ldots, n$ and $\widetilde{\alpha}_{i}{ }^{\prime}$, $i=1, \ldots, n$ by the lifts of $\gamma_{i, i+1}$. We also know that $\widetilde{\alpha_{i}}$ and ${\widetilde{\alpha_{i}}}^{\prime}$ are homotopy relative to some $\widetilde{\gamma_{i, j}}$.

Let P be a lift of p in the universal cover, and let θ be the angle at P of $\tilde{\alpha}$. Let the solid geodesic arcs $\widetilde{\alpha_{1}}=P A \cup B C, \widetilde{\alpha_{2}}=D P$ denote the lift of α and the solid geodesic arcs $\widetilde{\alpha}_{1}{ }^{\prime}=H E, \widetilde{\alpha}_{2}{ }^{\prime}=F G$ denote the lift of α^{\prime}, as shown in Figure 8. Then there are two cases:

- α is not isotopic to a cone point. Let us choose a point Q belong to the geodesic $H E$ such that $P Q$ is vertical to $H E$. We extend $P A$ to obtain $P J$ satisfies $l_{\rho}(P J)=l_{\alpha}(X)$, and extend $Q E$ to obtain $Q I$ satisfies $l_{\rho}(Q I)=$ $l_{\alpha^{\prime}}(X)$. Hence we obtain (A) of Figure 7. It is clear that $l_{\rho}(P Q)=l_{\rho}(I J)$. Moreover we obtain (B) of Figure 7 by a simple geometry operation.

Figure 8.

Applying the cosine law to the generalized triangles PJIQ or PKLMN, we have:

$$
\cos (\theta)=\frac{-\cosh l_{X}\left(\alpha^{\prime}\right)+\sinh ^{2}\left(\frac{l_{X}(\alpha)}{4}\right)}{\cosh ^{2}\left(\frac{l_{X}(\alpha)}{4}\right)}
$$

- α is isotopic to a cone point with cone angle φ, then we obtain the Figure 9 . Applying the cosine law to the generalized triangles $P K M N$ in Figure 9,

Figure 9.
we have:

$$
\begin{gathered}
\sin \left(\frac{\theta}{2}\right)=\frac{\cos \left(\frac{\varphi}{2}\right)}{\cosh \left(\frac{l_{p(\alpha)}}{4}\right)} . \\
\cos (\theta)=\frac{-2 \cos ^{2}\left(\frac{\varphi}{2}\right)+\cosh ^{2}\left(\frac{l_{\rho}(\alpha)}{4}\right)}{\cosh ^{2}\left(\frac{l_{\rho}(\alpha)}{4}\right)}=\frac{-\cos (\varphi)+\sinh ^{2}\left(\frac{l_{X}(\alpha)}{4}\right)}{\cosh ^{2}\left(\frac{l_{X}(\alpha)}{4}\right)} .
\end{gathered}
$$

Basic on the above lemma, the proof of Lemma 4.4 is similar to the proof of Lemma 3.11 in [8]. For the sake of simplicity, we omit the details.

Corollary 4.7. For any closed geodesic $\alpha \in X \in \mathscr{T}\left(g ; \theta_{1}, \ldots, \theta_{n}\right)$, there exist finite simple closed geodesics $\beta_{i}, i=1, \ldots, m$ such that

$$
\begin{aligned}
\cosh \left(\frac{l_{\alpha}(X)}{2}\right)= & k_{1} \cosh ^{t_{1,1}}\left(\frac{l_{\alpha_{1}(X)}}{2}\right) \cdots \cosh ^{t_{1, m}}\left(\frac{l_{\alpha_{m}(X)}}{2}\right) \\
& +k_{s} \cosh ^{t_{s, 1}}\left(\frac{l_{\alpha_{1}(X)}}{2}\right) \cdots \cosh ^{t_{s, m}}\left(\frac{l_{\alpha_{m}(X)}}{2}\right)
\end{aligned}
$$

where $t_{i, j} \in N$ and $k_{i}= \pm 2^{r}, r \in N$.

Proof. It sufficces to prove the corollary in the case that α has selfintersections. Let we assume p be one of self-intersection point of α. Applying the Lemma 4.4 to α at p, we have

$$
\cosh \left(\frac{l_{\alpha}(X)}{2}\right)=2 \cosh \left(\frac{l_{\alpha_{1}}(X)}{2}\right) \cosh \left(\frac{l_{\alpha_{2}}(X)}{2}\right)+\varepsilon \cosh \left(\frac{l_{\alpha_{3}}(X)}{2}\right) .
$$

where $\varepsilon \in\{1,-1\}$, and α_{1}, α_{2} denote the two components of the separation of α at p, and α_{3} denote the component of the non-separating resolution of α at p. Moreover, $i\left(\alpha_{j}, \alpha_{j}\right)<i(\alpha, \alpha), j=1,2,3$. If $i\left(\gamma_{j}, \gamma_{j}\right)>0$ for some $j=1,2,3$, we apply the Lemma 4.4 to γ_{j} again. Then the corollary will be proved in finite steps by applying Lemma 4.4 repeatedly.

Then the proof of Theorem 4.2 is followed directly by Lemma 4.3 and Corollary 4.7.

Acknowledgements. The authors are grateful to Weixu Su for his many helps. They also would like to thank the referee for her(or his) suggestions.

References

[1] P. Buser, Geometry and spectra of compact Riemann surfaces, Springer Science \& Business Media, 2010.
[2] A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237.
[3] M. Mirzakhani, Counting mapping class group orbits on hyperbolic surfaces, 2016, preprint, arXiv:1601.03342.
[4] T. Nakanishi and M. Näätänen, Areas of two-dimensional moduli spaces, Proceedings of the American Mathematical Society 129 (2001), 3241-3252.
[5] T. OkaI, Effects of a change of pants decompositions on their fenchel-nielsen coordinates, Kobe Journal of Mathematics 10 (1993), 215-223.
[6] A. Papadopoulos, L. Liu, D. Alessandrini and W. Su, The behaviour of fenchel-nielsen distance under a change of pants decomposition, 2011, preprint, arXiv:1105.0202.
[7] J. R. Parker and I. D. Platis, Complex hyperbolic fenchel-nielsen coordinates, Topology 47 (2008), 101-135.
[8] J. Roger, T. Yang, et al., The skein algebra of arcs and links and the decorated teichmüller space, Journal of Differential Geometry 96 (2014), 95-140.
[9] W. P. Thurston, Three-dimensional geometry and topology 1, Princeton university press, 2014.
[10] S. Wolpert, On the weil-petersson geometry of the moduli space of curves, American Journal of Mathematics 107 (1985), 969-997.

Dong Tan
School of Mathematics
Sun Yat-sen University
510275, Guangzhou
P.R. China

E-mail: duzuizhe2013@foxmail.com
Peijia Liu
School of Mathematics
Sun Yat-sen University
510275, Guangzhou
P.R. China

E-mail: 779627786@qq.com
Xuewen Liu
Shenzhen Xixiang Middle School
518102, Shenzhen
P.R. China

E-mail: 459645067@qq.com

[^0]: Mathematics Subject Classification. 32G15; 30F30; 30F60.
 Key words and phrases. Elementary moves; Fenchel-Nieslen coordinates; Teichmüller space.
 The work is partially supported by NSFC No: 11271378; 11771456.
 Received February 22, 2017; revised August 29, 2017.

