ON TERAI'S CONJECTURE

Xin Zhang

Abstract

Let p be an odd prime such that $b^{r}+1=2 p^{t}$, where r, t are positive integers and $b \equiv 3,5(\bmod 8)$. We show that the Diophantine equation $x^{2}+b^{m}=p^{n}$ has only the positive integer solution $(x, m, n)=\left(p^{t}-1, r, 2 t\right)$. We also prove that if b is a prime and $r=t=2$, then the above equation has only one solution for the case $b \equiv 3,5,7$ $(\bmod 8)$ and the case d is not an odd integer greater than 1 if $b \equiv 1(\bmod 8)$, where d is the order of prime divisor of ideal (p) in the ideal class group of $\mathbf{Q}(\sqrt{-q})$.

1. Introduction and main results

In 1956, Jeśmanowicz [5] conjectured that if positive integers satisfying a, b, c are Pythagorean numbers, i.e. $a^{2}+b^{2}=c^{2}$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has only the positive integer solution $(x, y, z)=(2,2,2)$. As an analogue of Jeśmanowicz's conjecture, Terai proposed the following conjecture.

Conjecture 1.1 (Terai's conjecture [10]). If (a, b, c) is primitive Pythagorean triple such that

$$
a^{2}+b^{2}=c^{2}, \quad a, b, c \in \mathbf{N}, \quad \operatorname{gcd}(a, b)=1, \quad a \equiv 0 \quad(\bmod 2)
$$

then the Diophantine equation

$$
x^{2}+b^{m}=c^{n}
$$

has only the positive integer solution $(x, m, n)=(a, 2,2)$.
In [10], Terai proved that if p and q are primes such that (i) $q^{2}+1=2 p$ and (ii) d is not an odd integer greater than 1 if $q \equiv 1(\bmod 4)$, then the Diophantine equation $x^{2}+q^{m}=p^{n}$ has only the positive integer solution

[^0]$(x, m, n)=(p-1,2,2)$, where d is the order of a prime divisor of (p) in the ideal class group of $\mathbf{Q}(\sqrt{-q})$.

Terai's conjecture has been verified to be true in many special cases:

- $b>8 \cdot 10^{6}, b \equiv 5(\bmod 8), c$ is a prime power $(\operatorname{Le}[6])$;
- $b^{2}+1=2 c, b \not \equiv 1(\bmod 16)$, both b and c are odd primes (Chen and Le [3]);
- $b \equiv 7(\bmod 8)$, either b is a prime or c is a prime (Le [7]);
$\cdot c \equiv 5(\bmod 8), b$ or c is a prime power (Cao and Dong [2]);
$\cdot b \equiv \pm 5(\bmod 8), c$ is a prime (Yuan and Wang [12]).
In 2014, Terai [11] proved that if $q \equiv 3,5(\bmod 8)$ is a prime such that $q^{t}+1=2 c$, then the Diophantine equation $x^{2}+q^{m}=c^{n}$ has only the positive integer solution $(x, m, n)=(c-1, t, 2)$. In 2015, Deng [4] proved that if q is a prime such that $q^{t}+1=2 c^{2}$, then the Diophantine equation $x^{2}+q^{m}=c^{2 n}$ has only the positive integer solution $(x, m, n)=\left(c^{2}-1, t, 2\right)$.

In this note, using elementary methods, we mainly prove the following theorems.

Theorem 1.2. Let b be a positive integer with $b \equiv 3,5(\bmod 8)$. Let p be a prime such that $b^{r}+1=2 p^{t}$, where r, t are positive integers. Then the Diophantine equation

$$
\begin{equation*}
x^{2}+b^{m}=p^{n} \tag{1.1}
\end{equation*}
$$

has only the positive integer solution $(x, m, n)=\left(p^{t}-1, r, 2 t\right)$.
Example 1.3. The only positive integral solution of each of the equations
(1) $x^{2}+(5 \times 137)^{m}=7^{n}$,
(2) $x^{2}+(319 \times 43)^{m}=19^{n}$,
(3) $x^{2}+(15 \times 2083)^{m}=5^{n}$,
(4) $x^{2}+21^{m}=97241^{n}$,
(5) $x^{2}+35^{m}=750313^{n}$,
(6) $x^{2}+(23 \times 353)^{m}=5741^{n}$
is given by $\quad(x, m, n)=(342,1,6),(6858,1,6),(3124,1,10),(97240,4,2)$, $(750312,4,2),(32959080,2,4)$, respectively.

Remark 1.4. All of these cases can be obtained by Theorem 1.2 directly.
Theorem 1.5. Let p and q be primes such that
(i) $q^{2}+1=2 p^{2}$,
(ii) d is not an odd integer greater than 1 if $q \equiv 1(\bmod 8)$, where d is the order of a prime divisor of (p) in the ideal class group of $\mathbf{Q}(\sqrt{-q})$.

Then the Diophantine equation

$$
x^{2}+q^{m}=p^{n}
$$

has only the positive integer solution $(x, m, n)=\left(p^{2}-1,2,4\right)$.

Example 1.6. There are exactly three pairs (p, q) in the range $q<10^{12}$ satisfying conditions (i) and (ii) in Theorem 1.5:

$$
(p, q)=(5,7),(29,41),(44560482149,63018038201)
$$

which were obtained by using Pari/GP.
Remark 1.7. Our proofs of Theorem 1.2 and Theorem 1.5 are mainly based on Bugeaud's result [1].

2. Some lemmas

We need the following lemmas to prove the main results.
Lemma 2.1 (Störmer [9]). The Diophantine equation

$$
x^{2}+1=2 y^{n}
$$

has no solutions in integers $x>1, y>1$ and n odd ≥ 3.
Lemma 2.2 (Ljunggren [8]). The Diophantine equation

$$
x^{2}+1=2 y^{4}
$$

has the only positive solutions in integers $(x, y)=(1,1),(239,13)$.
Lemma 2.3 (Bugeaud [1]). Let $D>2$ be an integer and let p be an odd prime which does not divide D. If there exists a positive integer a with $D=3 a^{2}+1$ and $p=4 a^{2}+1$, then the Diophantine equation

$$
x^{2}+D^{m}=p^{n},
$$

in positive integer x, m and n has at most three solutions (x, m, n), namely

$$
(a, 1,1), \quad\left(8 a^{2}+3 a, 1,3\right), \quad\left(x_{3}, m_{3}, n_{3}\right)
$$

with m_{3} (if the third solution exists) even. Otherwise, the Diophantine equation

$$
x^{2}+D^{m}=p^{n}
$$

in positive integer x, m and n has at most two solutions. If these are $\left(x_{1}, m_{1}, n_{1}\right)$ and $\left(x_{2}, m_{2}, n_{2}\right)$, then $m_{1} \not \equiv m_{2}(\bmod 2)$.

Lemma 2.4. Let p be an odd prime and c a positive integer. If $\left(m_{0}, n_{0}\right)$ is a positive integer solution of

$$
2 p^{m}=c^{n}+1
$$

then $n_{0}=2^{s}$ for some nonnegative integer s.
Proof. It's obvious that the equation has no solution satisfying $m_{0}, n_{0}>0$ when $c=1,2$. So we consider $c \geq 3$. Let $\left(m_{0}, n_{0}\right)$ be a solution of $2 p^{m}-c^{n}$
$=1$. Supposing that there exists an odd prime l dividing n_{0}, we have $n_{0}=k l$ for some integer $k \geq 1$. Then

$$
2 p^{m_{0}}=c^{n_{0}}+1=c^{k l}+1=\left(c^{k}+1\right)\left(c^{k(l-1)}-c^{k(l-2)}+\cdots+1\right) .
$$

Hence we have

$$
\begin{equation*}
\frac{c^{k l}+1}{c^{k}+1}=c^{k(l-1)}-c^{k(l-2)}+\cdots+1>l \tag{2.1}
\end{equation*}
$$

and

$$
c^{k}+1=2 p^{m_{1}},
$$

for some $1 \leq m_{1}<m_{0}$. Therefore,

$$
\begin{equation*}
p^{m_{0}-m_{1}}=\frac{c^{k l}+1}{c^{k}+1}=\frac{\left(2 p^{m_{1}}-1\right)^{l}+1}{2 p^{m_{1}}}=\sum_{i=1}^{l}\binom{l}{i}\left(2 p^{m_{1}}\right)^{i-1}(-1)^{l-i} . \tag{2.2}
\end{equation*}
$$

Modulo p in both sides of the equation (2.2), we obtain

$$
0 \equiv \sum_{i=1}^{l}\binom{l}{i}\left(2 p^{m_{1}}\right)^{i-1}(-1)^{l-i} \equiv l \quad(\bmod p)
$$

Hence $l=p$. Then by equation (2.1) and equation (2.2) we have $p^{m_{0}-m_{1}}>p$.
On the other hand, modulo p^{2} in both sides of the equation (2.2), we have

$$
p^{m_{0}-m_{1}}=\sum_{i=1}^{l}\binom{l}{i}\left(2 p^{m_{1}}\right)^{i-1}(-1)^{l-i} \equiv p \quad\left(\bmod p^{2}\right)
$$

Hence $p^{m_{0}-m_{1}}=p$, a contradiction. So $n_{0}=2^{s}$ for some nonnegative integer s. Thus the proof of Lemma 2.4 is finished.

3. Proofs of main results

Proof of Theorem 1.2. Let

$$
b=b_{1}^{2} \prod_{i=1}^{l} p_{i} \prod_{j=1}^{k} q_{j}
$$

where p_{i}, q_{j} are different primes such that $p_{i} \equiv 3,5(\bmod 8), q_{j} \equiv 1,7(\bmod 8)$. We show that if $b \equiv 3$ or $5(\bmod 8)$, then l is odd. Otherwise, we have

$$
\prod_{i=1}^{l} p_{i} \equiv \pm 1 \quad(\bmod 8), \quad \prod_{j=1}^{k} q_{j} \equiv \pm 1 \quad(\bmod 8)
$$

Thus $b \equiv \pm 1(\bmod 8)$, a contradiction. According to $b^{r}+1=2 p^{t}$ and Lemma 2.4, we obtain $r=2^{s}$ for some nonnegative integer s.

If $s=0$, that is $r=1$, then $b+1=2 p^{t}$. Thus $\left(\frac{2 p^{t}}{p_{i}}\right)=1$ for $i=1, \ldots, l$. In view of $p_{i} \equiv 3,5(\bmod 8)$, we see that $\left(\frac{2}{p_{i}}\right)=-1$. Hence $\left(\frac{p}{p_{i}}\right)=-1$ for $i=$ $1, \ldots, l$ and t odd. Similarly, we have $\left(\frac{p}{q_{j}}\right)=1$ for $j=1, \ldots, k$. It's easy to
see $\operatorname{gcd}(b, p)=1$ and

$$
\begin{equation*}
\left(\frac{b}{p}\right)=\left(\frac{-1}{p}\right) \tag{3.1}
\end{equation*}
$$

If $p \equiv 1(\bmod 4)$ then we have

$$
1=\left(\frac{-1}{p}\right)=\left(\frac{b}{p}\right)=\prod_{i=1}^{l}\left(\frac{p_{i}}{p}\right) \prod_{j=1}^{k}\left(\frac{q_{j}}{p}\right)=\prod_{i=1}^{l}\left(\frac{p}{p_{i}}\right) \prod_{j=1}^{k}\left(\frac{p}{q_{j}}\right)=-1
$$

which is impossible. So

$$
\begin{equation*}
p \equiv 3 \quad(\bmod 4) \tag{3.2}
\end{equation*}
$$

Hence there doesn't exist a positive integer a such that $p=4 a^{2}+1$. It is obvious that $\left(p^{t}-1,1,2 t\right)$ is a solution of (1.1). Assume that $\left(x_{0}, m_{0}, n_{0}\right)$ is another solution of (1.1). Then $x_{0}^{2}+b^{m_{0}}=p^{n_{0}}$. Hence

$$
x_{0}^{2} \equiv-b^{m_{0}} \quad(\bmod p)
$$

Thus $\left(\frac{-b^{m_{0}}}{p}\right)=1$. Then by (3.1) and (3.2) we have m_{0} is odd. By Lemma 2.3, this is impossible. Hence the equation (1.1) has no other solution in this case.

If $s \geq 1$, then $r=2^{s}$ is even. By $b^{r}+1=2 p^{t}$, we have

$$
p \equiv 1 \quad(\bmod 4)
$$

and

$$
\left(\frac{2 p^{t}}{p_{i}}\right)=1 \quad \text { for } i=1, \ldots, l
$$

In view of $p_{i} \equiv 3,5(\bmod 8)$, we see that $\left(\frac{2}{p_{i}}\right)=-1$. Hence $\left(\frac{p}{p_{i}}\right)=-1$ for $i=$ $1, \ldots, l$ and t odd. Similarly, we have $\left(\frac{p}{q_{j}}\right)=1$ for $j=1, \ldots, k$. Then we have

$$
\begin{equation*}
\left(\frac{b}{p}\right)=\prod_{i=1}^{l}\left(\frac{p_{i}}{p}\right) \prod_{j=1}^{k}\left(\frac{q_{j}}{p}\right)=\prod_{i=1}^{l}\left(\frac{p}{p_{i}}\right) \prod_{j=1}^{k}\left(\frac{p}{q_{j}}\right)=-1 \tag{3.3}
\end{equation*}
$$

It is obvious that $\left(p^{t}-1, r, 2 t\right)$ is a solution of equation (1.1). Let $\left(x_{0}, m_{0}, n_{0}\right)$ be another solution of the equation (1.1). Then $x_{0}^{2}+b^{m_{0}}=p^{n_{0}}$. Hence

$$
x_{0}^{2} \equiv-b^{m_{0}} \quad(\bmod p)
$$

Thus $\left(\frac{-b^{m_{0}}}{p}\right)=1$. Then by equation (3.3) and $p \equiv 1(\bmod 4)$ we obtain m_{0} is even. So we have $m_{0} \equiv r(\bmod 2)$. By Lemma 2.3, this is impossible. Hence the equation (1.1) has no other solution in this case.

This completes the proof of Theorem 1.2.
Proof of Theorem 1.5. Assume that $\left(x_{0}, m_{0}, n_{0}\right)$ is a solution of the equation

$$
\begin{equation*}
x^{2}+q^{m}=p^{n} . \tag{3.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
x_{0}^{2}+q^{m_{0}}=p^{n_{0}} . \tag{3.5}
\end{equation*}
$$

The proof is divided into two cases depending on the parity of n_{0} as follows.
Case 1. n_{0} is even. Let $n_{0}=2 k$. Then we obtain

$$
q^{m_{0}}=\left(p^{k}+x_{0}\right)\left(p^{k}-x_{0}\right)
$$

Because $q^{2}+1=2 p^{2}$, we have $\operatorname{gcd}(2 p, q)=1$. So $\operatorname{gcd}\left(p^{k}+x_{0}, p^{k}-x_{0}\right)=1$. Hence $p^{k}-x_{0}=1$ and $p^{k}+x_{0}=q^{m_{0}}$. Then

$$
q^{m_{0}}+1=2 p^{k} .
$$

By Lemma 2.4 we know that $m_{0}=2^{s}$ for some nonnegative integer s. Now we show that $s>0$. Otherwise, we have $q+1=2 p^{k}$ and $q^{2}+1=2 p^{2}$. This forces $q+1 \mid q^{2}+1$, which is impossible. Hence $s \geq 1$ and m_{0} is even. By using Lemmas 2.1 and 2.2, we have $k=1$ or 2 . Then we obtain that the equation (3.4) has the only solution $\left(m_{0}, n_{0}\right)=(2,4)$.

Case 2. n_{0} is odd. Assume $(q, p)=\left(3 s^{2}+1,4 s^{2}+1\right)$. Then we have

$$
s^{2}+q=p
$$

Hence

$$
q^{2}+1=2 p^{2}=2\left(s^{2}+q\right)^{2} \geq 2(1+q)^{2} .
$$

This is impossible. Thus $(q, p) \neq\left(3 s^{2}+1,4 s^{2}+1\right)$. It's easy to see $\left(p^{2}-1\right.$, 2,4) is a solution of the equation (3.4). By using Lemma 2.3, m_{0} is odd.

We note that $q^{2}+1=2 p^{2}$ implies $p \equiv 1(\bmod 4)$ and $q \equiv 1,7(\bmod 8)$. If $q \equiv 7(\bmod 8)$, then by (3.5) we have $3 \equiv 3^{m_{0}} \equiv 1(\bmod 4)$, which is impossible. This forces $q \equiv 1(\bmod 8)$.

Let $K=\mathbf{Q}(\sqrt{-q})$ and \mathcal{O}_{K} its integer ring. Then $\mathcal{O}_{K}=\mathbf{Z}[\sqrt{-q}] . \quad$ By (3.5) we have $\left(\frac{-q}{p}\right)=1$. So (p) is completely split in \mathcal{O}_{K}. Hence $p \mathcal{O}_{K}=\mathfrak{p} \overline{\mathfrak{p}}$, where $\mathfrak{p}, \overline{\mathfrak{p}}$ are distinct prime ideals. Therefore we obtain the ideal decomposition:

$$
\left(x_{0}-q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)\left(x_{0}+q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)=\mathfrak{p}^{n_{0}} \overline{\mathfrak{p}}^{n_{0}}
$$

in \mathcal{O}_{K}. Note that the ideals $\left(x_{0}-q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)$ and $\left(x_{0}+q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)$ are relatively prime and the fact that \mathcal{O}_{K} is a Dedekind domain. We have either $\left(x_{0}+q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)=\mathfrak{p}^{n_{0}}$ or $\overline{\mathfrak{p}}^{n_{0}}$. We may assume that

$$
\left(x_{0}+q^{\left(m_{0}-1\right) / 2} \sqrt{-q}\right)=\mathfrak{p}^{n_{0}}
$$

Then $\mathfrak{p}^{n_{0}}$ is a principal ideal and so $n_{0}=d t$ for some integer t. By the assumption that d is 1 or even and n_{0} is odd, we have $d=1$. So \mathfrak{p} is a principal ideal. Let

$$
\begin{equation*}
\mathfrak{p}=(a+b \sqrt{-q}) \tag{3.6}
\end{equation*}
$$

with integers a, b. Then we obtain

$$
x_{0}+q^{\left(m_{0}-1\right) / 2} \sqrt{-q}= \pm(a+b \sqrt{-q})^{n_{0}}
$$

Thus we have

$$
q^{\left(m_{0}-1\right) / 2}= \pm b \sum_{j=0}^{\left(n_{0}-1\right) / 2}\binom{n_{0}}{2 j+1} a^{n_{0}-2 j-1} b^{2 j}(-q)^{j}
$$

Therefore $b= \pm q^{t}$ for some integer $0 \leq t \leq \frac{m_{0}-1}{2}$. By (3.6), we have

$$
N_{K / \mathbf{Q}}(\mathfrak{p})=a^{2}+b^{2} q
$$

That is

$$
p=a^{2}+q^{2 t+1}
$$

Hence

$$
q^{2}+1=2 p^{2}=2\left(a^{2}+q^{2 t+1}\right)^{2} \geq 2(1+q)^{2}
$$

a contradiction. This completes the proof of Theorem 1.5.
Acknowledgments. The author would like to thank the referee for helpful comments and valuable suggestions.

References

[1] Y. Bugeaud, On some exponential Diophantine equations (English summary), Monatsh. Math. 132 (2001), 93-97.
[2] Z. Cao and X. Dong, On Terai's conjecture (English summary), Proc. Japan Acad. Ser. A. Math. Sci. 74 (1998), 127-129.
[3] X. Chen and M. Le, A note on Terai's conjecture concerning Pythagorean numbers (English summary), Proc. Japan Acad. Ser. A. Math. Sci. 74 (1998), 80-81.
[4] M. Deng, A note on the Diophantine equation $x^{2}+q^{m}=c^{2 n}$, Proc. Japan Acad. Ser. A. Math. Sci. 91 (2015), 15-18.
[5] L. Jé́manowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. (2) 1 (1955/1956), 196-202.
[6] M. Le, A note on the Diophantine equation $x^{2}+b^{y}=c^{z}$, Acta Arith. 71 (1995), 253-257.
[7] M. Le, On Terai's conjecture concerning Pythagorean numbers, Acta Arith. 100 (2001), 41-45.
[8] W. LuungGren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$ (in German), Avh. Norske Vid. Akad. Oslo. I. (1942).
[9] C. Störmer, Solution complète en nombres entiers de l'equation $m \arctan \frac{1}{x}+n \arctan \frac{1}{y}=$ $k \frac{\pi}{4}$ (in French), Bull. Soc. Math. France 27 (1899), 160-170.
[10] N. Terai, The Diophantine equation $x^{2}+q^{m}=p^{n}$, Acta Arith. 63 (1993), 351-358.
[11] N. Terai, A note on the Diophantine equation $x^{2}+q^{m}=c^{n}$, Bull. Aust. Math. Soc. 90 (2014), 20-27.
[12] P. Yuan and J. Wang, On the Diophantine equation $x^{2}+b^{y}=c^{z}$, Acta Arith. 84 (1998), 145-147.

Xin Zhang

School of Mathematical and Physics
Qingdao University of Science and Technology
Qingdao 266000
P. R. China

E-mail: Xin_zw_Zhang@126.com

[^0]: Mathematics Subject Classification. 11D41; 11D61.
 Key words and phrases. Diophantine equation; Terai's conjecture; integer solution.
 This work was supported by National Natural Science Foundation of China (Grant Nos. 11401330, 11471162).

 Received March 22, 2017; revised July 18, 2017.

