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Abstract

In this paper, we study curvature properties of all homogeneous real hyper-

surfaces in nonflat complex space forms, and determine their minimalities and the

signs of their sectional curvatures completely. These properties reflect the sign of the

constant holomorphic sectional curvature c of the ambient space. Among others, for

the case of c < 0 there exist homogeneous real hypersurfaces with positive sectional

curvature and also ones with negative sectional curvature, whereas for the case of

c > 0 there do not exist any homogeneous real hypersurfaces with nonpositive sectional

curvature.

1. Introduction

We denote by ~MMnðcÞ a complex n-dimensional complete and simply con-
nected Kähler manifold of constant holomorphic sectional curvature c ð0 0Þ,
which is called an n-dimensional nonflat complex space form. It is well-known
that ~MMnðcÞ is holomorphically isometric to either an n-dimensional complex
projective space CPnðcÞ or an n-dimensional complex hyperbolic space CHnðcÞ
according as c is positive or negative. In Riemannian submanifold theory,
homogeneous real hypersurfaces M 2n�1 of a nonflat complex space form are one
of fundamental examples, and have been studied actively. Here, those hyper-
surfaces M 2n�1 are orbits of some subgroups of the full isometry group of the
ambient space. Although there exists a duality between CPnðcÞ and CHnðcÞ,
real hypersurfaces in these spaces present di¤erent aspects according to the sign
of the holomorphic sectional curvatures c of the ambient spaces. For instance,
in CHnðcÞ we have many homogeneous real hypersurfaces which are not Hopf
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hypersurfaces, whereas all homogeneous real hypersurfaces in CPnðcÞ must be
Hopf (for details, see Section 2).

In this paper, we study curvature properties of homogeneous real hyper-
surfaces of these ambient spaces. Note that such hypersurfaces have completely
been classified, and the principal curvatures have also been calculated. There-
fore, one can determine the minimality by direct calculations. The main contri-
bution of this paper is to determine the signs of the sectional curvatures for all
homogeneous real hypersurfaces in CPnðcÞ and in CHnðcÞ.

We here summarize our results. For the case of c > 0, Takagi ([14]) clas-
sified homogeneous real hypersurfaces in CPnðcÞ. According to his result, such
hypersurfaces can be classified into six cases, namely of types (A1), (A2), (B), (C),
(D) and (E). For example, homogeneous real hypersurfaces of type (A1) are
geodesic spheres GðrÞ of radius r, and those of type (A2) are tubes of radius r
around a totally geodesic CPlðcÞ. Unifying these two types, we call them of
type (A) (see Section 2 for details and other hypersurfaces). By direct compu-
tations we have the following fact (cf. [10, 11]).

Theorem 1. In the class of all homogeneous real hypersurfaces M of CPnðcÞ
with nf 2, the following hold:

(1) For each family of types (A1), (A2), (B), (C), (D) and (E), we have just
one example which is minimal. Hence, minimal homogeneous real hyper-
surfaces are classified into six types;

(2) M has nonnegative sectional curvature at its each point if and only if M is
of type (A). In particular, M has positive sectional curvature at its each
point if and only if M is of type (A1);

(3) There exists no example M all of whose sectional curvatures are non-
positive at its each point.

On the other hand, for the case of c < 0, Berndt and the second author ([4])
classified all homogeneous real hypersurfaces in CHnðcÞ into eight cases of types
(A0), (A1;0), (A1;1), (A2), (B), (S), (W1) and (W2). For instance, the type (A1;0)
is a class of geodesic spheres GðrÞ of radius r. The type (S) is a class consisting
of the minimal homogeneous ruled real hypersurface S determined by a horocycle
in a totally geodesic RH 2ðc=4Þ, and equidistant hypersurfaces from S at distance
r (see Section 2 for details). We shall establish a theorem corresponding to
Theorem 1 in the case of c < 0.

Theorem 2. In the class of all homogeneous real hypersurfaces M of CHnðcÞ
with nf 2, the following hold:

(1) There exists just one example which is minimal in CHnðcÞ. It is the
homogeneous ruled real hypersurface S, which is one of examples of type
(S);

(2) M has nonnegative (resp. positive) sectional curvature at its each point
if and only if M is a geodesic sphere GðrÞ of su‰ciently small radius r.
In these cases, M is of type (A1;0);
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(3) M has nonpositive (resp. negative) sectional curvature at its each point
if and only if M is either the homogeneous ruled real hypersurface S or
an equidistant hypersurface at su‰ciently small distance r from S. Then,
M belongs to the class of type (S).

Note that the estimation on the distance r in Theorem 2 (2) and (3) are given
explicitly in Propositions 4.3 and 7.4, respectively.

Our theorems completely determine the minimality, and the signs of the
sectional curvatures, for all homogeneous real hypersurfaces in CPnðcÞ and also
in CHnðcÞ. This would lay a foundation for the study of real hypersurfaces in
nonflat complex space forms. Furthermore, from our results one could find out
some clear di¤erences between the class of real hypersurfaces in CPnðcÞ and that
in CHnðcÞ, which can be summarized as follows.

Remark 1.1. For homogeneous real hypersurfaces in ~MMnðcÞ, one has the
following:

(1) CHnðcÞ admits just one minimal example, whereas CPnðcÞ admits several
minimal examples (the number of minimal examples depends on the
dimension n of ambient space CPnðcÞ).

(2) CHnðcÞ admits homogeneous real hypersurfaces with positive sectional
curvature, and also those with negative curvature. On the other hand,
CPnðcÞ admits homogeneous real hypersurfaces with positive sectional
curvature, but does not admit those with nonpositive curvatures.

We describe the contents of this paper. In Section 2 we recall some funda-
mental notions and the classification of all homogeneous real hypersurfaces in
~MMnðcÞ. In Section 3 we will sketch out the proof of Theorem 1. The proof of
Theorem 2 will be broken up into some separate sections. Section 4 deals with
the case of homogeneous Hopf hypersurfaces of CHnðcÞ. Sections 5, 6 and 7
take up the cases of types (W1), (W2) and (S), respectively.

2. Preliminaries

Let ~MMnðcÞ be an n ðf 2Þ-dimensional nonflat complex space form and M
be a real hypersurface of ~MMnðcÞ through an isometric immersion. In this sec-
tion, we recall some fundamental notions and prepare some known formulas, in
order to compute the sectional curvatures of M in terms of the shape operators.
We also recall the classification of all homogeneous real hypersurfaces in
~MMnðcÞ.

First of all we set up some notations. For ~MMnðcÞ, denote by g the standard
Riemannian metric and by J the canonical Kähler structure. For a real hyper-
surface M, denote by N a unit normal local vector field, and also by the same
notation g the induced Riemannian metric for simplicity. Then it is well-known
that an almost contact metric structure ðf; x; h; gÞ on M, associated with N, can
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be canonically defined by

gðfX ;YÞ ¼ gðJX ;YÞ; x ¼ �JN; hðXÞ ¼ gðx;XÞ ¼ gðJX ;NÞ

for arbitrary vector fields X and Y on M. The structure satisfies

f2X ¼ �X þ hðXÞx; gðfX ; fYÞ ¼ gðX ;YÞ � hðXÞhðYÞ;
hðxÞ ¼ 1; fx ¼ 0 and hðfX Þ ¼ 0:

We call x the characteristic vector field. Denote by A the shape operator of
M in ~MMnðcÞ. Then one knows the equation of Gauss, which represents the
curvature tensor of M in terms of g, f and A. Therefore, one has a similar
expression of the sectional curvature as follows. For more details, we refer to
[12].

Lemma 2.1. Let M be a real hypersurface of ~MMnðcÞ, and use the above
notations. Then, the sectional curvature KðX ;Y Þ of the real plane spanned by a
pair fX ;Yg of orthonormal vectors is given by

KðX ;YÞ ¼ ðc=4Þð1þ 3gðfX ;Y Þ2Þ þ gðAX ;X ÞgðAY ;Y Þ � gðAX ;Y Þ2:

An eigenvector of the shape operator A is called a principal curvature
vector of M in ~MMnðcÞ, and an eigenvalue of A is called a principal curvature
of M in ~MMnðcÞ. Let Vl denote the eigenspace associated with the principal
curvature l. That is, we set Vl ¼ fX A TM jAX ¼ lXg. We usually call M a
Hopf hypersurface if the characteristic vector x is a principal curvature vector
at each point of M. We need the following lemma, which is one of the
fundamental properties of principal curvatures of a Hopf hypersurface M in
~MMnðcÞ.

Lemma 2.2 ([7, 9]). Let M be a Hopf hypersurface of a nonflat complex space
form ~MMnðcÞ with nf 2. If a nonzero vector X A TM orthogonal to x satisfies
AX ¼ lX , then ð2l� dÞAfX ¼ ðdlþ ðc=2ÞÞfX holds, where d is the principal
curvature associated with x.

Now, we survey the classification of homogeneous real hypersurfaces in a
nonflat complex space form ~MMnðcÞ. In the case of c > 0, by virtue the works
of Takagi and Kimura ([8, 14, 15]), we can see that a homogeneous real hyper-
surface in CPnðcÞ with nf 2 is locally congruent to one of the following Hopf
hypersurfaces all of whose principal curvatures are constant:

(A1) A geodesic sphere GðrÞ of radius r, where 0 < r < p=
ffiffiffi
c

p
;

(A2) A tube of radius r around a totally geodesic CPlðcÞ with 1e le n� 2,
where 0 < r < p=

ffiffiffi
c

p
;
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(B) A tube of radius r around a complex hyperquadric CQn�1, where 0 <
r < p=ð2

ffiffiffi
c

p
Þ;

(C) A tube of radius r around the Segre embedding of CP1ðcÞ �
CPðn�1Þ=2ðcÞ, where 0 < r < p=ð2

ffiffiffi
c

p
Þ and n ðf 5Þ is odd;

(D) A tube of radius r around the Plüker embedding of a complex Grass-
mannian CG2;5, where 0 < r < p=ð2

ffiffiffi
c

p
Þ and n ¼ 9;

(E) A tube of radius r around a Hermitian symmetric space SOð10Þ=Uð5Þ,
where 0 < r < p=ð2

ffiffiffi
c

p
Þ and n ¼ 15.

For the notational convention as stated in the introduction, unifying types (A1)
and (A2) we call them of type (A).

In the case of c < 0, let M be a homogeneous real hypersurface in CHnðcÞ
with nf 2. Then, due to [4], we know that M is locally congruent to one of the
following:

(A0) A horosphere in CHnðcÞ;
(A1;0) A geodesic sphere GðrÞ of radius r, where 0 < r < y;
(A1;1) A tube of radius r around a totally geodesic CHn�1ðcÞ, where 0 <

r < y;
(A2) A tube of radius r around a totally geodesic CH lðcÞ with 1e le

n� 2, where 0 < r < y;
(B) A tube of radius r around a totally real totally geodesic RHnðc=4Þ,

where 0 < r < y;
(S) The homogeneous ruled real hypersurface S determined by a horo-

cycle in a totally geodesic RH 2ðc=4Þ in CHnðcÞ, or an equidistant
hypersurface from S at distance r, where 0 < r < y;

(W1) A tube of radius r around the minimal ruled submanifold W 2n�k with
k A f2; . . . ; n� 1g, where 0 < r < y;

(W2) A tube of radius r around the minimal ruled submanifold W 2n�k
j for

some j A ð0; p=2Þ and k A f2; . . . ; n� 1g, where k is even and where
0 < r < y:

Unifying real hypersurfaces of types (A0), (A1;0), (A1;1) and (A2), we call them
hypersurfaces of type (A). Note that, in the above list, all examples of types (A)
and (B) are Hopf hypersurfaces and others are non-Hopf.

In what follows, we put ~rr :¼
ffiffiffiffiffi
jcj

p
r. We use this convention throughout the

paper for the purpose of simplicity.

3. Sketch of the proof of Theorem 1

In this section, we shall outline the proof of Theorem 1. First, we recall the
principal curvatures of homogeneous real hypersurfaces in CPnðcÞ.

Lemma 3.1 (cf. [15]). The principal curvatures of homogeneous real hyper-
surfaces in CPnðcÞ are given as follows:
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ðA1Þ ðA2Þ ðBÞ ðC;D;EÞ

l1

ffiffiffi
c

p

2
cot

~rr

2

� � ffiffiffi
c

p

2
cot

~rr

2

� � ffiffiffi
c

p

2
cot

~rr

2
� p

4

� � ffiffiffi
c

p

2
cot

~rr

2
� p

4

� �

l2 — �
ffiffiffi
c

p

2
tan

~rr

2

� � ffiffiffi
c

p

2
cot

~rr

2
þ p

4

� � ffiffiffi
c

p

2
cot

~rr

2
þ p

4

� �

l3 — — —

ffiffiffi
c

p

2
cot

~rr

2

� �

l4 — — — �
ffiffiffi
c

p

2
tan

~rr

2

� �

d
ffiffiffi
c

p
cot ~rr

ffiffiffi
c

p
cot ~rr

ffiffiffi
c

p
cot ~rr

ffiffiffi
c

p
cot ~rr

The multiplicities of these principal curvatures are given as follows:

ðA1Þ ðA2Þ ðBÞ ðCÞ ðDÞ ðEÞ

mðl1Þ 2n� 2 2n� 2l� 2 n� 1 2 4 6

mðl2Þ — 2l n� 1 2 4 6

mðl3Þ — — — n� 3 4 8

mðl4Þ — — — n� 3 4 8

mðdÞ 1 1 1 1 1 1

Note that the principal curvature d in the above table is associated with the
characteristic vector x, that is, Ax ¼ dx. Next, the following proves the first
assertion (1) of Theorem 1.

Proposition 3.2. A homogeneous real hypersurface M in CPnðcÞ with nf 2
is minimal if and only if it is congruent to either of type (A1), (A2), (B), (C), (D) or
(E), and the radius r satisfies the following cases, respectively:

(A1) cotð~rr=2Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
;

(A2) cotð~rr=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ=ð2n� 2l� 1Þ

p
;

(B) cotð~rr=2Þ ¼
ffiffiffi
n

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
;

(C) cotð~rr=2Þ ¼ ð
ffiffiffi
n

p
þ

ffiffiffi
2

p
Þ=

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
;

(D) cotð~rr=2Þ ¼
ffiffiffi
5

p
;

(E) cotð~rr=2Þ ¼ ð
ffiffiffiffiffi
15

p
þ

ffiffiffi
6

p
Þ=3.

Proof. One can directly calculate the mean curvatures Trace A in terms of
the tables of the principal curvatures in Lemma 3.1. Then, by using the equalityffiffiffi

c
p

cot ~rr ¼ ð
ffiffiffi
c

p
=2Þ cotð~rr=2Þ � ð

ffiffiffi
c

p
=2Þ tanð~rr=2Þ
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and solving the equation Trace A ¼ 0, one can complete the proof of the
lemma. r

In order to see Theorem 1 (2), (3), we prepare the following two propositions
which give information on sectional curvatures of hypersurfaces of type (A) in
CPnðcÞ (for the proof, see [10, 11]).

Proposition 3.3. Let M be a real hypersurface of type (A1) in CPnðcÞ with
nf 2. Then M has positive sectional curvature. More precisely, the sectional
curvature K of M satisfies the following, where the both equalities are attained:

0 < ðc=4Þ cot2ð~rr=2ÞeKe cþ ðc=4Þ cot2ð~rr=2Þ:

Proposition 3.4. Let M be a real hypersurface of type (A2) in CPnðcÞ
with nf 3. Then M has nonnegative sectional curvature. More precisely, the
sectional curvature K of M satisfies the following, where the both equalities are
attained:

0eKe cþ ðc=4Þ maxfcot2ð~rr=2Þ; tan2ð~rr=2Þg:

For the case that M is of either type (B), (C), (D) or (E), we have

Proposition 3.5. Let M be a real hypersurface of either type (B), (C), (D)
or (E) in CPnðcÞ. Then the sectional curvature K of M can take both a positive
sign and a negative sign.

Proof. Every real hypersurface of either type (B), (C), (D) or (E) has three
common principal curvatures l1, l2 and d (see Lemma 3.1). Then, for unit
vectors X A Vl1 and Y A Vl2 , Lemma 2.1 yields that

KðX ; xÞ ¼ c

4
þ l1d ¼

c

4
� c

4

ð1þ tanð~rr=2ÞÞ2

tanð~rr=2Þ < 0;

KðY ; xÞ ¼ c

4
þ l2d ¼

c

4
þ c

4

ð1� tanð~rr=2ÞÞ2

tanð~rr=2Þ > 0:

Therefore the sectional curvature K can take both signs. r

Thus we obtain the statements (2), (3) of Theorem 1.

4. The case of homogeneous Hopf hypersurfaces in CHnðcÞ

In what follows, we shall prove Theorem 2. As a first step to do that, in
this section we examine homogeneous Hopf hypersurfaces, namely, real hyper-
surfaces which are either of type (A) or type (B) in CHnðcÞ. The principal cur-
vatures of those hypersurfaces are given by the following lemma.

321curvature properties of homogeneous real hypersurfaces



Lemma 4.1 ([1]). The principal curvatures of real hypersurfaces of types (A)
and (B) are given as follows:

ðA0Þ ðA1;0Þ ðA1;1Þ ðA2Þ ðBÞ

l1

ffiffiffiffiffi
jcj

p
2

ffiffiffiffiffi
jcj

p
2

coth
~rr

2

� � ffiffiffiffiffi
jcj

p
2

tanh
~rr

2

� � ffiffiffiffiffi
jcj

p
2

coth
~rr

2

� � ffiffiffiffiffi
jcj

p
2

coth
~rr

2

� �

l2 — — —

ffiffiffiffiffi
jcj

p
2

tanh
~rr

2

� � ffiffiffiffiffi
jcj

p
2

tanh
~rr

2

� �

d
ffiffiffiffiffi
jcj

p ffiffiffiffiffi
jcj

p
coth ~rr

ffiffiffiffiffi
jcj

p
coth ~rr

ffiffiffiffiffi
jcj

p
coth ~rr

ffiffiffiffiffi
jcj

p
tanh ~rr

Here, the principal curvature d is associated with x. The multiplicities of these
principal curvatures are given as follows:

ðA0Þ ðA1;0Þ ðA1;1Þ ðA2Þ ðBÞ

mðl1Þ 2n� 2 2n� 2 2n� 2 2n� 2l� 2 n� 1

mðl2Þ — — — 2l n� 1

mðdÞ 1 1 1 1 1

It follows directly that a real hypersurface of type (A) or (B) has two distinct
principal curvatures if and only if it is of type (A0), (A1;0), (A1;1), or of type (B)
with radius r ¼ ð1=

ffiffiffiffiffi
jcj

p
Þ logð2þ

ffiffiffi
3

p
Þ (in the last case l1 ¼ d ¼

ffiffiffiffiffiffiffiffi
3jcj

p
=2 holds).

For other cases it has three distinct principal curvatures.
Note that all of the principal curvatures of every homogeneous Hopf hyper-

surface M are positive constants at each point of M. This implies that
Trace A > 0 on such a real hypersurface M. Thus we have

Proposition 4.2. All homogeneous real hypersurfaces of types (A) and (B) in
CHnðcÞ with nf 2 are not minimal.

Next, we study the sectional curvatures of homogeneous Hopf hypersurfaces
M one by one. First of all we study the case of type (A1;0).

Proposition 4.3 (cf. [6]). Let M be a real hypersurface of type (A1;0),
namely, a geodesic sphere GðrÞ in CHnðcÞ with nf 2. Then, the sectional curva-
ture K of M satisfies the following, where the both equalities are attained:

c� ðc=4Þ coth2ð~rr=2ÞeKe ð�c=4Þ coth2ð~rr=2Þ:ð4:1Þ
Hence, we have the following:

(1) K is nonnegative if and only if 0 < re ð1=
ffiffiffiffiffi
jcj

p
Þ log 3;

(2) K is positive if and only if 0 < r < ð1=
ffiffiffiffiffi
jcj

p
Þ log 3;

(3) K can take both signs if and only if r > ð1=
ffiffiffiffiffi
jcj

p
Þ log 3.
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Proof. According to the table in Lemma 4.1, one knows that M has two
distinct constant principal curvatures l1 with multiplicity 2n� 2 ðf 2Þ, and d
with multiplicity 1, where Ax ¼ dx. We take a pair fX ;Yg of orthonormal
vectors that are orthogonal to x in order to estimate the sectional curvature K
of M. Since X ;Y A Vl1 , we have

Kðsin y � X þ cos y � x;YÞ ¼ ðc=4Þfsin2 yð1þ 3gðfX ;YÞ2Þ � coth2ð~rr=2Þg

by use of Lemma 2.1. This gives the desired inequalities (4.1). Furthermore,
for each unit vector X orthogonal to x, we have

KðX ; fXÞ ¼ c� ðc=4Þ coth2ð~rr=2Þ; KðX ; xÞ ¼ ð�c=4Þ coth2ð~rr=2Þ:

Hence the both equalities of (4.1) are attained. The remaining assertions of the
proposition immediately follow from the first assertion. r

In the case that M is of type (A0), we remark that a horosphere can be
obtained as a limit of a geodesic sphere GðrÞ by taking r ! y. Taking r ! y
in (4.1), we have the following:

Proposition 4.4. Let M be a real hypersurface of type (A0) in CHnðcÞ with
nf 2. Then the sectional curvature of the horosphere M can take both signs.
More precisely, the sectional curvature K of M satisfies the following, where the
both equalities are attained:

3c=4eKe�c=4:

For the other types, we have

Proposition 4.5. Let M be a real hypersurface of either type (A1;1), (A2) or
(B) in CHnðcÞ with nf 2. Then the sectional curvature of M can take both signs.

Proof. (i) The case that M is of type (A1;1). Then, according to the table
in Lemma 4.1, we see that M has two distinct constant principal curvatures l1
and d, where Ax ¼ dx. For a unit principal curvature vector X A Vl1 , we have
fX A Vl1 . Hence, one finds from Lemma 2.1 that

KðX ; fX Þ ¼ cþ l21 ¼ cþ ðjcj=4Þ tanh2ð~rr=2Þ < 0:

Next, we shall compute KðX ; xÞ, where X is the above unit vector. Lemma 2.1
yields that

KðX ; xÞ ¼ ðc=4Þ þ l1d ¼ ðc=4Þ þ ðjcj=2Þ tanhð~rr=2Þ coth ~rr

¼ ðc=4Þ þ ðjcj=4Þð1þ tanh2ð~rr=2ÞÞ ¼ ðjcj=4Þ tanh2ð~rr=2Þ > 0:

(ii) The case that M is of type (A2). In this case M has three distinct
constant principal curvatures l1, l2 and d with Ax ¼ dx. Applying Lemma 2.2,
we find that X A Vl2 implies fX A Vl2 . So, the same computations as above tell
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us that

KðX ; fXÞ < 0; KðX ; xÞ > 0

for a unit vector X A Vl2 .
(iii) The case that M is of type (B). In this case, by Lemma 2.2, for a unit

vector X A Vl1 we have fX A Vl2 , so that

KðX ; fX Þ ¼ cþ l1l2 ¼ cþ ðjcj=4Þ < 0:

The same vector X satisfies

KðX ; xÞ ¼ ðc=4Þ þ l1d ¼ ðc=4Þ þ ðjcj=2Þ cothð~rr=2Þ tanh ~rr

¼ c

4
þ jcj
1þ tanh2ð~rr=2Þ

>
c

4
þ jcj

2
> 0:

Thus the sectional curvature K can take both signs. r

5. The case of type (W1)

Recall that a real hypersurface M of type (W1) is a tube of radius r around
the minimal ruled submanifold W 2n�k with k A f2; . . . ; n� 1g, where 0 < r < y.
In this section, we investigate this real hypersurface.

The principal curvatures of M have completely been calculated by Berndt
and Dı́az-Ramos ([3], Subsection 4.2), by giving an explicit matrix representa-
tion of the shape operator. Although they calculated it under the normalization
c ¼ �1, one can easily see the following.

Lemma 5.1 ([3]). Let M be a real hypersurface of type (W1), that is, a tube

of radius r around W 2n�k. Let p A M and put ~rr :¼
ffiffiffiffiffi
jcj

p
r. Denote by A the

shape operator of M. Then, there exists an orthogonal decomposition

TpM ¼ SpanfZ; JNglV3 lV4

of TpM into A-invariant subspaces of TpM with a unit vector Z A TpM perpen-
dicular to JN, such that the matrix representation of A with respect to this
decomposition satisfies

AjSpanfZ;JNg ¼
ffiffiffiffiffi
jcj

p
2

tanh3ð~rr=2Þ �sech3ð~rr=2Þ
�sech3ð~rr=2Þ ð2þ sech2ð~rr=2ÞÞ tanhð~rr=2Þ

� �
;

AjV3
¼ ð

ffiffiffiffiffi
jcj

p
=2Þ tanhð~rr=2ÞI2n�2�k;

AjV4
¼ ð

ffiffiffiffiffi
jcj

p
=2Þ cothð~rr=2ÞIk�1:

By calculating the eigenvalues of the above matrices, the principal curvatures
of real hypersurfaces of type (W1) have been determined completely in [3]. The
above matrix representations of A also tell us that Trace A > 0. Hence, we have
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Proposition 5.2. All real hypersurfaces of type (W1) are not minimal.

Moreover, the above matrices enable us to determine the signs of the
sectional curvatures.

Proposition 5.3. Let M be a real hypersurface of type (W1). Then the
sectional curvature of M can take both signs.

Proof. Let M be a tube of radius r around W 2n�k, where k A f2; . . . ;
n� 1g. Then the shape operator A is described in Lemma 5.1. We use Z and
x ¼ �JN. One also has a unit vector X A V4 by dim V4 ¼ k � 1f 1. Then,
since fZ; xg is orthonormal, we have

gðAZ;ZÞ ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ tanh3ð~rr=2Þ;

gðAx; xÞ ¼ ð
ffiffiffiffiffi
jcj

p
=2Þð2þ sech2ð~rr=2ÞÞ tanhð~rr=2Þ:

Recall c < 0. Then it yields that

gðAZ;ZÞgðAX ;X Þ ¼ �ðc=4Þ tanh2ð~rr=2Þ;

gðAx; xÞgðAX ;X Þ ¼ �ðc=4Þð2þ sech2ð~rr=2ÞÞ:

Now it follows form the formula in Lemma 2.1 that

KðZ;X Þ ¼ ðc=4Þð3gðfZ;XÞ2 þ sech2ð~rr=2ÞÞ < 0;

Kðx;X Þ ¼ �ðc=4Þð1þ sech2ð~rr=2ÞÞ > 0:

Therefore, the sectional curvature K can take both signs. r

6. The case of type (W2)

In this section, we study a real hypersurface M of type (W2), that is, a tube
of radius r around the minimal ruled submanifold W 2n�k

j , where j A ð0; p=2Þ,
k A f2; . . . ; n� 1g with k even, and 0 < r < y.

Berndt and Dı́az-Ramos calculated the principal curvatures of M completely
([3], Subsection 4.3). However, in their paper, they omitted some entries of the
matrix representation of the shape operator. Therefore, first of all, we describe
the shape operator completely, and also investigate the characteristic vector.

Lemma 6.1 (cf. [3]). Let M be a real hypersurface of type (W2), i.e., a tube

of radius r around W 2n�k
j and p A M. Set ~rr :¼

ffiffiffiffiffi
jcj

p
r and denote by A the shape

operator A of M. Then, there exists an orthogonal decomposition

TpM ¼ SpanfZ �;P�;F �glV4 lV5

of TpM into A-invariant subspaces of TpM with a triplet fZ �;P�;F �g of ortho-
normal vectors in TpM, such that the following properties are satisfied:
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(1) The matrix representation ðbijÞ of AjSpanfZ �;P�;F �g with respect to the basis
fZ �;P�;F �g satisfies

b11 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þf�sin2 jþ cosh2ð~rr=2Þg sech2ð~rr=2Þ tanhð~rr=2Þ;

b12 ¼ b21 ¼ �ð
ffiffiffiffiffi
jcj

p
=2Þfsin2 jþ cos2 j coshð~rr=2Þg sin j sech3ð~rr=2Þ;

b13 ¼ b31 ¼
ffiffiffiffiffi
jcj

p
cos j sin2 j sech3ð~rr=2Þ sinh2ð~rr=4Þ;

b22 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þfsin4jþ ð1þ cos2 jÞ sin2 j coshð~rr=2Þ þ ð1þ sin2 jÞ

� ð1þ coshð~rr=2ÞÞ cosh2ð~rr=2Þg sech3ð~rr=2Þ tanhð~rr=4Þ;

b23 ¼ b32 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þfsin2 jþ cos2 j coshð~rr=2Þ þ cosh2ð~rr=2Þ þ cosh3ð~rr=2Þg

� sin j cos j sech3ð~rr=2Þ tanhð~rr=4Þ;

b33 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þf�sin2 j cos2 jþ 2 sin2 j cos2 j coshð~rr=2Þ

� ð1þ sin2 jÞ cos2 j cosh2ð~rr=2Þ

þ ð1þ cos2 jÞ cosh4ð~rr=2Þg cschð~rr=2Þ sech3ð~rr=2Þ;

(2) The matrix representations of AjV4
and AjV5

satisfy

AjV4
¼ ð

ffiffiffiffiffi
jcj

p
=2Þ tanhð~rr=2ÞI2n�2�k;

AjV5
¼ ð

ffiffiffiffiffi
jcj

p
=2Þ cothð~rr=2ÞIk�2;

(3) The characteristic vector is given by x ¼ sin j � P� þ cos j � F �;
(4) JZ � A V4.

Proof. We assume that the ambient complex hyperbolic space is normalized
as c ¼ �1. First of all, we recall some facts on the minimal ruled submanifold
W 2n�k

j in CHnð�1Þ. We denote by nW 2n�k
j the normal bundle of W 2n�k

j . Take
o A W 2n�k

j and let v A noW
2n�k
j be a unit normal vector. We decompose Jv into

Jv ¼ Pvþ Fv;

where Pv A ToW
2n�k
j and Fv A noW

2n�k
j . Since noW

2n�k
j has constant Kähler

angle j A ð0; p=2Þ, one has kPvk ¼ sin j0 0 and kFvk ¼ cos j0 0. We then put

Pv :¼ Pv=sin j; Fv :¼ Fv=cos j:

It has been known that there exists a unit vector Z A ToW
2n�k
j such that the

second fundamental form II of W 2n�k
j is given by the trivial symmetric bilinear

extension of IIðZ;PwÞ ¼ ðsin2ðjÞ=2Þw for all w A noW
2n�k
j . Then one can see

that the eigenvalues of the shape operator Sv of W 2n�k
j with respect to v are

sinðjÞ=2, �sinðjÞ=2 and 0, and the corresponding eigenspaces are

RðZ þ PvÞ; Rð�Z þ PvÞ; ToW
2n�k
j m ðRZ þ RPvÞ;
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respectively, where m denotes the orthogonal complement. It has also been
known that the vector Z satisfies JZ A ToW

2n�k
j m ðRZ þ RPvÞ.

We here consider the tube M around W 2n�k
j at distance r> 0. Let gv ¼ gvðtÞ

be the geodesic in CHnð�1Þ given by the initial conditions gvð0Þ ¼ o and
_ggvð0Þ ¼ v. For any X A ToCH

nð�1Þ, we denote by BX ðtÞ the unique parallel
field along the geodesic gv with BX ð0Þ ¼ X . Then we can put

p :¼ gvðrÞ; N :¼ �gvðrÞ:
Moreover, we define

Z � :¼ BZðrÞ; P� :¼ BPvðrÞ; F � :¼ BFvðrÞ;
V4 :¼ BToW 2n�k

j mðRZþRPvÞðrÞ; V5 :¼ BnoW 2n�k
j mðRvþRFvÞðrÞ;

where BV denotes the parallel translation of any vector subspace V � ToCH
nð�1Þ

along gv.
The assertions (1) and (2) can be proved by calculating the shape operator A

in terms of the Jacobi field theory. The calculation is long but exactly same as
the one in [5, Subsection 4.2], which will be omitted.

Note that the characteristic vector x at p is given by

x ¼ �JN ¼ Jð _ggvðrÞÞ ¼ JðBvðrÞÞ ¼ BJvðrÞ ¼ BPvþFvðrÞ:

One knows Pvþ Fv ¼ sin j � Pvþ cos j � Fv. Therefore, the assertion (3) follows
from the linearity of B. The assertion (4) follows from

JZ � ¼ JðBZðrÞÞ ¼ BJZðrÞ A V4:

This completes the proof of the lemma. r

The matrix representations in Lemma 6.1 provide the following result.

Proposition 6.2. All real hypersurfaces of type (W2) are not minimal.

Proof. Let M be a real hypersurface of type (W2) in CHnðcÞ, that is, the

tube of radius r around W 2n�k
j . Recall that ~rr :¼

ffiffiffiffiffi
jcj

p
r > 0. Then, straightfor-

ward calculations show that

b11 þ b22 þ b33 ¼ ð
ffiffiffiffiffi
jcj

p
=2Þð�1þ 2 cosh ~rrÞ csch ~rr > 0;

and all of other diagonal entries of A are positive. We thus have Trace A > 0,
and hence M is not minimal. r

Moreover, we can also determine the signs of the sectional curvatures of real
hypersurfaces of type (W2).

Proposition 6.3. Let M be a real hypersurface of type (W2). Then the
sectional curvature of M can take both signs.
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Proof. We first remark that dim V4 ¼ 2n� k � 2f 2. Then one can take
a unit vector X in V4 orthogonal to JZ � ðA V4Þ and can see that

gðfX ; JZ �Þ ¼ gðX ;Z �Þ ¼ 0:

We thus have

KðX ; JZ �Þ ¼ ðc=4Þð1þ 3gðfX ; JZ �Þ2Þ þ gðAX ;XÞgðAJZ �; JZ �Þ � gðAX ; JZ �Þ2

¼ ðc=4Þ � ðc=4Þ tanh2ð~rr=2Þ ¼ ðc=4Þ sech2ð~rr=2Þ < 0:

We next calculate KðP�;F �Þ. It follows from Lemma 6.1 (3) that

0 ¼ fx ¼ sin j � fP� þ cos j � fF �;

which yields gðfP�;F �Þ ¼ 0. It then follows from Lemma 2.1 and long calcula-
tions that

KðP�;F �Þ ¼ ðc=4Þ þ b22b33 � b223

¼ ðjcj=4Þð�cos 2jþ cosh2ð~rr=2ÞÞ sech2ð~rr=2Þ

> ðjcj=4Þð�1þ cosh2ð~rr=2ÞÞ sech2ð~rr=2Þ ¼ ðjcj=4Þ tanh2ð~rr=2Þ > 0:

This completes the proof. r

7. The case of type (S)

This section will be devoted to the study of real hypersurfaces of type (S).
Such hypersurfaces are either the homogeneous ruled real hypersurface S deter-
mined by a horocycle in a totally geodesic RH 2ðc=4Þ in CHnðcÞ, or an equidistant
hypersurface from S at distance r, where 0 < r < y.

Geometry of these hypersurfaces have been studied in detail by Berndt ([2]),
and also by Hamada, Hoshikawa and the second author ([5]). By virtue of their
works we can obtain the following lemmas.

Lemma 7.1 ([2, 5]). Let M be an equidistant hypersurface from S at distance
r with 0 < r < y and p A M. Set ~rr :¼

ffiffiffiffiffi
jcj

p
r and let A denote the shape operator

of M. Then, there exists an orthogonal decomposition

TpM ¼ SpanfZ0;Y1glV3

of TpM into A-invariant subspaces of TpM with a pair fZ0;Y1g of orthonormal
vectors in TpM, such that the matrix representation of A with respect to this
decomposition satisfies

AjSpanfZ0;Y1g ¼
ffiffiffiffiffi
jcj

p
2

2 tanhð~rr=2Þ �sechð~rr=2Þ
�sechð~rr=2Þ tanhð~rr=2Þ

� �
;

AjV3
¼ ð

ffiffiffiffiffi
jcj

p
=2Þ tanhð~rr=2ÞI2n�3:
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Lemma 7.2 ([5]). Let K be the sectional curvature of an equidistant hyper-
surface M from S at distance r ð0< r <yÞ in CHnðcÞ with nf2. Set ~rr :¼

ffiffiffiffiffi
jcj

p
r

and t :¼ tanhð~rr=2Þ. Then, the maximum value of K is given as follows:

max K ¼ ðc=8Þf2� 3t2 � t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3t2

p
g ðnf 3Þ;

ðc=8Þf5� 3t2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�15t4 þ 22t2 þ 9

p
g ðn ¼ 2Þ:

(
ð7:1Þ

We first note that the homogeneous ruled real hypersurface S is exactly
coincident with the hypersurface obtained as a limit of an equidistant hyper-
surface by taking r ! 0. It follows immediately from Lemma 7.1 that

Trace A > 0; lim
r!0

Trace A ¼ 0:

Thus we have

Proposition 7.3 ([2]). A homogeneous real hypersurface of type (S) is mini-
mal if and only if it is the homogeneous ruled real hypersurface S.

We shall prove the following result as an application of Lemmas 7.1 and 7.2.

Proposition 7.4. Let M be an equidistant hypersurface at distance r
ð0 < r < yÞ from S in CHnðcÞ with nf 2. Let us define r0 ¼ r0ðnÞ by

r0 :¼
ð1=

ffiffiffiffiffi
jcj

p
Þ logð2þ

ffiffiffi
3

p
Þ ðnf 3Þ;

ð1=
ffiffiffiffiffi
jcj

p
Þ logfð2

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13�

ffiffiffiffiffi
73

pp
Þð2

ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13�

ffiffiffiffiffi
73

pp
Þg ðn ¼ 2Þ:

(

Then we have the following:
(1) The sectional curvature of M is nonpositive if and only if 0 < re r0;
(2) The sectional curvature of M is negative if and only if 0 < r < r0;
(3) The sectional curvature of M can take both signs if and only if r > r0.

Proof. It follows from (7.1) that the maximum value of K is a monotone
increasing function of the distance r in each case. By elementary computations
we observe that the equation max K ¼ 0 implies r ¼ r0, where r0 is that given in
the proposition. This proves (1) and (2). In order to prove (3), it remains to
show that the sectional curvature K can always take negative sign. Let Y1 be
the unit vector given in Lemma 7.1. Then, for a unit vector X A V3, we have

gðAY1;Y1Þ ¼ gðAX ;X Þ ¼ ð
ffiffiffiffiffi
jcj

p
=2Þ tanhð~rr=2Þ;

gðAY1;XÞ ¼ 0:

Then one can see that

KðY1;X Þ ¼ ðc=4Þð1þ 3gðfY1;XÞ2Þ þ ðjcj=4Þ tanh2ð~rr=2Þ

e�ðjcj=4Þð1� tanh2ð~rr=2ÞÞ < 0:

Therefore, the proposition is proved. r
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Lastly, we determine the sign of sectional curvature of the homogeneous
ruled real hypersurface S. By taking r ! 0 in (7.1), we have

Proposition 7.5. The sectional curvature K of the homogeneous ruled real
hypersurface S in CHnðcÞ with nf 2 has a negative sign.

Altogether, we have now proved Theorem 2.

Remark 7.1. We make mention of examples in the case that real hyper-
surfaces are not necessarily homogeneous. The first author and the third author
[13, 16] studied the properties of sectional curvatures of ruled real hypersurfaces
in nonflat complex space forms. Needless to say that CPnðcÞ does not admit any
homogeneous ruled real hypersurfaces and the only example of such hypersurface
in CHnðcÞ is the former example S of type (S). From their results we can see
that the sectional curvature K of every ruled real hypersurface in CPnðcÞ satisfies
�y < Ke c, whereas ruled real hypersurfaces of CHnðcÞ are classified into two
cases with regard to the range of K : �y < Ke c=4 and ceKe c=4. The
homogeneous ruled real hypersurface S belongs to the latter class (for detail, see
[13]).
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