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CYCLIC COVERINGS OF THE PROJECTIVE LINE BY MUMFORD

CURVES IN POSITIVE CHARACTERISTIC

Ryota Mikami

Abstract

We study the rigid analytic geometry of cyclic coverings of the projective line. We

determine the defining equation of cyclic coverings of degree p of the projective line

by Mumford curves over complete discrete valuation fields of positive characteristic p.

Previously, Bradley studied that of any degree over non-archimedean local fields of

characteristic zero.

1. Introduction

A geometrically connected smooth projective curve of genusb 2 over a com-
plete discrete valuation field ðK ; j � jÞ is called a Mumford curve if it is analytically
isomorphic to a rigid analytic space of the form ðP1nLÞ=G, where G � PGL2ðKÞ
is a Schottky group and L � P1 is the set of limit points. Recall that a finitely
generated torsion-free discontinuous subgroup of PGL2ðKÞ is called a Schottky
group if it has infinitely many limit points in P1. Mumford curves are algebrai-
cally characterized by the property that they have split degenerate reduction [7,
Theorem 3.3, Theorem 4.20]. Cyclic coverings of P1 by Mumford curves were
studied by Bradley and van Steen; see [2], [9]. When K is a non-archimedean
local field of characteristic zero, Bradley studied the defining equation of cyclic
coverings of any degree of P1 by Mumford curves [2, Theorem 4.3].

In this paper, we focus on cyclic coverings of degree p of P1 by Mumford
curves in characteristic p > 0. Let

j : X ! P1

be a cyclic covering of degree p over K . Assume that K is of characteristic
p > 0. In [9, Proposition 3.1], van Steen showed that if X is a Mumford curve,
by replacing K by its finite extension, it is defined by an equation of the form

yp � y ¼
Xr
i¼1

li

x� ai
ð1:1Þ
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for some li A K� and ai A K ð1a ia rÞ satisfying ai 0 aj for i0 j. In the
following, we assume that X is defined by the equation (1.1). The cyclic
covering X has genus ðp� 1Þðr� 1Þ [9, Proposition 1.3]. Thus, we also assume
ðp� 1Þðr� 1Þb 2, i.e., rb 3, or r ¼ 2 and pb 3. The main theorem of this
paper is the following:

Theorem 1.1. Let ðK ; j � jÞ be a complete discrete valuation field of positive
characteristic p > 0. Let j : X ! P1 be a cyclic covering of degree p over K
defined by the equation (1.1) for rb 3, or r ¼ 2 and pb 3. Then the following
conditions are equivalent:

� X is a Mumford curve over a finite extension of K.
� jliljj < jai � ajj2 for any i0 j.

Previously, van Steen studied the defining equation of hyperelliptic curves
which are Mumford curves [10]. When p ¼ r ¼ 2, the cyclic covering X has
genus 1 and van Steen obtained results similar to Theorem 1.1; see [10, Section
4]. Tsushima told the author that for any p, Theorem 1.1 for r ¼ 2 can also be
proved by computing reductions explicitly.

Note that for any cyclic covering j : X ! P1 by a Mumford curve X over
K, there exists a surjective homomorphism from a discrete subgroup of PGL2ðKÞ
generated by finitely many elements of finite order to the Galois group of j; see
[5, Chapter 8]. Since the order of any element of finite order of PGL2ðKÞ is not
divisible by p2, the degree deg j is not divisible by p2. When p does not divide
deg j, we can use Bradley’s method in [2] to study the defining equation of X .

The organization of this paper is as follows. In Section 2, we review some
basic properties of Mumford curves. In Section 3, we summarize some facts
about cyclic coverings of P1 by Mumford curves proved by van Steen [9]. The
proof of Theorem 1.1 is given in Section 4 and Section 5.

2. Basic properties of Mumford curves

In this paper, we use the language of rigid analytic geometry. We refer to
[6] for basic notations on rigid analytic geometry and [5] for those on Mumford
curves used in this paper.

Let ðK ; j � jÞ be a complete discrete valuation field of characteristic p > 0
and K � (resp. k) its valuation ring (resp. residue field). We fix a uniformizer
p A K �. We fix an algebraic closure K of K . We also denote the extension of
the valuation j � j on K to K by the same symbol. We denote by valKð�Þ the
normalized additive valuation on K , i.e., we have valKðpÞ ¼ 1.

Let A be an a‰noid algebra over K . For an element f A A, let

j f jsp :¼ supfj f ðxÞj j x A Sp Ag

be the spectral seminorm of f . (It is called the supremum norm in [6, Section
1.4].) We put
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A� :¼ f f A A j j f jsp a 1g;

A�� :¼ f f A A j j f jsp < 1g:

We denote the residue ring of an a‰noid algebra A by A :¼ A�=A��. The a‰ne
scheme Spec A over k is called the canonical reduction of the a‰noid space Sp A.
We put Sp A :¼ Spec A. (For details, see [6, Section 1.4].)

For an a‰noid algebra A over K , an algebra B of topologically finite type
over K � is called a K �-model of A if B is flat over K � and BnK � K GA; see
[6, Definition 3.3.1].

A subgroup N of PGL2ðKÞ is called discontinuous if the set of limit points
of the canonical action of N on P1ðKÞ does not equal to P1ðKÞ and the closure
of Na is compact for any a A P1ðKÞ. Obviously, a discontinuous subgroup is
discrete. A finitely generated torsion-free discontinuous subgroup of PGL2ðKÞ is
called a Schottky group if it has infinitely many limit points in P1. A Schottky
group G is a free group; see [5, Chapter 1]. We put

W :¼ P1nfthe limit points of Gg;
which is a one-dimensional rigid analytic space over K . The quotient W=G is
isomorphic to the analytification of a geometrically connected smooth projective
curve XG of genusb 2 over K . A smooth projective curve of genusb 2 over K
which is isomorphic to XG for some Schottky group G � PGL2ðKÞ is called a
Mumford curve. We identify projective curves over K and their analytifications
by the ‘‘GAGA’’-correspondence. Concerning the automorphism group, we have
a natural isomorphism

AutðXGÞGNPGL2ðKÞðGÞ=G;
where NPGL2ðKÞðGÞ is the normalizer of G in PGL2ðKÞ; see [5, Chapter 7].
Mumford proved the following theorem:

Theorem 2.1 (Mumford [7, Theorem 3.3, Theorem 4.20]). A geometrically
connected smooth projective curve X of genusb 2 over K is a Mumford curve if
and only if it has split degenerate reduction, i.e., there exists a proper flat scheme
Y over Spec K � such that

� Y �Spec K � Spec KGX ,
� the normalizations of all the irreducible components of Y �Spec K � Spec k are
rational curves (where k is an algebraic closure of k), and

� all the singular points of the closed fiber Y �Spec K � Spec k are k-rational
ordinary double points with two k-rational branches.

We collect some properties of the Bruhat-Tits tree T of PGL2ðKÞ used in
Section 5 of this paper; see [3, Section 2], [8, Chapter II] for details. The Bruhat-
Tits tree T is a combinatorial graph defined as follows:

� The set of vertices vertðTÞ is the set of equivalence classes of K �-lattices
in KlK . Here, two K �-lattices M1, M2 are equivalent if M1 ¼ aM2 for
some a A K�.
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� Two vertices w1;w2 A vertðTÞ are adjacent if and only if pM1 � M2 � M1

for some K �-lattices M1 and M2 in the equivalence classes w1 and w2,
respectively.

The graph T is actually a tree [8, Chapter II, Theorem 1]. The set of edges
of T is denoted by edgeðTÞ. A sequence w1;w2;w3 . . . of distinct vertices of
T gives a half-line on T if wi, wiþ1 are adjacent for any ib 1. Two half-lines
given by w1;w2;w3 . . . and w 0

1;w
0
2;w

0
3 . . . are equivalent if there exist i; jb 1 such

that wiþr ¼ w 0
jþr for any rb 0. An equivalence class of half-lines on T is called

an end of T. There is a natural bijection between P1ðKÞ and the set of ends
of T as follows. For an element a A P1ðKÞ, let Va � KlK be a 1-dimensional
K-subspace corresponding to a. Let wi A vertðTÞ be the equivalence class of
K �-lattices containing

p iðK � lK �Þ þ Va \ ðK � lK �Þ:

Then the sequence w1;w2;w3 . . . gives the end of T corresponding to a. This
bijection is equivariant with respect to the action of PGL2ðKÞ. See [8, Chapter
II, p. 72] for details.

For v;w A vertðTÞ and a; b A P1ðKÞ, let ½v;w� (resp. ½v; a½, �a; b½) be the path
from v to w without backtracking (resp. the half-line from v to a, the line from a
to b), where we regard a, b as ends of T. For v;w A vertðTÞ, the length of the
path ½v;w� is called the distance from v to w, and is denoted by distðv;wÞ; see
[8, Section 1.2]. For subtrees R;S � T, we put

distðR;SÞ :¼ min
v A vertðRÞ
w A vertðSÞ

distðv;wÞ:

We denote by v1 A vertðTÞ the vertex corresponding to the equivalence class
of K �-lattices containing K �e1 lK �e2, where fe1; e2g is the standard basis of
KlK . For a A K� (resp. w A vertðTÞ), the intersection of �0;y½, �0; a½, and
�a;y½ (resp. �0;y½, ½w; 0½, and ½w;y½) consists of one vertex only, and we denote
it by vð0;y; aÞ (resp. vð0;y;wÞ).

� If valKðaÞb 0, we have vð0;y; aÞ A ½v1; 0½ and distðv1; vð0;y; aÞÞ ¼ valKðaÞ:
� If valKðaÞa 0, we have vð0;y; aÞ A ½v1;y½ and distðv1; vð0;y; aÞÞ ¼
�valKðaÞ:

Since vð0;y; aÞ ¼ vð0;y;wÞ for any w A �0; a½ \ �a;y½, we can compute valKðaÞ
by using vð0;y;wÞ.

For any discrete subgroup N � PGL2ðKÞ and any v A vertðTÞ, the stabilizer

Nv :¼ fg A N j gðvÞ ¼ vg

is a finite group. For an element g A PGL2ðKÞ of finite order, let MðgÞ � T
be the smallest subtree generated by the vertices fixed by g. The subtree MðgÞ
is called the mirror of g; see [3, Section 2]. An element g A PGL2ðKÞ of order p
is called a parabolic element. A parabolic element g A PGL2ðKÞ has a unique
fixed point in P1. For a parabolic element g A PGL2ðKÞ and v A vertðMðgÞÞ,
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the subset

fe A edgeðMðgÞÞ j v is an extremity of eg

consists of one element only or coincides with

fe A edgeðTÞ j v is an extremity of eg:

For any parabolic element g A PGL2ðKÞ and any v A vertðMðgÞÞ, the element g
acts freely on the following set:

fe A edgeðTÞnedgeðMðgÞÞ j v is an extremity of eg:

3. Some facts about cyclic coverings of degree p of the projective line by
Mumford curves

In this section, we review some facts about cyclic coverings of degree p of P1

proved by van Steen [9]. Let

j : X ! P1

be a cyclic covering of degree p over K . Let a1; a2; . . . ; ar A P1 be the branch
points of j. We assume that ai 0y for every i. By replacing K by its finite
extension, we may assume that a1; a2; . . . ; ar are K-rational points on P1.

We denote the function field of P1 (resp. X ) by KðxÞ (resp. F ). Since
F=KðxÞ is an Artin-Schreier extension, by replacing K by its finite extension,
there exists y A F such that F ¼ Kðx; yÞ and

yp � y ¼
Xr
i¼1

Xni
j¼1

j20 mod p

lij

ðx� aiÞ j

for some lij A K�. Using this equation, we embed X into P1 � P1. If X is
a Mumford curve, we have ni ¼ 1 for every i [9, Proposition 3.1]. We assume
that ni ¼ 1 for every i and put li :¼ li1. The cyclic covering X has genus
ðp� 1Þðr� 1Þ [9, Proposition 1.3]. Thus, we also assume ðp� 1Þðr� 1Þb 2, i.e.,

Figure. MðgÞ for a parabolic element g A PGL2ðKÞ when kGF2
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rb 3, or r ¼ 2 and pb 3. Hence X is defined by

yp � y ¼
Xr
i¼1

li

x� ai
:

If X is a Mumford curve, there exist s1; s2; . . . ; sr A PGL2ðKÞ satisfying the
following conditions [9, Proposition 2.2, Section 3]:

� si ð1a ia rÞ is an element of order p,
� the subgroup N � PGL2ðKÞ generated by si ð1a ia rÞ is discontinuous
and isomorphic to the free product of hsii ð1a ia rÞ, (this implies the
subgroup G � PGL2ðKÞ generated by sni s

�n
iþ1 ð1a ia r� 1; 1a na p� 1Þ

is a Schottky group satisfying N � NPGL2ðKÞðGÞ,)
� X GW=G, P1 GW=N, and the covering j : X ! P1 coincides with the
natural projection W=G ! W=N, where

W :¼ P1nfthe limit points of Gg;
� the fixed point Pi A P1 of si is an element of W,
� the image of Pi under the natural projection W ! W=NGP1 is the branch
point ai A P1,

� siðyÞ ¼ yþ 1 ð1a ia rÞ, where we consider si as an element of AutðXÞG
NPGL2ðKÞðGÞ=G.

In particular, we have

N=GGGalðF=KðxÞÞGZ=pZ:

We note that MðsiÞ \MðsjÞ ¼ j for any i0 j. In fact, if there exists a vertex
v A vertðMðsiÞ \MðsjÞÞ, it is fixed by infinitely many elements sn1l1 � � � snmlm for
mb0, lk A fi; jg, and 1anka p� 1 ð1akamÞ with lk0 lkþ1 ð1akam� 1Þ,
but, since N is discrete, the stabilizer Nv is a finite group. The contradiction
shows MðsiÞ \MðsjÞ ¼ j.

4. Proof of Theorem 1.1 (part 1)

In this section, we shall show that if the inequality

jliljj < jai � aj j2ð4:1Þ
is satisfied for any i0 j, then X is a Mumford curve over a finite extension of K .

By replacing K by its finite extension, for each i, there exists ei A jK�j
satisfying

ei < jai � aj j and jlij <
jai � ajj2

jljj
� ei

for any j0 i. By replacing K by its finite extension, for i, j, and k satisfying
jai � ajj < jai � akj, there exists zi; j;k A jK�j satisfying

jai � ajj < zi; j;k < jai � akj:
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For each 1a ia r, let ai;1 a ai;2 a � � �a ai;Mi�1 be the following elements

ei; jlij; jai � aj j;
jai � aj j2

jljj
;
jai � ajj2

jljj
� ei ð j0 iÞ;

zi; j;k ð j; k satisfying jai � aj j < jai � akjÞ

of jK�j arranged in ascending order. We put ai;0 ¼ 0 and ai;Mi
¼ y for each

1a ia r.
We define sets I and J by

I :¼ fn ¼ ðn1; . . . ; nrÞ A Zr j 0a ni aMi � 1 ð1a ia rÞg;
J :¼ fn ¼ ðn1; . . . ; nrÞ A I j jai � ajj0 ai;niþ1 or jai � ajj0 aj;njþ1 for any i0 jg:

For each n ¼ ðn1; . . . ; nrÞ A I , we define an a‰noid open subvariety Un � P1

by

Un :¼ fx A P1 j ai;ni a jx� aija ai;niþ1
for any 1a ia rg:

Lemma 4.1. fUngn A J is an a‰noid covering of P1.

Proof. Since fUngn A I is an a‰noid covering of P1, it su‰ces to show that,
for any n A InJ and any c A Un, there exists n 0 A J satisfying c A Un 0 .

For n A I , we put

Mn :¼af1a ia r j jai � ajj ¼ ai;niþ1 for some j0 ig:

We prove Lemma 4.1 by induction on Mn:
We fix n A InJ and c A Un. Since n A InJ, there exist distinct elements i, j

satisfying jai � ajj ¼ ai;niþ1 and jai � ajj ¼ aj;njþ1. In particular, we have Mn b 2.
We have

Un � fx A P1 j jx� aija jai � aj j and jx� ajja jai � aj jg:

Hence we have jc� aij ¼ jai � ajj or jc� ajj ¼ jai � ajj.
We may assume jc� aij ¼ jai � ajj. We put n 0

k :¼ nk for k0 i and n 0
i :¼

ni þ l 0, where we put

l 0 :¼ minflb 1 j ai;niþ1 < ai;niþlþ1g:

We put n 0 :¼ ðn 0
1; . . . ; n

0
rÞ A I . Then we have c A Un 0 . We have

ai;niþl 0þ1 a zi; j;k < jai � akj

for k satisfying jai � ajj < jai � akj. Hence we have ai;niþl 0þ1 0 jai � akj for
k0 i. We have Mn 0 < Mn. By induction on Mn, there exists n 0 A J satisfying
c A Un 0 . r

We put J 0 :¼ fn A J jUn0jg. For each n A J 0, we put bn :¼min1aiar ai;niþ1.
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For any n A J 0, we have

Un ¼ fx A P1 j jx� alðn;0Þja bngn
[Nn

n¼0

Dn; n;

where

Dn; n :¼ fx A P1 j jx� alðn; nÞj < alðn; nÞ;nlðn; nÞg

for some Nn b 0 and 1a lðn; nÞa r ð0a naNnÞ with jalðn;0Þ � alðn; nÞja bn ð1a
naNnÞ. We may assume Dn; n \Dn; n 0 ¼ j for n0 n 0. We take lðn; 0Þ so that
alðn;0Þ;nlðn; 0Þ ¼ min0anaNn

alðn; nÞ;nlðn; nÞ .

Lemma 4.2. For each n A J 0, we have alðn; nÞ;nlðn; nÞ ¼ jalðn;0Þ � alðn; nÞj for

1a naNn. Moreover, for 1a naNn, we have jalðn;0Þ � alðn; nÞj ¼ alðn;0Þ;nlðn; 0Þ or
jalðn;0Þ � alðn; nÞj ¼ bn.

Proof. We fix 1a naNn. Since alðn; nÞ B Dn;0, we have alðn;0Þ;nlðn; 0Þ a
jalðn;0Þ � alðn; nÞj. We have

jalðn;0Þ � alðn; nÞja bn a alðn;0Þ;nlðn; 0Þþ1:

Hence we have jalðn;0Þ � alðn; nÞj ¼ alðn;0Þ;nlðn; 0Þ or jalðn;0Þ � alðn; nÞj ¼
alðn;0Þ;nlðn; 0Þþ1. Similarly, we have jalðn;0Þ � alðn; nÞj ¼ alðn; nÞ;nlðn; nÞ or jalðn;0Þ � alðn; nÞj
¼ alðn; nÞ;nlðn; nÞþ1.

We assume that jalðn;0Þ � alðn; nÞj0 alðn; nÞ;nlðn; nÞ . Then we have jalðn;0Þ � alðn; nÞj
¼ alðn; nÞ;nlðn; nÞþ1 and alðn; nÞ;nlðn; nÞ < alðn; nÞ;nlðn; nÞþ1. Since alðn;0Þ;nlðn; 0Þ a alðn; nÞ;nlðn; nÞ , we

have jalðn;0Þ � alðn; nÞj ¼ alðn;0Þ;nlðn; 0Þþ1, which contradicts the definition of J. Hence
we have jalðn;0Þ � alðn; nÞj ¼ alðn; nÞ;nlðn; nÞ .

If jalðn;0Þ � alðn; nÞj ¼ alðn;0Þ;nlðn; 0Þþ1, since jalðn;0Þ � alðn; nÞja bn, we have
alðn;0Þ;nlðn; 0Þþ1 a bn. Hence we have alðn;0Þ;nlðn; 0Þþ1 ¼ bn. Consequently, we have
jalðn;0Þ � alðn; nÞj ¼ alðn;0Þ;nlðn; 0Þ or jalðn;0Þ � alðn; nÞj ¼ bn. r

One can easily show that the admissible a‰noid covering fUngn A J 0 of P1 is a
formal analytic covering in the sense of [6, Definition 3.1.6]; see [4, Proposition
2.2.6]. We see that OðUnÞ is reduced and jOðUnÞjsp ¼ jK j; see [4, Proposition

2.2.6]. Then OðUnÞ� is a K �-model of OðUnÞ by [1, Theorem 1 of Section 6.4.3].
Hence the formal analytic covering fUngn A J 0 of P1 defines a proper admissible
formal scheme covered by fSpfðOðUnÞ�Þgn A J 0 by [6, Theorem 3.3.12]. Hence it
is algebraic by Grothendieck’s existence theorem. Consequently, the canonical
reductions fUngn A J 0 define an algebraic reduction of P1. The canonical reduc-

tions fj�1ðUnÞgn A J 0 define an algebraic reduction of X over a finite extension
of K .

In order to show that X is a Mumford curve over a finite extension of K ,
it is enough to prove that, for each n A J 0, the a‰noid open subvariety j�1ðUnÞ �
X satisfies the following conditions over a finite extension of K :
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Condition 4.3.
� All the irreducible components of the canonical reduction j�1ðUnÞ are
rational curves, and

� all the singular points of the canonical reduction j�1ðUnÞ are ordinary double
points.

We shall show that j�1ðUnÞ satisfies Condition 4.3 by calculating the canon-
ical reductions j�1ðUnÞ explicitly. We fix an element n A J 0. We put N :¼ Nn

and l :¼ lðn; 0Þ. We also put Dn :¼ Dn; n, dn :¼ alðn; nÞ for each 0a naN. We
take b1 A K and b2 A K� [ fyg satisfying jb1j ¼ al;nl and jb2j ¼ bn. Then we
have

Un ¼ fx A P1 j jx� d0ja jb2jgn
[Nn

n¼0

Dn;

D0 ¼ fx A P1 j jx� d0j < jb1jg;

Dn ¼ fx A P1 j jx� dnj < jd0 � dnjg ð1a naNnÞ:

For each 1a naNn, we have jd0 � dnj ¼ jb1j or jd0 � dnj ¼ jb2j.
We put zi :¼ liðx� aiÞ�1 for each 1a ia r. From the equation (1.1), we

have

yp � y ¼
Xr
i¼1

zi:

We put

L :¼ fi j jx� aija jlij for some x A Ung ¼ fi j jzijsp b 1 on Ung:

Lemma 4.4. If L ¼ j, the a‰noid open subvariety j�1ðUnÞ satisfies Condition
4.3.

Proof. Since L ¼ j, we have jyjsp a 1 on j�1ðUnÞ. We embed X into
P1 � P1 by x and y. We have

j�1ðUnÞ � fðx; yÞ A P1 � P1 j x A Un; jyja 1g:
Hence we have

Oðj�1ðUnÞÞGOðUnÞ½y�
�

yp � y�
Xr
i¼1

zi

 !
:

Since OðUnÞ� is a K �-model of OðUnÞ, the K �-algebra

OðUnÞ�½y�
�

yp � y�
Xr
i¼1

zi

 !
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is a K �-model of Oðj�1ðUnÞÞ. Since jzij < 1 on Un for each 1a ia r, the

residue ring Oðj�1ðUnÞÞ is isomorphic to

OðUnÞ½y�=ðyp � yÞ;
and j�1ðUnÞ satisfies Condition 4.3. r

In the rest of this section, we assume L0j:

Lemma 4.5. If ai A Un for some 1a ia r, we have

Un ¼ fx A P1 j jx� aija ai;1g
and aj B Un for j0 i.

Proof. Since ai A Un, we have ni ¼ 0. For j0 i, since Un is non-empty, we
have

fx A P1 j jx� aija ai;1g \ fx A P1 j aj;nj a jx� ajja aj;njþ1g0j:

Since ei < jai � ajj, we have ai;1 < jai � ajj. Hence we have

fx A P1 j jx� aija ai;1g \ fx A P1 jaj;nj a jx� aj ja aj;njþ1g

¼ fx A P1 j jx� aija ai;1g:

We have

Un ¼
\r
j¼1

fx A P1 j aj;nj a jx� ajja aj;njþ1g ¼ fx A P1 j jx� aija ai;1g:

For j0 i, since aj B fx A P1 j jx� aija ai;1g, we have aj B Un. r

By Lemma 4.5, if ai A Un for some i, we have b1 ¼ 0 and jb2j ¼ ai;1.
For each a A P1, we put

distða;UnÞ :¼ inf
u AUn

ja� uj:

Lemma 4.6. For 1a ia r, we have distðai;UnÞ ¼ jb1j or distðai;UnÞb jb2j.

Proof. For 1a ia r, by Lemma 4.2, we have distðai;UnÞ ¼ 0, distðai;UnÞ
¼ jb1j, or distðai;UnÞb jb2j. Moreover, if distðai;UnÞ ¼ 0 for some i, we have
ai A Un, hence b1 ¼ 0. r

Lemma 4.7. If distðai;UnÞ > jb1j for some i, we have jx� aij ¼ jd0 � aij for
every x A Un. In particular, jx� aij ¼ distðai;UnÞ for every x A Un.

Proof. By Lemma 4.6, we have distðai;UnÞb jb2j. First, we assume
distðai;UnÞ ¼ jb2j. Then, by Lemma 4.2, we have ai A DnðiÞ for some nðiÞ with
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jd0 � dnðiÞj ¼ jb2j. Since jai � dnðiÞj < jb2j, we have jd0 � aij ¼ jb2j. We have

Un � fx A P1 j jx� d0ja jb2j and jx� dnðiÞjb jb2jg

¼ fx A P1 j jx� aij ¼ jb2jg

¼ fx A P1 j jx� aij ¼ jd0 � aijg:

Next, we assume distðai;UnÞ > jb2j. Then, for any x A Un, we have

jx� d0ja jb2j < distðai;UnÞa jx� aij:

Hence we have jx� aij ¼ jd0 � aij for any x A Un. r

Lemma 4.8. We have distðai;UnÞ0 distðaj;UnÞ for any i; j A L with
i0 j.

Proof. Assume that we have distðai;UnÞ ¼ distðaj ;UnÞ for some i; j A L
with i0 j. We put d :¼ distðai;UnÞ ¼ distðaj ;UnÞ: Then we have da jlij and
da jljj. By Lemma 4.6, we have d ¼ jb1j or db jb2j. By Lemma 4.5, we have
d > 0.

First, we assume d ¼ jb1j. By Lemma 4.2, we have ai A DnðiÞ for some nðiÞ
with jd0 � dnðiÞj ¼ jb1j. Since jai � dnðiÞj < jb1j, we have jai � d0j ¼ jb1j. Simi-
larly, we have jaj � d0j ¼ jb1j. Hence we have

jai � ajjamaxfjd0 � aij; jd0 � ajjg ¼ jb1j ¼ daminfjlij; jlj jg;

which contradicts the inequality (4.1).
Next, we assume d > jb1j. By Lemma 4.7, we have jx� aij ¼ d ¼ jx� ajj

for any x A Un. Hence we have

jai � ajjamaxfjx� aij; jx� aj jg ¼ daminfjlij; jljjg

for any x A Un, which contradicts the inequality (4.1). r

By Lemma 4.8, there exists a unique element m A L satisfying

distðam;UnÞ ¼ min
i AL

distðai;UnÞ:

Lemma 4.9. For any i A Lnfmg, we have

li

x� ai
þ li

ai � am

����
����< 1

for every x A Un.

Proof. Since distðam;UnÞ < distðai;UnÞ, by Lemma 4.6, we have distðai;UnÞ
> jb1j. By Lemma 4.7, we have jx� aij ¼ distðai;UnÞ for every x A Un. For
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x A Un satisfying jx� amj ¼ distðam;UnÞ, we have jx� amj < jx� aij: Hence we
have jx� aij ¼ jam � aij for every x A Un.

Since m A L, we have am;nm a jlmj. Since jlmj < jam � aij2 � jlij�1 � ei, we

have am;nmþ1 a jam � aij2 � jlij�1 � ei. Hence we have jx� amja jam � aij2 �
jlij�1 � ei for every x A Un.

Consequently, for every x A Un, we have

li

x� ai
þ li

ai � am

����
���� ¼ jlij � jx� amj

jx� aij � jai � amj

¼ jlij
jam � aij2

jam � aij2

jlij
� ei

 !

< 1: r

We put

f :¼
X

i ALnfmg
zi þ

li

ai � am

� �
þ
X
i BL

zi;

C :¼ �
X

i ALnfmg

li

ai � am
:

Then we have

yp � y ¼
Xr
i¼1

zi ¼ zm þ C þ f :

By Lemma 4.9, we have j f jsp < 1 on Un.

Lemma 4.10. There exist b 0
1 A K�, b 0

2 A K� [ fyg, and C 0 A K satisfying
jb 0

1ja jb 0
2ja 1 or 1a jb 0

1ja jb 0
2j, and

Un ¼ fx A P1 j jb 0
1ja jzm þ C 0ja jb 0

2jgn
[N
n¼1

D 0
n;

where

D 0
n ¼ fx A P1 j jzm þ C 0 � d 0

n j < jd 0
n jg;

for some d 0
n A K� with jd 0

n j ¼ jb 0
1j or jd 0

n j ¼ jb 0
2j.

Proof. If distðam;UnÞ ¼ jb1j, we put b 0
1 :¼ lmb

�1
2 , b 0

2 :¼ lmb
�1
1 , and C 0 :¼ 0.

(We put b 0
2 :¼ y if b1 ¼ 0.) If distðam;UnÞ0 jb1j, we put b 0

1 :¼ lmb1ðam � d0Þ�2,

b 0
2 :¼ lmb2ðam � d0Þ�2, and C 0 :¼ lmðam � d0Þ�1. In both cases, we can check

b 0
1, b

0
2, and C 0 satisfy the conditions of Lemma 4.10. Since the computations are

straightforward, we omit them. r
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We put z :¼ zm þ C 0. We regard it as a coordinate function on P1. By
replacing K by its finite extension, there exists C 00 A K satisfying C 00p � C 00 ¼
C � C 0: We put y 0 :¼ y� C 00. Then we have y 0p � y 0 ¼ zþ f .

If b 0
2 0y, since

Oðfz A P1 j jb 0
1ja jzja jb 0

2jgÞGKhb 0�1
2 z; b 0

1z
�1i;

the residue ring OðUnÞ is isomorphic to a localization of k½s; t�=ðst� b 0
1b

0�1
2 Þ.

If b 0
2 ¼ y, since

Oðfz A P1 j jb 0
1ja jzjgÞGKhb 0

1z
�1i;

the residue ring OðUnÞ is isomorphic to a localization of k½t�.
We consider the following two cases separately:
� jb 0

1ja jb 0
2ja 1.

� 1a jb 0
1ja jb 0

2j.

Lemma 4.11. If jb 0
1ja jb 0

2ja 1, the a‰noid open subvariety j�1ðUnÞ satisfies
Condition 4.3 over a finite extension of K.

Proof. Since jb 0
2ja 1, we have jzjsp a 1 on Un. Similarly to the proof of

Lemma 4.4, the residue ring Oðj�1ðUnÞÞ is isomorphic to a localization of

k½s; t; y 0�=ðst� b 0
1b

0�1
2 ; y 0p � y 0 � b 0

2sÞ

If jb 0
2j < 1, we have b 0

2 ¼ 0, and j�1ðUnÞ satisfies Condition 4.3.
If jb 0

2j ¼ 1, we have

k½s; t; y 0�=ðst� b 0
1b

0�1
2 ; y 0p � y 0 � b 0

2sÞG k½t; y 0�=ðtðy 0p � y 0Þ � b 0
1Þ;

and j�1ðUnÞ satisfies Condition 4.3. r

Lemma 4.12. If 1a jb 0
1ja jb 0

2j, the a‰noid open subvariety j�1ðUnÞ satisfies
Condition 4.3 over a finite extension of K.

Proof. Since 1a jb 0
1j, we have 1a jzj on Un. By replacing K by its finite

extension, there exists x; x 0 A K such that xp ¼ b 0�1
2 and x 0p ¼ b 0�1

1 . (Here, we
put b 0�1

2 :¼ 0 if b 0
2 ¼ y.) We put f 0 :¼ b 0�1

2 f and f 00 :¼ z�1f . Since 1a jb 0
2j,

we have j f 0jsp < 1 on Un. Since 1a jzj on Un, we have j f 00jsp < 1 on Un. We
also put y 00 :¼ xy 0 and w :¼ x 0�1y 0�1: Then we have

y 00p � xp�1y 00 ¼ b 0�1
2 zþ f 0

b 0
1z

�1ð1� x 0p�1wp�1Þ ¼ wpð1þ f 00Þ:

First, we assume b 0
2 0y. Similarly to the proof of Lemma 4.4, the residue

ring Oðj�1ðUnÞÞ is isomorphic to a localization of

k½s; t; y 00;w�=ðst� b 0
1b

0�1
2 ; y 00w� xx 0�1; y 00p � xp�1y 00 � s; tð1� x 0 p�1wp�1Þ � wpÞ;
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which is a localization of k½y 00;w�=ðy 00w� xx 0�1Þ, and j�1ðUnÞ satisfies Condition
4.3.

Next, we assume b 0
2 ¼ y. Similarly to the proof of Lemma 4.4, the residue

ring Oðj�1ðUnÞÞ is isomorphic to a localization of

k½t;w�=ðtð1� x 0 p�1wp�1Þ � wpÞ;

which is a localization of k½w�, and j�1ðUnÞ satisfies Condition 4.3. r

Consequently, X is a Mumford curve over a finite extension of K .

5. Proof of Theorem 1.1 (part 2)

In this section, we shall show that if X is a Mumford curve, the inequality
jliljj < jai � aj j2 is satisfied for any i0 j. Since the assertion is symmetric, we
need only to prove the inequality

jl1l2j < ja1 � a2j2:

We use van Steen’s method in [10, Section 3] and the Bruhat-Tits tree T of
PGL2ðKÞ.

Take s1; s2; . . . ; sr A PGL2ðKÞ as in Section 3 of this paper. By replacing K
by its finite extension, we may assume that all the fixed points of N on W are
K-rational points.

Let M � T be the subtree generated by MðsiÞ ð1a ia rÞ. For each i0 j,
since MðsiÞ \MðsjÞ ¼ j, there exist unique vertices xið jÞ A vertðMðsiÞÞ and xjðiÞ A
vertðMðsjÞÞ satisfying

distðMðsiÞ;MðsjÞÞ ¼ distðxið jÞ; xjðiÞÞ:

For each i0 j, let eið jÞ A edgeð½xið jÞ; xjðiÞ�Þ be the edge such that xið jÞ is an
extremity of eið jÞ.

Lemma 5.1. There exist s 0i A N ð1a ia rÞ satisfying the following conditions:
� For each i, the element s 0i is N-conjugate to si. (This implies s 0i is an
element of order p with s 0i ðyÞ ¼ yþ 1.)

� N is the free product of hs 0ii ð1a ia rÞ. (This implies G is generated by
s 0ni s

0�n
iþ1 ð1a ia r� 1; 1a na p� 1Þ.)

� We have e0 s 0ni ðe 0Þ for any 1a ia r, 0a na p� 1, and distinct edges
e; e 0 A edgeðM 0Þ, where M 0 � T is the subtree generated by Mðs 0i Þ
ð1a ia rÞ.

Proof. We prove Lemma 5.1 by induction onX
1ai; jar

distðMðsiÞ;MðsjÞÞ:
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Since MðsiÞ \MðsjÞ ¼ j for i0 j, we haveX
1ai; jar

distðMðsiÞ;MðsjÞÞb rðr� 1Þ:

We assume e ¼ snmðe 0Þ for some distinct elements e; e 0 A edgeðMÞ, 1ama r,
and 1a na p� 1. We fix vm A vertðMðsmÞÞ. There exists an extremity v 0 of e 0

with v 0 B vertðMðsmÞÞ. The vertex snmðv 0Þ is an extremity of e. There exist k; l A
f1; . . . ; rgnfmg satisfying emðkÞ A edgeð½vm; snmðv 0Þ�Þ and emðlÞ A edgeð½vm; v 0�Þ. We
have emðkÞ ¼ snmðemðlÞÞ. In particular, we have xmðkÞ ¼ xmðlÞ.

For i; j A f1; . . . ; rgnfmg with emðiÞ0 emð jÞ, we have

edgeð½xiðmÞ; xmðiÞ� \ ½xmð jÞ; xjðmÞ�Þ ¼ j;

hence we have

½xiðmÞ; xjðmÞ� ¼ ½xiðmÞ; xmðiÞ� [ ½xmðiÞ; xmð jÞ� [ ½xmð jÞ; xjðmÞ�:

In particular, we have ½xiðmÞ; xjðmÞ� \MðsmÞ0j: Hence, for i; j A f1; . . . ; rgn
fmg with emðiÞ0 emð jÞ, we have xið jÞ ¼ xiðmÞ, xjðiÞ ¼ xjðmÞ, and

distðMðsiÞ;MðsjÞÞ ¼ distðxið jÞ; xjðiÞÞ
¼ distðxiðmÞ; xmðiÞÞ þ distðxmðiÞ; xjðmÞÞ:

For i0m, we put

Ii :¼ f1a ja r j j0m and emð jÞ ¼ emðiÞg:
Then, for each i A Ik and j A Il , we have

emðiÞ ¼ emðkÞ ¼ snmðemðlÞÞ ¼ snmðemð jÞÞ A edgeð½xmð jÞ; snmðxjðmÞÞ�Þ
and xmðiÞ ¼ xmð jÞ. Hence we have

emðiÞ A edgeð½xiðmÞ; xmðiÞ�Þ \ edgeð½xmðiÞ; snmðxjðmÞÞ�Þ:
For each i A Il , we put s 0i :¼ snmsis

�n
m . For each i B Il , we put s 0i :¼ si. Then

the discrete subgroup N � PGL2ðKÞ is the free product of hs 0ii ð1a ia rÞ. We
have Mðs 0i Þ ¼ snmMðsiÞ for i A Il .

We shall showX
1ai; jar

distðMðs 0i Þ;Mðs 0j ÞÞ <
X

1ai; jar

distðMðsiÞ;MðsjÞÞ:

To prove the above inequality, we estimate distðMðs 0i Þ;Mðs 0j ÞÞ for each i, j.
� For i A Ik and j A Il , we have emðiÞ0 emð jÞ. We have

distðMðs 0i Þ;Mðs 0j ÞÞ ¼ distðMðsiÞ; snmMðsjÞÞ

a distðxiðmÞ; snmxjðmÞÞ
< distðxiðmÞ; xmðiÞÞ þ distðxmðiÞ; snmxjðmÞÞ

254 ryota mikami



¼ distðxiðmÞ; xmðiÞÞ þ distðxmðiÞ; xjðmÞÞ
¼ distðMðsiÞ;MðsjÞÞ:

� For i; j A Il , we have

distðMðs 0i Þ;Mðs 0j ÞÞ ¼ distðsnmMðsiÞ; snmMðsjÞÞ ¼ distðMðsiÞ;MðsjÞÞ:

� For i ¼ m and j A Il , we have

distðMðs 0mÞ;Mðs 0j ÞÞ ¼ distðMðsmÞ; snmMðsjÞÞ ¼ distðMðsmÞ;MðsjÞÞ:

� For i B Ik [ Il [ fmg and j A Il , since emðiÞ0 emð jÞ and emðiÞ0 emðkÞ ¼
snmemð jÞ, we have

distðMðs 0i Þ;Mðs 0j ÞÞ ¼ distðMðsiÞ; snmMðsjÞÞ

¼ distðxiðmÞ; xmðiÞÞ þ distðxmðiÞ; snmxjðmÞÞ
¼ distðxiðmÞ; xmðiÞÞ þ distðxmðiÞ; xjðmÞÞ
¼ distðMðsiÞ;MðsjÞÞ:

� For i; j B Il , since s 0i ¼ si and s 0j ¼ sj, we have

distðMðs 0i Þ;Mðs 0j ÞÞ ¼ distðMðsiÞ;MðsjÞÞ:

Consequently, we haveX
1ai; jar

distðMðs 0i Þ;Mðs 0j ÞÞ <
X

1ai; jar

distðMðsiÞ;MðsjÞÞ:

By induction, there exist s 0i A N ð1a ia rÞ satisfying the conditions of Lemma
5.1. r

We replace si by s 0i for every 1a ia r. Then we have e0 sni ðe 0Þ for any
1a ia r, 0a na p� 1, and any distinct elements e; e 0 A M.

Recall that we put v1 :¼ vð0;y; 1Þ, and Pi A W is the fixed point of si for
1a ia r. By replacing K by its finite extension and changing the coordinate of
W � P1, we may assume that the following conditions are satisfied:

� P1 ¼ 0 and P2 0y.
� jPij < jP2j for any i0 2.
� The element s1 A PGL2ðKÞ is written as

s1 ¼
1 0

1 1

� �
:

Then we have Mðs1Þ \ �0;y½ ¼ ½v1; 0½.
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Since s2 A PGL2ðKÞ is an element of order p fixing P2 A P1ðKÞnf0;yg ¼
K�, it is written as

s2 ¼
P2ðP2 � hÞ hP2

2

�h P2ðP2 þ hÞ

� �

for some h A K�.

Lemma 5.2. We have

valKðhÞ ¼ �distðMðs1Þ;Mðs2ÞÞ < 0:

In particular, we have jhj > 1.

Proof. Let

g :¼ P2 0

�1 P2

� �
:

Then we have

gs1g
�1 ¼ 1 0

1 1

� �
;

gs2g
�1 ¼ 1 h

0 1

� �

in PGL2ðKÞ. We have Mðgs1g�1Þ \ �0;y½ ¼ ½v1; 0½ and Mðgs2g�1Þ \ �0;y½ ¼
½vð0;y; hÞ;y½. Since Mðs1Þ \Mðs2Þ ¼ j and Mðgsig�1Þ ¼ gMðsiÞ ði ¼ 1; 2Þ,
we have Mðgs1g�1Þ \Mðgs2g�1Þ ¼ j: Hence we have jhj > 1 and

valKðhÞ ¼ �distðMðgs1g�1Þ;Mðgs2g�1ÞÞ ¼ �distðMðs1Þ;Mðs2ÞÞ < 0: r

Since valKðhÞ ¼ �distðMðs1Þ;Mðs2ÞÞ is invariant under PGL2ðKÞ-
conjugation, we may also assume jhj < jP2j. Since Mðs1Þ \ �0;y½ ¼ ½v1; 0½, we
have x1ð2Þ ¼ v1, x2ð1Þ ¼ vð0;y; hÞ, and

½vð0;y; pP2Þ; vð0;y;P2Þ� � Mðs2Þ:

Lemma 5.3. For any i0 j, we have

vð0;y; xið jÞÞ A vertð½vð0;y; pP2Þ; 0½Þ:

Proof. For i ¼ 2 and j0 2, since jPjj < jP2j and

½vð0;y; pP2Þ; vð0;y;P2Þ� � Mðs2Þ;
we have

vð0;y; x2ð jÞÞ A vertð½vð0;y; pP2Þ; 0½Þ:
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For i0 2, since jPij < jP2j and vð0;y;P2Þ A vertðMðs2ÞÞ, we have

vð0;y;wÞ A vertð½vð0;y; pP2Þ; 0½Þ
for w A vertðMðsiÞÞ. In particular, for i0 2 and j0 i, we have

vð0;y; xið jÞÞ A vertð½vð0;y; pP2Þ; 0½Þ: r

By replacing K by its finite extension, there exists a K-rational point u A W
such that juj ¼ ju� P2j ¼ jP2j:

Lemma 5.4. The following are satisfied:
(1) For 1a na p� 1, we have jsn2 ðP1Þj ¼ jhj.
(2) For 1a na p� 1, we have jsn2 ðuÞj ¼ jP2j.
(3) For 1a na p� 1, we have jsn1 ðuÞj ¼ 1:
(4) For any g A N and i0 2, we have jgðPiÞj < jP2j.
(5) For any g A N, we have jgðuÞ � P2j ¼ jP2j.
(6) For any g A N, we have jgðP1Þja jgðuÞj.

Proof. Since the path ½vð0;y; pP2Þ; vð0;y;P2Þ� is contained in Mðs2Þ, every
edge e A edgeðTÞ such that vð0;y;P2Þ is an extremity of e is an edge of Mðs2Þ.
For any Q A K� with jQj ¼ jP2j (i.e., vð0;y;QÞ ¼ vð0;y;P2Þ), we have

edgeð½vð0;y;QÞ;Q½ \Mðs2ÞÞ0j:

Hence, for 1a na p� 1, we have vð0;y; sn2 ðQÞÞ ¼ vð0;y;QÞ, i.e., jsn2 ðQÞj ¼ jP2j.
In particular, we have

jsn2 ðuÞj ¼ jP2j and jsn2 ðuÞ � P2j ¼ jP2j:
The equality (2) is satisfied.

For any Q A KnfP1; . . . ;Prg, the intersection

M \
\
w AM

½w;Q½

consists of one vertex only, and we denote it by xðQÞ. Since the half-line
½vð0;y;P2Þ; 0½ is contained in M, if

vð0;y; xðQÞÞ A vertð½vð0;y; pP2Þ; 0½Þ;
we have

vð0;y; xðQÞÞ ¼ vð0;y;QÞ A vertð½vð0;y; pP2Þ; 0½Þ;
hence jQja jpP2j < jP2j. In particular, by Lemma 5.3, for Q A KnfP1; . . . ;Prg
with xðQÞ ¼ xið jÞ for some distinct elements i, j, we have jQj < jP2j.

For each i, we put

Ai :¼ fQ A KnfP1; . . . ;Prg j xðQÞ A vertðMðsiÞÞg [ fPig:
We have sn2 ðuÞ A A2 since jsn2 ðuÞj ¼ jP2j ð0a na p� 1Þ, jPij < jP2j for i0 2, and
vð0;y;P2Þ A vertðMðs2ÞÞ.
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For i0 j, Q A Aj , and 1a na p� 1, we have eið jÞ A edgeð½xið jÞ;Q½Þ and
sni ðeið jÞÞ B edgeðMÞ by Lemma 5.1. Hence M \ ½xið jÞ; sni ðQÞ½ consists of xið jÞ
only. Hence we have xðsni ðQÞÞ ¼ xið jÞ A vertðMðiÞÞ. In particular, we have
sni ðQÞ A Ai.

Since u A A2 and x1ð2Þ ¼ v1, we have jsn1 ðuÞj ¼ 1 ð1a na p� 1Þ. The
equality (3) is satisfied.

Since P1 A A1 and x2ð1Þ ¼ vð0;y; hÞ, we have jsn2 ðP1Þj ¼ jhj ð1a na p� 1Þ.
The equality (1) is satisfied.

For an element

g ¼ sn1i1 � � � snmim A N ðmb2; 1anl a p� 1 ð1a lamÞ; il 0 ilþ1 ð1a lam� 1ÞÞ;
by the above computations, we have xðgðPiÞÞ ¼ xi1ði2Þ and xðgðuÞÞ ¼ xi1ði2Þ.
Hence we have jgðPiÞj < jP2j for i0 2, jgðP1Þj ¼ jgðuÞj, and jgðuÞj < jP2j. In
particular, we have jgðuÞ � P2j ¼ jP2j. Hence (4), (5), and (6) are satisfied for
this g.

For i0 2, j0 i, and 1a na p� 1, we have xðsnj ðPiÞÞ ¼ xjðiÞ. Hence we

have jsnj ðPiÞj < jP2j. For i0 2, we also have jsni ðPiÞj ¼ jPij < jP2j for 0a na
p� 1. Consequently, the inequality (4) is satisfied for any g A N.

For j0 2 and 1a na p� 1, we have xðsnj ðuÞÞ ¼ xjð2Þ. Hence we have
jsnj ðuÞj < jP2j. We also showed that jsn2 ðuÞ � P2j ¼ jP2j for 0a na p� 1. Con-
sequently, the equality (5) is satisfied for any g A N.

For i0 1; 2, since jP1j < jP2j, we have

vð0;y; xið1ÞÞ A vertð½vð0;y; xið2ÞÞ; 0½Þ:
Hence we have jsni ðP1Þja jsni ðuÞj. Since s1ðP1Þ ¼ P1 ¼ 0, we have jsn1 ðP1Þj <
jsn1 ðuÞj ð0a na p� 1Þ. By (1) and (2), we have jsn2 ðP1Þj ¼ jhj < jP2j ¼ jsn2 ðuÞj
ð1a na p� 1Þ. Consequently, the inequality (6) is satisfied for any g A N.

r

Figure. The subtree M � T generated by MðsiÞ ð1a ia rÞ
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� Edges of MðsiÞ are denoted by solid line segments.
� Edges of Mn

S
i MðsiÞ are denoted by dashed line segments.

� Half-lines are denoted by dots.
Recall that the function field of P1 (resp. X ) is denoted by KðxÞ (resp.

F ¼ Kðx; yÞ). We treat x as not only a function on X and P1 but also an
N-invariant function on W via the natural projection W ! W=NGP1. Similarly,
we treat y as not only a function on X but also a G-invariant function on W via
the natural projection W ! W=GGP1.

We also recall that for 1a ia r, the image of the fixed point Pi A W of si
under the natural projection W ! W=NGP1 is the branch point ai A P1.

For any g A N and i0 2, by Lemma 5.4 (4), we have jgðPiÞj < jP2j ¼ juj.
Hence we have gðPiÞ0 u. We have xðuÞ0 ai for i0 2. By Lemma 5.4 (5), we
have gðP2Þ0 u for any g A N. Hence we have xðuÞ0 a2.

There exists g A PGL2ðKÞ such that gða1Þ ¼ 0, gða2Þ ¼ 1, and gðxðuÞÞ ¼ y.
The inverse g�1 is written as

g�1 ¼ b c

d e

� �
A PGL2ðKÞ

for some b; c; d; e A K satisfying b� aid0 0 ð1a ia rÞ: For each i, we have

li

x� ai
¼ li

g�1ðgðxÞÞ � ai

¼ lid

b� aid
þ liðbe� cdÞðb� aidÞ�2

gðxÞ þ ðc� aieÞðb� aidÞ�1
:

By replacing K by its finite extension, there exists C A K satisfying

Cp � C ¼
Xr
i¼1

lid

b� aid
:

We have

ðy� CÞp � ðy� CÞ ¼
Xr
i¼1

liðbe� cdÞðb� aidÞ�2

gðxÞ þ ðc� aieÞðb� aidÞ�1
:

We also have

c� a1e

b� a1d
� c� a2e

b� a2d
¼ ða2 � a1Þðbe� cdÞ

ðb� a1dÞðb� a2dÞ
:

Therefore, the inequality jl1l2j < ja1 � a2j2 is satisfied if and only if

l1ðbe� cdÞ
ðb� a1dÞ2

l2ðbe� cdÞ
ðb� a2dÞ2

�����
����� < ða2 � a1Þðbe� cdÞ

ðb� a1dÞðb� a2dÞ

����
����
2

¼ c� a1e

b� a1d
� c� a2e

b� a2d

����
����
2
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is satisfied. In the rest of this section, by replacing x (resp. y) by gðxÞ (resp.
y� C), we may assume a1 ¼ 0, a2 ¼ 1, and xðuÞ ¼ y.

We put

a :¼
Y
g AN

P2 � gðuÞ
P2 � gðP1Þ

;

which converges to an element of K ; see [5, Section 8.1]. We have jaj ¼ 1 by
Lemma 5.4 (4), (5). Let z be a coordinate function on W � P1. We have

xðzÞ ¼ a
Y
g AN

z� gðP1Þ
z� gðuÞ

since the both hand sides are N-invariant functions on W (i.e., functions on
P1 GW=N) having same zeros and poles and being 1 at z ¼ P2; see [5, Section
8.1].

We put

Vi; e :¼ fz A W j jz� Pija eg
for i ¼ 1; 2 and e A jK�j. Since Pi A W is not a limit point of N, by replacing
K by its finite extension and taking e su‰ciently small, we may assume e <
jPi � gðuÞj for any g A N.

We denote the power series expansion of x on Vi; e by

xðzÞ ¼ a
Xy
n¼0

ci;nðz� PiÞn:

Since xðPiÞ ¼ ai, we have

xðzÞ � ai ¼ a
Xy
n¼1

ci;nðz� PiÞn:

Lemma 5.5. We have l1 ¼ ac1;p and l2 ¼ ð�P2
2h

�1Þpac2;p.

Proof. We put

y1ðzÞ :¼
1

z
;

y2ðzÞ :¼ � P2
2h

�1

z� P2
:

Then we have yiðsiðzÞÞ ¼ yiðzÞ þ 1 for i ¼ 1; 2. We put fi :¼ yi � y, which is an
si-invariant function on Vi; e. Since yi and y have poles of order 1 at Pi and we
have Pi ¼ siðPiÞ, the function fi is holomorphic at Pi. We have

y
p
i � yi ¼ yp � yþ f

p
i � fi ¼

li

x� ai
þ hi;ð5:1Þ
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where we put

hi :¼ f
p
i � fi þ

X
j0i

lj

x� aj
;

which is holomorphic at Pi.
For i ¼ 1, by multiplying the both hand sides of (5.1) by zpðx� a1Þ, we

have

ðx� a1Þ � zp�1ðx� a1Þ ¼ l1z
p þ zpðx� a1Þh1:

By comparing the degree 1 terms and the degree p terms with respect to z, we
have

ac1;1 ¼ 0;

ac1;p � ac1;1 ¼ l1:

Hence we have l1 ¼ ac1;p.
For i ¼ 2, by multiplying the both hand sides of (5.1) by ðz� P2Þpðx� a2Þ,

we have

ð�P2
2h

�1Þpðx� a2Þ � ð�P2
2h

�1Þðz� P2Þp�1ðx� a2Þ
¼ l2ðz� P2Þp þ ðz� P2Þpðx� a2Þh2:

By comparing the degree 1 terms and the degree p terms with respect to z� P2,
we have

ð�P2
2h

�1Þpac2;1 ¼ 0;

ð�P2
2h

�1Þpac2;p � ð�P2
2h

�1Þac2;1 ¼ l2:

Since P2 0 0, h A K�, and a0 0, we have c2;1 ¼ 0. Hence we have l2 ¼
ð�P2

2h
�1Þpac2;p. r

Lemma 5.6. We have jl1ja jhjp�1 � jP2j�p
and jl2ja jhj�p � jP2jp.

Proof. For each g A N, nb 1, and i ¼ 1; 2, we put

u
ðgÞ
i;0 :¼ Pi � gðP1Þ

Pi � gðuÞ ;

u
ðgÞ
i;n :¼

1þ u
ðgÞ
i;0

ðPi � gðuÞÞn :

Since e < jPi � gðuÞj for any g A N, we have

z� gðP1Þ
z� gðuÞ ¼

Xy
n¼0

u
ðgÞ
i;nðz� PiÞn
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on Vi; e. (For this calculation, see [10, Section 3].) Hence we have

xðzÞ ¼ a
Xy
n¼0

ci;nðz� PiÞn ¼ a
Y
g AN

z� gðP1Þ
z� gðuÞ ¼ a

Y
g AN

Xy
n¼0

u
ðgÞ
i;nðz� PiÞn:

We shall estimate jci;pj by calculating juðgÞi;n j.
For i ¼ 1, since s

j
1ðP1Þ ¼ P1, we have u

ðs j

1
Þ

1;0 ¼ 0 for 0a ja p� 1. Hence we
have

c1;p ¼
Y

g ANnfs j

1
g0a jap�1

u
ðgÞ
1;0

0
B@

1
CA Yp�1

j¼0

u
ðs j

1
Þ

1;1

 !
:

Recall that P1 ¼ 0. By Lemma 5.4 (6), we have juðgÞ1;0ja 1 for any g A N.

By Lemma 5.4 (1), (2), we have juðs
j

2
Þ

1;0 j ¼ jhj � jP2j�1 for 1a ja p� 1: Since

u
ðs j

1
Þ

1;0 ¼ 0 for 1a ja p� 1, by Lemma 5.4 (3), we have juðs
j

1
Þ

1;1 j ¼ js j1ðuÞj
�1 ¼ 1.

We denote the identity element of PGL2ðKÞ by id. Since u
ðidÞ
1;0 ¼ 0, we have

juðidÞ1;1 j ¼ jP2j�1. Consequently, we have

jc1;pja jhjp�1 � jP2j�p:

By Lemma 5.5, since jaj ¼ 1, we have

jl1j ¼ jaj � jc1;pja jhjp�1 � jP2j�p:

For i ¼ 2, by Lemma 5.4 (4), (5), we have juðgÞ2;0j ¼ 1 for any g A N. By this
equality and Lemma 5.4 (5), we have

juðgÞ2;nj ¼
j1þ u

ðgÞ
2;0j

jP2 � gðuÞjn a jP2j�n

for any g A N and nb 1. Therefore, we have

jc2;pja jP2j�p:

By Lemma 5.5, since jaj ¼ 1, we have

jl2j ¼ jP2j2p � jhj�p � jaj � jc2;pja jhj�p � jP2jp: r

By Lemma 5.2 and Lemma 5.6, we have

jl1l2ja jhj�1 < 1 ¼ ja1 � a2j2:

Recall that we have assumed a1 ¼ 0 and a2 ¼ 1.
Theorem 1.1 follows from this result and the result of Section 4.
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[ 5 ] L. Gerritzen and M. van der Put, Schottky groups and Mumford curves, Lecture notes in

mathematics 817, Springer, Berlin, 1980.

[ 6 ] W. Lütkebohmert, Rigid geometry of curves and their Jacobians, Ergebnisse der mathematik

und ihrer grenzgebiete 61, Springer, Cham, 2016.

[ 7 ] D. Mumford, An analytic construction of degenerating curves over complete local rings,

Compositio Math. 24 (1972), 129–174.

[ 8 ] J.-P. Serre, Trees, Corrected 2nd printing of the 1980 English translation, Springer mono-

graphs in mathematics, Springer, Berlin, 2003.

[ 9 ] G. van Steen, Galois coverings of the non-Archimedean projective line, Math. Z. 180 (1982),

217–224.

[10] G. van Steen, Non-Archimedean Schottky groups and hyperelliptic curves, Nederl. Akad.

Wetensch. Indag. Math. 45 (1983), 97–109.

Ryota Mikami

Department of Mathematics

Faculty of Science

Kyoto University

Kyoto 606-8502

Japan

E-mail: ryo-mkm@math.kyoto-u.ac.jp

263cyclic coverings of the projective line by mumford curves


