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ZETA FUNCTIONS FOR KÄHLER GRAPHS

Yaermaimaiti Tuerxunmaimaiti and Toshiaki Adachi

Abstract

To create a discrete analogue of magnetic fields on Riemannian manifolds is a

challenging problem. The notion of Kähler graphs introduced by the second author

is one of trials of this discretization. In this article we study the asymptotic behavior

of the weighted number of prime cycles with respect to their lengths by use of a zeta

function.

1. Introduction

A graph is a 1-dimensional CW-complex which consists of a set of vertices
and a set of edges. In the field of geometry, graphs are considered as discrete
models of Riemannian manifolds. Paths on this graph, which are chains of
edges, correspond to geodesics. When we study Riemannian manifolds we fre-
quently consider some geometric structures on them, complex structures, contact
structures and so on. The second author is hence interested in giving discrete
models of Riemannian manifolds which inherit geometric structures.

Some geometric structures induce closed 2-forms. On a Riemannian mani-
fold, a closed 2-form is said to be a magnetic field because it can be regarded as
a generalization of static magnetic fields on a Euclidean 3-space (see [12], for
example). Since geodesics are motions with constant velocities, we are interested
in motions of constant accelerations. This is a way of classical treatment of
magnetic fields. When a magnetic field is uniform, that is, its strength does
not depend on points and directions, a charged particle gets a uniform Lorentz
force and its motion is of constant acceleration. Typical examples of uniform
magnetic fields are constant multiples of the Kähler form on a Kähler manifold.
Such magnetic fields are said to be Kähler magnetic fields (see [1, 3]). The
second author intend to give a discrete model corresponding to Kähler manifolds
admitting Kähler magnetic fields.
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In his paper [2] he introduced the notion of Kähler graphs. A Kähler graph

G ¼ ðV ;E ðpÞ [ E ðaÞÞ is a compound graph which consists of a set V of vertices,
a set E ðpÞ of principal edges and a set E ðaÞ of auxiliary edges. Since graphs are
1-dimensional objects, we give magnetic fields on Kähler graphs by showing
trajectories for magnetic fields. We consider paths on the principal graph
ðV ;E ðpÞÞ of a Kähler graph as geodesics on this graph. In order to show a
uniform magnetic field of strength q=p with relatively prime positive integers
p, q, we give trajectories for this magnetic field. We take a p-step path on the
principal graph. This corresponds to a geodesic segment on a Riemannian
manifold. We choose a q-step path on the auxiliary graph whose origin is the
terminus of the above p-step path, and make a ðpþ qÞ-step ‘‘bicolored’’ path
on a Kähler graph. We consider chains of such paths as trajectories for the
magnetic field. This means that a p-step path is bended by Lorentz force and its
terminus reaches to the terminus of a ðpþ qÞ-bicolored path whose first p-step
coincides with the original one. Of course there are many q-step paths for each
p-step path. Since Kähler graphs do not have 2-dimensional objects, we can not
show the direction of Lorentz force, we therefore consider all such q-step paths
and treat them probabilistically. Thus, every ðpþ qÞ-step bicolored path, hence
every trajectory, has its probabilistic weight so that the sum of probabilities of
ðpþ qÞ-bicolored paths with a given first p-step path is equal to one.

In this paper we count probabilistic weights of prime cycles on a Kähler
graph. We define a zeta function for bicolored closed paths which has infor-
mation of lengths and weights of closed paths. Along the ordinary way (cf.
[10, 15]) we show the asymptotic behavior of probabilistic weights of prime
cycles with respect to their lengths. Our discretization of magnetic fields on
Riemannian manifolds is done from the viewpoint of classical treatment. As
our discretization is still only a trial, the reader should confer [13] for another
discretization.

The authors are grateful to the referee who gave them valuable advice.

2. Derived graphs of a Kähler graph

Let G ¼ ðV ;EÞ be a graph whose edges are not directed. We say an edge
e A E to be a loop if its both ends coincide. For two vertices if there exist two
and more edges joining them, we say these edges to be multiple edges. When
a graph does not have loops and multiple edges, it is called simple (for more
on graphs see [6], for example). We call a simple undirected graph G ¼ ðV ;EÞ
Kähler if the set E of edges is divided into two disjoint subsets E ðpÞ, E ðaÞ and
satisfies the following condition: At each vertex v A V , there are at least two
edges in E ð pÞ and two edges in E ðaÞ both of which are emanating from v. We
call ðV ;E ðpÞÞ and ðV ;E ðaÞÞ the principal graph and the auxiliary graph of a
Kähler graph, respectively. Given two vertices v;w A V we denote by v@p w if
they are adjacent to each other in the principal graph ðV ;E ðpÞÞ, and denote by
v@a w if they are adjacent to each other in the auxiliary graph ðV ;E ðaÞÞ. Here,
two vertices in a graph are said to be adjacent to each other if there exists an
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edge joining them. When a Kähler graph G ¼ ðV ;E ðpÞ [ E ðaÞÞ is locally finite,

for each vertex v A V , we denote by d
ðpÞ
G ðvÞ the cardinality of the set fw A V j

w@p vg and by d
ðaÞ
G ðvÞ the cardinality of the set fw A V jw@a vg. We call them

the principal degree and the auxiliary degree at v, respectively. The degree dGðvÞ
of G at v is hence d

ðpÞ
G ðvÞ þ d

ðaÞ
G ðvÞ. Typical examples of Kähler graphs are given

by taking complements of graphs. For an ordinary undirected simple graph
G ¼ ðV ;EÞ, its complement graph Gc ¼ ðV ;EcÞ is defined by the following
manner: Two distinct vertices are adjacent to each other in Gc if and only if
they are not adjacent to each other in G. If we set GK ¼ ðV ;E [ EcÞ, then it is
a Kähler graph when dGðvÞb 2 and dGcðvÞb 2 at each vertex v A V . We call
this a complement-filled Kähler graph. An ordinary graph is said to be regular
if its degree function is constant. We call a Kähler graph regular if both of its
principal and auxiliary graphs are regular, and call it complete if it is regular
and if its arbitrary two distinct vertices are joined by an edge. Since we have
many examples of regular ordinary graphs, we can construct many examples of
complete Kähler graphs by taking their complement-filled Kähler graphs. For
construction of regular Kähler graphs, see [16, 18].

For a pair ðp; qÞ of relatively prime positive integers, we say that a ðpþ qÞ-
step path g ¼ ðv0; v1; . . . ; vpþqÞ is a ðp; qÞ-primitive bicolored path if it satisfies the
following conditions:

i) viþ1 0 vi�1 for 1a ia pþ q� 1,
ii) vi�1 @p vi for 1a ia p,
iii) vi�1 @a vi for pþ 1a ia pþ q.

The first condition shows that this path does not have back-tracking. We put
oðgÞ ¼ v0 and tðgÞ ¼ vpþq and call them the origin and the terminus of g, respec-
tively. For this ðp; qÞ-primitive bicolored path g we set its probabilistic weight
oðgÞ by

oðgÞ ¼ d
ðaÞ
G ðvpÞ

Ypþq�1

j¼pþ1

fd ðaÞ
G ðvjÞ � 1g

( )�1

:

As d
ðaÞ
G ðvÞb 2 for every vertex v of G, we see oðgÞa 1=2 for every primitive

bicolored path g. We note that for each p-step path in the principal graph the
sum of probabilistic weights of ðp; qÞ-primitive bicolored paths whose first p-step
coincide with the given one is equal to 1. Also, we should note that the
probabilistic weight oðgÞ of a ðp; qÞ-primitive bicolored path g does not coincide
in general with the reciprocal of the number of ðp; qÞ-primitive bicolored paths
emanating from oðgÞ. We say an mðpþ qÞ-step path g ¼ ðv0; . . . ; vmðpþqÞÞ to be a
ðp; qÞ-bicolored path if all its subpaths gj ¼ ðvð j�1ÞðpþqÞ; . . . ; vjð pþqÞÞ, j ¼ 1; . . . ;m
are ðp; qÞ-primitive bicolored paths. For this bicolored path g, we define its
probabilistic weight oðgÞ by oðgÞ ¼

Qm
j¼1 oðgjÞ. It satisfies oðgÞa 1=2m.

We here make mention of geometric meaning of bicolored paths and their
probabilistic weights. If we consider principal graphs as discrete models of
Riemannian manifolds, we can regard paths as geodesics, which are trajectories
of motions of particles without influence of outer force. Under the influence of
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magnetic fields, motions of charged particles are bended. When the strength of
a magnetic field is q=p, every p-step path without back-tracking in a principal
graph is bended and reaches to the terminus of a ðpþ qÞ-primitive bicolored path
whose first p-step coincides with the original path in a principal graph. Since
we can not show the direction of the action of this magnetic field on the Kähler
graph, because graphs are 1-dimensional objects, we consider a bended path
reaches to one of terminuses of primitive bicolored paths and treat bended direc-
tion probabilistically. Formally, we can define ðp; qÞ-primitive bicolored paths
even if p, q are not relatively prime. But when p ¼ ap 0 and q ¼ aq 0 with some
positive integers a, p 0, q 0 with ab 2, we note that the set of terminuses of ðp; qÞ-
primitive bicolored paths is di¤erent from the set of aðp 0 þ q 0Þ-step ðp 0; q 0Þ-
primitive bicolored paths. As we need to define ‘‘curved paths’’ on a graph, the
authors consider that we should show curved property in minimum steps. We
hence restrict ourselves to pairs of relatively prime positive integers. Geometrical
point of view, it is more natural to suppose that the cardinality of the set of
vertices is su‰ciently large compared with pþ q and degrees of vertices. In this
sense, the case ðp; qÞ ¼ ð1; 1Þ is most important. Still, we do not make mention
of this point any more in this paper.

For a Kähler graph G ¼ ðV ;E ðpÞ [ E ðaÞÞ we have an directed graph Gp;q ¼
ðV ;Ep;qÞ with the set Ep;q of all ðp; qÞ-primitive bicolored paths on G. We call
this directed graph the ðp; qÞ-derived graph of G. This graph may have loops
and multiple edges, and each edge has its weight. We note that this graph is
not a circuit by the condition of Kähler graphs. Here, we say a graph to be a
circuit if it is homeomorphic to a circle S1 as a CW-complex. When G is a finite
Kähler graph, we define ðp; qÞ-adjacency operator Ap;q acting on the set CðVÞ of
all functions on V by

Ap;q f ðvÞ ¼
X
g

oðgÞ f ðtðgÞÞ;

where g runs over the set of all ðp; qÞ-primitive bicolored paths emanating from v.
Being di¤erent from adjacency operators of ordinary graphs, this ðp; qÞ-adjacency
operator is not symmetric in general. More precisely, this operator is a com-
position of an operator on the principal graph and an operator on the auxiliary
graph. We define operators Ap and Qq acting on CðVÞ by

Ap f ðvÞ ¼
X
r

f ðtðrÞÞ and Qq f ðvÞ ¼
X
t

oðtÞ f ðtðtÞÞ;

where r runs over the set of all p-step paths on the principal graph which are
emanating from v and do not have backtracking, t runs over the set of all q-step
paths on the auxiliary graph which are emanating from v and do not have
backtracking, and oðtÞ is the probabilistic weight of t by regarding it as a ð0; qÞ-
primitive bicolored path. Then we have Ap;q ¼ Ap � Qq (see [16, 17] for more on
this operator).
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We call a directed graph ðV ;EÞ irreducible (or strongly connected) if for an
arbitrary pair ðv;wÞ of distinct vertices there exists a directed path whose origin
is v and whose terminus is w. When Gp;q is irreducible, by Perron-Frobenius
Theorem, we see that there is a positive eigenvalue lp;qðGÞ of Ap;q satisfying the
following conditions:

i) Eigenvalues of Ap;q whose absolute values are lp;qðGÞ are of the form

e2
ffiffiffiffiffi
�1

p
pj=kp; qlp;qðGÞ ð j ¼ 0; 1; . . . ; kp;q � 1Þ with some positive integer kp;q;

ii) These eigenvalues e2
ffiffiffiffiffi
�1

p
pj=kp; qlp;qðGÞ are simple;

iii) The absolute values of other eigenvalues are less than lp;qðGÞ.
Since Ap;q is decomposed as Ap � Qq, the eigenvalue lp;qðGÞ is estimated as

min
v AV

d
ðpÞ
G ðvÞ min

v AV
d
ðpÞ
G ðvÞ � 1

� �p�1

a lp;qðGÞa max
v AV

d
ðpÞ
G ðvÞ max

v AV
d
ðpÞ
G ðvÞ � 1

� �p�1

:

When the principal graph of a Kähler graph G is regular of degree d
ð pÞ
G , the

eigenvalue lp;qðGÞ is hence given by lp;qðGÞ ¼ d
ðpÞ
G ðd ðpÞ

G � 1Þp�1. But when the
principal graph of a Kähler graph G is not regular, we have lp;qðGÞ0 lp;q 0 ðGÞ
for q0 q 0, in general.

Example 1. Let G1 be a regular Kähler graph of d
ðpÞ
G1

¼ d
ðaÞ
G1

¼ 2 given in
Fig. 1. Then its ð1; 1Þ-derived graph is irreducible, but its ð2; 1Þ-derived graph
has 4 connected components. The eigenvalues of ð1; 1Þ and ð2; 1Þ adjacency
operators are

EvðA1;1Þ ¼ f2; 0; 0; 0; 0; 0; 0;�2g; EvðA2;1Þ ¼ f2; 2; 2; 2; 0; 0; 0; 0g:

Example 2. Let G2 be a Kähler graph given in Fig. 2 whose principal graph
is regular of d

ðpÞ
G2

¼ 3 but whose auxiliary graph is not regular. The eigenvalues
of ð1; 1Þ, ð2; 1Þ and ð1; 2Þ adjacency operators are

EvðA1;1Þ ¼ 3; 0; 0; 0;� 2

3
;� 2

3
;� 2

3
;�1

� �
; EvðA2;1Þ ¼ 6; 2;

4

3
;
2

3
;
2

3
; 0; 0;� 4

3

� �
;

EvðA1;2Þ ¼ 3;
2þ

ffiffiffi
7

p

3
;
3þ

ffiffiffiffiffi
21

p

6
; 1;

1

6
;� 1

6
;� 2�

ffiffiffi
7

p

3
;� 3�

ffiffiffiffiffi
21

p

6

( )
:

Hence l1;1ðG2Þ ¼ l1;2ðG2Þ ¼ 3, l2;1ðG2Þ ¼ 6.

Figure 1. G1 Figure 2. G2 Figure 3. G3
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Example 3. Let G3 be a complement-filled Kähler graph given in Fig. 3.
Its principal graph is not regular. The ð1; 1Þ, ð1; 2Þ and ð2; 1Þ adjacency opera-
tors are expressed by matrices

A1;1 ¼

0 1
2 0 1 0 1

2

1 0 5
6

1
3

5
6 0

1
3

5
6 0 1 0 5

6

1 0 1
2 0 1

2 0
1
3

5
6 0 1 0 5

6

1 0 5
6

1
3

5
6 0

0
BBBBBBBBB@

1
CCCCCCCCCA
; A1;2 ¼

1
2

1
4 0 1 0 1

4

1 1
6

7
12

1
2

7
12

1
6

1
2

7
12

1
6 1 1

6
7
12

1 0 1
4

1
2

1
4 0

1
2

7
12

1
6 1 1

6
7
12

1 1
6

7
12

1
2

7
12

1
6

0
BBBBBBBBB@

1
CCCCCCCCCA
;

A2;1 ¼

2 0 1 0 1 0
2
3

13
6 0 3

2 0 3
2

0 3
2

2
3

13
6

2
3 0

0 1 0 2 0 1
3
2 0 2

3
2
3

13
6 0

2
3

2
3 0 3

2 0 13
6

0
BBBBBBBBB@

1
CCCCCCCCCA
;

hence their eigenvalues are

EvðA1;1Þ ¼
4þ

ffiffiffiffiffi
13

p

3
;
4�

ffiffiffiffiffi
13

p

3
; 0; 0;

�4þ
ffiffiffi
7

p

3
;
�4�

ffiffiffi
7

p

3

( )
;

EvðA1;2Þ ¼
3þ

ffiffiffi
3

p

2
;
3�

ffiffiffi
3

p

2
; 0; 0;

�4þ
ffiffiffiffiffi
10

p

6
;
�4�

ffiffiffiffiffi
10

p

6

( )
;

EvðA2;1Þ ¼
29þ

ffiffiffiffiffiffiffiffi
649

p

12
; 3;

3

2
;
11þ

ffiffiffiffiffiffiffiffiffi
�23

p

12
;
11�

ffiffiffiffiffiffiffiffiffi
�23

p

12
;
29�

ffiffiffiffiffiffiffiffi
649

p

12

( )
:

Thus we have

l1;1ðG3Þ ¼ ð4þ
ffiffiffiffiffi
13

p
Þ=3; l1;2ðG3Þ ¼ ð3þ

ffiffiffi
3

p
Þ=2; l2;1ðG3Þ ¼ ð29þ

ffiffiffiffiffiffiffiffi
649

p
Þ=12:

3. Zeta functions

Let G ¼ ðV ;E ðpÞ [ E ðaÞÞ be a Kähler graph. For an mðpþ qÞ step ðp; qÞ-
bicolored path g ¼ g1 � g2 � � � gm with ðp; qÞ-primitive bicolored paths g1; . . . ; gm,
we put oðgÞ ¼ oðg1Þ and tðgÞ ¼ tðgmÞ, and call them the origin and the terminus
of g, respectively. For this bicolored path g, we set lðgÞ ¼ mðpþ qÞ. We call g
closed if oðgÞ ¼ tðgÞ, and call it prime if in addition there are no divisor k of m
satisfying giþk ¼ gi for all i by considering the indices by modulo m. We denote

by Cðp;qÞ
m ðGÞ the set of all mðpþ qÞ-step ðp; qÞ-bicolored closed paths. We say

that two bicolored paths gð1Þ, gð2Þ are congruent to each other if both of them

belong to Cðp;qÞ
m ðGÞ with some m and if we denote them as gð1Þ ¼ g

ð1Þ
1 � gð1Þ2 � � � gð1Þm ,
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gð2Þ ¼ g
ð2Þ
1 � gð2Þ2 � � � gð2Þm A Cðp;qÞ

m ðGÞ there is i0 satisfying g
ð1Þ
iþi0

¼ g
ð2Þ
i by considering

the indices by modulo m. We shall call a congruence class of closed paths a
cycle. It is clear that lðgð1ÞÞ ¼ lðgð2ÞÞ if two ðp; qÞ-bicolored closed paths gð1Þ and
gð2Þ are congruent to each other. Moreover, as ðp; qÞ-bicolored paths start with
principal edges, we find oðgð1ÞÞ ¼ oðgð2ÞÞ in this case. We denote by Pðp;qÞ

m ðGÞ
the set of all congruence classes of mðpþ qÞ-step ðp; qÞ-bicolored prime closed

paths, and put Pðp;qÞðGÞ ¼
Sy

m¼1 Pð p;qÞ
m ðGÞ.

We define the ðp; qÞ-zeta function zGðu; p; qÞ of a finite Kähler graph G ¼
ðV ;E ðpÞ [ E ðaÞÞ by

zGðs; p; qÞ ¼
Y

p APð p; qÞðGÞ

f1� oðpÞe�slðpÞg�1:

We may say that this is a L-function of a directed graph Gp;q. But here, we do
not consider o as a character (cf. [8]).

Lemma. Suppose that the ðp; qÞ-derived graph Gp;q of a finite Kähler graph G
is irreducible. If ReðsÞ > log lp;qðGÞ=ðpþ qÞ, we have

zGðs; p; qÞ ¼ detðI � e�sðpþqÞAp;qÞ�1:

Proof. By direct computation we have

log zGðs; p; qÞ ¼ �
X

p APð p; qÞðGÞ

logf1� oðpÞe�slðpÞg ¼
X
p

Xy
n¼1

oðpÞn

n
e�nslðpÞ

¼
Xy
n¼1

1

n

Xy
k¼1

X
p:lðpÞ¼kðpþqÞ

oðpÞne�nksðpþqÞ

¼
Xy
m¼1

1

m

X
k:kjm

k
X

p:lðpÞ¼kðpþqÞ
oðpÞm=k

8<
:

9=
;e�msðpþqÞ:

On the other hand, if g A Cðp;qÞ
m ðGÞ is not prime, there is a divisor k of m and a

prime closed path s A C
ðp;qÞ
k ðGÞ satisfying that g is a m=k-multiple of s. In this

case, as ðp; qÞ-bicolored paths start with principal edges, we have oðgÞ ¼ oðsÞm=k

by definition. Since there are k distinct closed ðp; qÞ-bicolored paths which are
congruent to s, we have

traceðAm
p;qÞ ¼

X
g ACð p; qÞ

m ðGÞ

oðgÞ ¼
X
k:kjm

k
X

p:lðpÞ¼kðpþqÞ
oðpÞm=k

8<
:

9=
;;

hence we obtain

log zGðs; p; qÞ ¼
Xy
m¼1

1

m
traceðAm

p;qÞe�msðpþqÞ:

This leads us to the conclusion. r
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We here study zeta functions for some Kähler graphs.

Example 4. By the above Lemma, if we put u ¼ up;q :¼ e�sðpþqÞ, we find
that the zeta functions for Kähler graphs given in §2 are expressed as follows:

zG1
ðu; 1; 1Þ ¼ 1

ð1� 2uÞð1þ 2uÞ ; zG1
ðu; 1; 2Þ ¼ 1

ð1� 2uÞð1þ 2uÞð1� 2u2Þ2
;

zG2
ðu; 1; 1Þ ¼ 9

ð3� 8uþ u2Þð3þ 8uþ u2Þ ;

zG2
ðu; 2; 1Þ ¼ 12

ð6þ 8uþ u2Þð2� 6uþ 3u2Þ ;

zG2
ðu; 1; 2Þ ¼ 72

ð2� 3uÞð1� 3uÞð6� 11uþ 6u2Þð6� 29uþ 8u2Þ :

Proposition 1. Let G ¼ ðV ;EÞ be a connected regular finite ordinary graph
whose degree dG satisfies 2a dG a nG � 2, where nG denotes the cardinality of the
set V of vertices. If we denote the eigenvalues of the adjacency operator AG of G
by l1 ¼ dG; l2; . . . ; lnG , then the ð1; 1Þ-zeta function of its complement filled Kähler
graph GK is given as

zGðu; 1; 1Þ ¼
1

ð1� dGuÞ
QnG

i¼2 1þ liðli þ 1Þu
nG � dG � 1

� � ðu ¼ e�2sÞ:

Proof. The adjacency operator AGc of the complement graph Gc of G
is given as AGc ¼ M� I �AG, where the operator M is defined by MgðvÞ ¼P

w AV gðwÞ for g A CðVÞ. We take an eigenfunction fi corresponding to li.
Since G is connected, we see f1 is a constant function and find that Mf1 ¼ nG f1
and Mfi ¼ 0 for ib 2. Thus, we obtain

A1;1 fi ¼
1

nG � dG � 1
AGAGc fi ¼

dG fi; when i ¼ 1;

�liðli þ 1Þ
nG � dG � 1

fi; when ib 2;

8<
:

and get the conclusion. r

Since we can express higher steps adjacency and probabilistic transition
operators Ap, Qq of regular Kähler graphs by using the adjacency operators AðpÞ,
AðaÞ of its principal and auxiliary graphs ([17]), we can express the ðp; qÞ-zeta
functions of complement filled Kähler graphs of regular ordinary graphs.

We here give a property of zeta functions of general Kähler graphs. In view
of results for smooth Anosov flows on compact manifolds ([5]) and Lemma, we
define ðp; qÞ-entropy of a finite Kähler graph G by

hp;qðGÞ ¼ ðlog lp;qðGÞÞ=ðpþ qÞ:
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When the principal graph of G is regular, we see

hp;qðGÞ ¼ flog d
ðpÞ
G þ ðp� 1Þ logðd ðpÞ

G � 1Þg=ðpþ qÞ:

As a consequence of Lemma we have the following result.

Proposition 2. Let G ¼ ðV ;E ðpÞ [ E ðaÞÞ be a finite Kähler graph. If the
ðp; qÞ-derived graph Gp;q of G is irreducible, then the followings hold:

(1) zGðs; p; qÞ converges absolutely and is holomorphic on ReðsÞ > hp;qðGÞ;
(2) It is extended meromorphically to the whole plane;
(3) It has a simple pole at s ¼ hp;qðGÞ þ

ffiffiffiffiffiffiffi
�1

p
b, where b1 2pj=kp;q ð j ¼ 0;

1; . . . ; kp;q � 1Þ modulo 2p=ðpþ qÞ, and except such poles it is holomorphic
in the neighborhood of ReðsÞb hp;qðGÞ.

4. Counting prime cycles

We are now in the position to study the asymptotic behavior of the number
of prime cycles in a Kähler graph G ¼ ðV ;E ðpÞ [ E ðaÞÞ by an ordinary way (cf.
[5, 11]). For a positive number x we set

p
ðp;qÞ
G ðxÞ ¼

X
p APð p; qÞðGÞ

lðpÞax

oðpÞ;

which shows the ‘‘weighted’’ counting of the number of ðp; qÞ-bicolored prime
cycles. Since we consider behaviors of trajectories probabilistically, this counting
corresponds to the counting of prime cycles on an ordinary graph. For functions
f ; g : ½0;yÞ ! R, we denote by f @ g ðx ! yÞ if they satisfy limx!y f ðxÞ=gðxÞ
¼ 1.

Theorem. If the ðp; qÞ-derived graph Gp;q of a finite Kähler graph G ¼
ðV ;E ðpÞ [ E ðaÞÞ is irreducible, then we have

p
ðp;qÞ
G ðxÞ@ ehp; qðGÞx=ðhp;qðGÞxÞ ðx ! yÞ:

Proof. We denote hp;qðGÞ by hp;q for the sake of simplicity. For a positive
y, we set

jðyÞ ¼ hp;q
X

p APð p; qÞðGÞ;nb1
nlðpÞay=hp; q

oðpÞnlðpÞ:

We then have jð0Þ ¼ 0, and as we see

log zGðs; p; qÞ ¼
X

p APð p; qÞðGÞ

Xy
n¼1

oðpÞn

n
e�nslðpÞ
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in the proof of Lemma, we have

� d

du
log zGðhp;qu; p; qÞ ¼ hp;q

X
p

Xy
n¼1

oðpÞnlðpÞe�nhp; qulðpÞ ¼
ðy
0

e�uy djðyÞ:

Hence the function u 7!
Ðy
0 e�uy djðyÞ converges absolutely on ReðuÞ > 1 by

Proposition 2. We see that jðyÞ@ ey ðy ! yÞ by Proposition 2 and by
Wiener-Ikehara’s Tauberian theorem (see Appendix A in [11] or §15.2 in [7]).

We set p̂pGðyÞ ¼ p
ðp;qÞ
G ðy=hp;qÞ. Since lengths of ðp; qÞ-primitive bicolored

paths are pþ q, we trivially have lðpÞb pþ q for every p A Pðp;qÞðGÞ. Thus we
have

p̂pGðyÞ ¼
X

p:lðpÞay=hp; q

oðpÞa
X

p:lðpÞay=hp; q

oðpÞ lðpÞ
pþ q

a
1

pþ q

X
p;nb1

nlðpÞay=hp; q

oðpÞnlðpÞ ¼ jðyÞ
hp;qðpþ qÞ ;

and find that there is a positive C satisfying p̂pGðyÞaCey because jðyÞ@ ey

ðy ! yÞ.
We now estimate p̂pGðyÞ. We have

yp̂pGðyÞ ¼ y
X

p:lðpÞay=hp; q

oðpÞb hp;q
X

p:lðpÞay=hp; q

oðpÞlðpÞ

¼ jðyÞ � hp;q
X
nb2;p

nlðpÞay=hp; q

oðpÞnlðpÞ:

Here, as we have oðpÞa 1=2, we obtainX
nb2;p

nlðpÞay=hp; q

oðpÞnlðpÞa
X
nb2;p

nlðpÞay=hp; q

oðpÞlðpÞ

¼
X

p:lðpÞay=ð2hp; qÞ
oðpÞ

X
n:2anay=ðhp; qlðpÞÞ

lðpÞa y

hp;q
p̂pG

y

2

� �
:

We hence find

yp̂pGðyÞ
ey

b
jðyÞ
ey

� y

ey
p̂pG

y

2

� �
b

jðyÞ
ey

� Cy

ey=2
:ð4:1Þ

On the other hand, we have
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p̂pGðyÞ ¼ p̂pGðy� 2 log yÞ þ
X

p:ðy�2 log yÞ=hp; qalðpÞay=hp; q

oðpÞ

a p̂pGðy� 2 log yÞ þ hp;q

y� 2 log y

X
p:ðy�2 log yÞ=hp; qalðpÞay=hp; q

oðpÞlðpÞ

a p̂pGðy� 2 log yÞ þ 1

y� 2 log y
jðyÞ;

hence obtain

yp̂pGðyÞ
ey

a
y

y� 2 log y

jðyÞ
ey

þ y

ey
p̂pGðy� 2 log yÞð4:2Þ

a
y

y� 2 log y

jðyÞ
ey

þ C

y
:

By (4.1) and (4.2) we see p̂pGðyÞ@ ey=y, and get the conclusion. r

Corollary 1. When the principal graph of a Kähler graph G is regular,
the asymptotic behavior of p

ð p;qÞ
G does not depend on q provided that Gp;q is

irreducible.

5. Concluding remarks

In this section we shall compare our result with the result on Kähler mag-
netic flows for a Kähler manifold of negative curvature. Let M be a Kähler
manifold of negative curvature with complex structure J. A constant multiple
Bk ¼ kBJ of its Kähler form BJ is called a Kähgler magnetic field. We say
a smooth curve g parameterized by its arclength to be a trajectory for Bk if it
satisfies ‘ _gg _gg ¼ kJ _gg. Since trajectories for the trivial magnetic field B0 are geo-
desics, we may say that trajectories are generalizations of geodesics. Just like
geodesics induce the geodesic flow jt on the unit tangent bundle UM, trajectories
for a Kähler magnetic field Bk induce a magnetic flow Bkjt on UM. When M is
compact and Bkjt is hyperbolic, we have a zeta function as a dynamical system
which is defined by zBkjt

ðsÞ ¼
Q

pf1� elðpÞg�1, where p runs over the set of all
congruence classes of prime periodic orbits and lðpÞ denotes the period of a prime
periodic orbit contained in p. If we denote by hkðMÞ the topological entropy of
Bkjt, this zeta function satisfies the following (see [9]):

(1) It converges absolutely and is holomorphic on ReðsÞ > hkðMÞ;
(2) It is extended meromorphically to a open neighborhood containing

ReðsÞb hkðMÞ;
(3) It has a simple pole at s ¼ hkðMÞ.

For a positive number x, we denote by pBkjtðxÞ the number of congruence classes
of prime closed orbits whose periods are not longer than x. As a direct conse-
quence of these properties we find that the asymptotic behavior of the function
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pBkjt is given as

pBkjtðxÞ@ ehkðMÞx=ðhkðMÞxÞ ðx ! yÞ:
We here compare closed paths on a Kähler graph G ¼ ðV ;E ðpÞ [ E ðaÞÞ whose

principal graph is regular and periodic orbits of Kähler magnetic flows for a
compact quotient M ¼ GnCHnðcÞ of a complex hyperbolic space CHnðcÞ of
constant holomorphic sectional curvature c. When jkj <

ffiffiffiffiffi
jcj

p
, we see that the

Kähler magnetic flow Bkjt for M is hyperbolic and that its topological entropy

hkðMÞ is given as hkðMÞ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcj � k2

p
(see [1]). Thus we have

hkðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk2=jcjÞ

q
h0ðMÞ

with the topological entropy h0ðMÞ of the geodesic flow jt for M. On the other
hand, if the regular principal graph ðV ;E ðpÞÞ of a Kähler graph G is connected
and is not a bipartite, then the asymptotic behavior of the number p

ð1;0Þ
G ðxÞ of

prime cycles whose lengths are not longer than x is eh1; 0ðGÞx=ðh1;0ðGÞxÞ with
h1;0ðGÞ ¼ logðd ðpÞ

G � 1Þ. Thus we find

hp;qðGÞ ¼ 1

1þ ðq=pÞ h1;0ðGÞ þ 1

pþ q
logðd ðpÞ

G =ðd ðpÞ
G � 1ÞÞ:

We next consider the relationship between the distance dðP;QÞ of two points
P;Q A M and the length lengthðgÞ of the trajectory-segment g joining them.
According to [3] we have

2ffiffiffiffiffi
jcj

p sinh
1

2

ffiffiffiffiffi
jcj

p
dðP;QÞ

� �
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jcj � k2
p sinh

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcj � k2

q
lengthðgÞ

� �
:

Quite roughly, we can consider that dðP;QÞJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk2=jcjÞ

p
lengthðgÞ by taking

expansions of both sides of the above equality. On the other hand, a ðp; qÞ-
primitive bicolored path is of step ðpþ qÞ. It is natural to consider the distance
between its origin and terminus is p, because it moves on the principal graph
p-steps. Thus the relation between the length lðsÞ of ðp; qÞ-bicolored path s

and the moving-distance dðsÞ is given by dðsÞ ¼ 1

1þ ðq=pÞ lðsÞ. The authors

consider that q=p corresponds to k2=jcj by these relations on entropies and on
distances and lengths.
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