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ON COMPLEX DEFORMATIONS OF KAHLER-RICCI SOLITONS
NEFTON PALI

Abstract

We obtain a formal obstruction, i.e. a necessary condition for the existence of
polarized complex deformations of Kéhler-Riccei solitons. This obstruction is expressed
in terms of the harmonic part of the variation of the complex structure.

1. The obstruction result

Despite the remarkable work of Podesta-Spiro, [9], not much is known on
the existence of complex deformations of Kéhler-Ricci solitons. In this paper,
we provide an effective result on this topic. Namely, given any polarized family
of complex deformations over a Kéhler-Ricci soliton (polarized by the symplectic
form of the initial Kdhler-Ricci soliton), we can effectively establish a necessary
condition for this family to exist.

Let (X,J,9,w) be a Fano manifold with w = Ric;(Q), where Q > 0 is the
unique volume form such that [, Q =1. (We denote by Ric;(Q) the Chern-
Ricci form associated to the volume form Q). We introduce the Q-divergence
operator acting on vector fields & as

. d(&EQ)

Qg

div© & .= a

where — denotes the natural contraction operation. (We invite the readers to see
. . . . . . dVv,

the identity (9) below for a link with the usual notion d1vz; , where f :=log E’

See also the remark 2 at the end of the paper for a mathematical explanation why
the index Q should be used instead of f in the related operators).

It is well known (see [3]), that the Lie algebra of J-holomorphic vector fields
HO(X,Ty") identifies with the space of complex valued functions

A, = —div® HO(X, Ty') € CF(X,C),,
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where Cg (X, C), is the space of smooth complex valued functions with vanishing
integral with respect to Q. We denote by }‘/ (T x.s) the space of Ty-valued
(0,1)-forms which are harmonic with respect to the Hodge-Witten Laplacian
determined by the volume form Q.

Assume now (X,J,g,w) is a compact Kédhler-Ricci soliton and we consider

. dv, . .
the functions f :=log Qg F:=f—[,fQ. The solution of the variational

stability problem in [6], theorem 1 in section 1, shows that the vanishing

harmonic cone
J A|2FQ = 0},
X

is relevant for the deformation theory of compact Kaéhler-Ricci solitons. In the
Dancer-Wang Kéhler-Ricci soliton case 7 O (Tx 1), # {0}, thanks to a result in
[4].

For any 4 e 7, Q(TX 7) we define the R-linear functional

%?S(TX,J)O = {A € %?QI(TXJ)

(I)AA — R,

9./

Dy (u) := Jx[z Re udV, [, A7), — IV, [TV A, it X ; A),|Q

where (¢ +ib) x; A :=aAd + bJA for any a,b € R. With these notations we can
state our obstruction result.

THEOREM 1. Let (X,J,g,®) be a compact Kihler-Ricci soliton, let
(J1, ), (s be a smooth family of Kihler-Ricci solitons with Jo =J and let

A Z{q?ogl(](;x J) be the harmonic part of the variation Jo. Then A e J{;?&(TXJ)O
an 4 =

The fact that 4 € J/ (T x,J)o is a statement in [6], Theorem 1, section 1.
We will show also that for any A e Q(TX/ s) hold the identity

J A|2FQ = —J [2AV2f, A%, — IV VA, T4,
X X

whose right-hand side shows strong similarity with the integral @ ,(u).

2. Properties of the first variation of Perelman’s map H

We need to remind a few basic facts proved in [6]. We first remind some of
the notations in [6]. We start with some algebraic operations on tensors over a
smooth Riemannian manifold (X,g).

In this paper, as in [6], we identify bilinear forms sections on Ty with
morphisms Ty — T, via the natural contraction operation. We notice in par-
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ticular that the metric g determines an invertible element g : Ty — T given by
g&:=g(& e), for any &€ Ty. Such element can be composed with an endo-
morphism section 4 of Ty. This yields an element g4 : Ty — Ty, which in its
turn can be identified with a bilinear form section of Ty. In the same way the
element g : Ty — Ty can be composed with T'y-valued tensors. Indeed, given
any 0 e (T*)®” over X, we define the element (9* (TH)®" ' ® Ty as

9(51,---741771)1 [ (ST p e

for all &;,...,¢,-1 € Ty. We will use sometimes the notation 9; =¢7'0, to
denote this operation.

On the other hand we notice that g~' identifies in a natural way an ele-
ment g~ € C*(X,S5?Ty). In this paper the symbol = denotes also the natural
contraction operation on the first two entires of a tensor 0e (73)%”, p > 2.
Then the usual trace operation Tr, 0 with respect to g satisfies the identity
Tr, 0 = g~'20. This is useful when we will derive the trace operator.

For any endomorphism A4 of the tangent bundle and for any bilinear form B
over it we define the contraction operation A—B:= Alt(BA), where Alt is the
alternating operator.

We define now some fundamental linear and non-linear differential oper-
ators. Let Q>0 be a smooth volume form over an oriented compact and
connected Riemannian manifold (X,g). We equip the set of smooth Rieman-
nian metrics .# over X with the scalar product

(1) (4,0) L Cy 03,0

for all u,ve L>(X,S3T;). Let P, be the formal adjoint of some operator P
with respect to the metric g. We observe that the operator Pje := e/ P;‘(e‘f o),

. dv,
with f :=log Q
(1). We define the real Welghted Lapla01an operator A = V2V, We notice
in particular the identity div® Vyu = —A%y, for all functlons u

Over a Fano manifold (X, J ,g,w), with o = Ric;(Q), [, Q=1. we define
the hnear operator Bf? *; acting on smooth complex Valued functlons u as B U=
div® (JVyu). This is a first order differential operator. Indeed

, 1s the formal adjoint of P with respect to the scalar product

B ju=Tr(JV u) — df - JVyu
=9(Vgu, JVyf),

since J is g-anti-symmetric. We define the weighted complex Laplacian operator
AQ = AQ lB§2 , actlng on smooth complex valued functions. We remind the
1dent1ty A gT = Ker(Aq ;—2I), (see [3]). We denote by

A} = [Ker(A, - 2D)]** € CF (X, C),,
the Lj-orthogonal space to Aggf ; inside CZ (X, C),.
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We remind now that the Q-Bakry-Emery-Ricci tensor of the metric g is
defined by the formula

Ric,(Q) := Ric(g) + V,d log %

A Riemannian metric g is called a Q-shrinking Ricci soliton if g = Ric,(Q).
We define the following fundamental objects

h = hy g = Ric,(Q) — g,
2H =2Hyq = —A]f +Try h+2f.

dv,

(We remind f :=log H) We define also the integral normalized function

H:=H— [, HQ. We denote by 7] the space of smooth positive volume forms
with unit integral over X. For any V e Ty, we define
Vs = V/Q.
We notice now that over a polarized Fano manifold (X, w), w € 27c¢;(X), the

space of w-compatible complex structures %, embeds naturally inside .# x 7] via
the Chern-Ricci form. The image of this embedding is

Fop 1= {(gvg) € My X N |60 = RICJ(Q)’J = _w_lg}7

with A, == —w- ¢, C 4. The fact that the space #, may be singular in
general implies that also the space &, may be singular. We denote by TCy, (, o)
the tangent cone of %, at an arbitrary point (g,Q) € ,. This is by defini-
tion the union of all tangent vectors of ¥, at the point (¢,Q). We notice that,
(see for example [5], lemma 7 section 5), the tangent cone TC 4, , of .#, at an
arbitrary point g € .4, satisfies the inclusion

(2) TC.,.9 € Dy g,
with
D; o :={ve C*(X,SxT3)|v=—J"vJ,0r, ,v; =0},

It has been shown in [6], lemma 17 section 16, that for any (g,Q) e ¥, the
inclusion holds

(3) TC%,(g,Q) - T;Qa
with
T) o= {(v,V) e Dy g x Ty; | 2dd; V= —d(V 20, 7))}

(We will use the definition 2d§ := i(0; — d;) in this paper). We remind (see [6],
identity 1.2 in section 1) that a point (g, Q) € %, is a Kéhler-Ricci soliton if and
only if H;o =0. Furthermore,

2H, 0 =—(A), —2I)F e Afj‘f N CE (X, R),,
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for all (¢,Q) € %,. The infinitesimal properties of the map (¢,Q) € %, — H, o
are explained in the next sub-section.

2.1. Triple splitting of the space TJ

In [6], section 1, we 1ntroduce a pseudo Riemannian metric G over .# x ]
which is positive deﬁned over q o for any (¢,Q) e 9, with J := —a)‘lg By
abuse of notations we will denote by G, o the scalar product over Aq ';, induced
by the isomorphism

niAG @ Ao (Tr) = Tig
= — 1
) = (0B 7+ 4). 5 Re[(A2, 200102

Explicitly (see [6] sub-section 18.2),
1 - _
Gualo.) =5 | (A%, =2 i+ (A2, 200 gi0
1
+ EJX Im[(A2, = 2D)g] Im[(A?, — 2D)y/]Q.
For any (g,Q) € ,, we introduce in [6], sub-section 18.2, the vector spaces
El o ={ue Ay (AL, — 2Du= (A, — 2Du},
OgJQ (E;Q)LG ﬂA?ﬁ

and we denote by [g,Q)], := Symp’(X,w) - (9,Q) C %, the orbit of the point
(9,Q) under the action of the identity component of the group of smooth
symplectomorphisms Symp’(X,w) of X. The map 75 restricts to a G-isometry

n: OJ = Ty.q,.(

The positivity of the metric G, o over A% J , combined with an elliptic argument
(see [6], sub-section 18.2) implies the decomposmon

QL _
A.q,J - gﬁQ C'DGEQ,Q’
Over a compact Kéhler-Ricci soliton (X,J,g,w), we introduce the operator
P9, = (A3, — 2D)(A]}, —2I).

This is a non-negative self-adjoint real elliptic operator with respect to the
L2-hermitian product. The restrlctlon of the differential of the map (g,Q) €
Y — H, o over the space A( '; > identifies, via the isomorphism 7, with the map

DyoH : Af}j - A"; N CE(X,R),

1
Y ZP;{, Re .
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This map restricts to an isomorphism
DyoH :El o — A N CE(X,R),,
(see [6], lemma 24, section 19, for the technical details), and
O;Q =Ker D, oH N Af]))’f.
Moreover, Ker P;?J NCE(X,R)y={Reu|ue A;?J} =: Re A;?J and
P2,CE(X,R)y = A N CE (X, R),.
In general for any (g,Q) € .%, Kaihler-Ricci soliton the identity holds
Ker Dy oHNT) o= Ty, .00 @6 #, o (Tx.s),

with J:= —w~!g. We finally notice that applying the finiteness theorem
(see for example [2], proposition 6.6, page 26), to the real elliptic operator
P2, : CH(X,R)y — CF(X,R),, we deduce the Lg-orthogonal decomposition

(4) CF (X, R)y = [AS) N CE (X, R)] @aRe A,
Remark 1. We denote by A;?R = KerR(AgQ —2I) c CZ(X,R),, and by

Agg = [Kerg(AS — 2D C CF (X, R),,

its L3-orthogonal inside C&(X,R),. It is easy to see that the map
2 ADR NCEXR)y — Tigq) (5.9):
U (2a)5TXJVgu, (iju)Q),
is an isomorphism. Thus, there exists an isomorphism map
T: OéQ — l'A?_"’Rl

. . Q
O iu:0—iuel; .

3. Variation formulas for the (Q-divergence operators

For any endomorphism section 4 of the tangent bundle we denote by 4 gT the
transposed endomorphism section with respect to the metric g. For any u,v e
C*(X,S?T;) we define in [6], section 10, the real valued 1-form

My (u,v) (&) = 2V 0(ex, u;‘ek, &)+ Vyu(e, v;‘ek, k),

for all £eTy. (Here (ex), is a g-orthonormal local frame of the tangent
bundle). We show now the following important lemma.

LemMMA 1. The first variation of the operator valued map

(9:Q) = V2 : C(X,8°Tx) — C* (X, Ty),
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in arbitrary directions (v, V) is given by the formula
(5) 2[(Dyg,aVy) (v, V)]u = My(v,u) — 2u - (V;‘QU;‘ +V,V3).

Proof. We first differentiate the identity defining the covariant derivative
of a symmetric 2-tensor u in the direction v. We infer

Vgu(év ’77:“) = 7“(Vg(fa ’7)7:“) - u(”v Vg(é,ﬂ)),

where V, := (D,V.)(v). Using the variation formula for the Levi-Civita connec-
tion in [1], we obtain

2Vyu(E,n. 1) = —u(Vy.cogn + V0, = (Vo) &, 1)
— u(y, V. eyt + Vo0& = (Vyvgu0) /).
We transform the term
u((Vgvyn), & w) = g(u; (Vgvin), & 1)
= g((Vgvym), & ugn)
= g(&, Vguy (ugu, )
= ng(“;%’% &)
We deduce the variation formula
2Vu(E,n, 1) = —u(Vyg,co5n + Vs &, 1) + Voo, &)
—u(n, Vg co,pu 4V 0,8) + Vyo(ugn, & p).
Thus, using the fact that u is symmetric we infer
2(g7 "V, u)u = 2u(V vy, 1) + Vyu(ugu, ex, ex)
— u(Vy, e 1+ Vg gvsex, ex) + Vov(er, uger, 1),

where (er), is a g-orthonormal basis of Ty , which diagonalizes u at the point p.
We observe however that the right hand-side of the previous equality is inde-
pendent of the choice of the g-orthonormal basis (ex), thanks to the intrinsic
definition of trace. Simplifying, we deduce

(6) 2(9 "V = 2u(Vyvy, 1) + Vao(ugp, ex, ex) — Vao(p, uge, ex).
We can compute now the first variation of the expression

V,u= —g ' Vu+ V,fu,

. dv, . .
with f = f; o :=log HJ We observe the identity
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[(Dg.aVir) (v, V)t = (039~ )Vt — g ™'~ Vu
+[(Dg.aVefe o) (v, V)] u.

Let (ex), be a g-orthonormal local frame of Ty such that V,ei(p) = 0, for some
arbitrary point p. Using (6) and the variation formulas

d ,
(7) E (Vy,ft) - Vgr.ft - g.t*vgrﬁa

® fi=g T g -0,
we obtain the equalities at the point p,
2[(Dyg,aVe*) (v, V)u(p) = 2V u(er, vyer, 1) — 2u(V, vy, 1)
— Vyu(ugu, ex, ex) + Vyu(u, uger, ex)
+u(Vy(Trg v —2V43) =20,V f, 1)
=2V u(ex, U;‘ek,,u) —2u(V, v, 1)
— Vyo(ugp, ek, ex) + Vyo(p, uger, ex)
+u(V,(Try v~ 2V3), 1)
— My (0,u) () — 2u(V20, + Y,V 10),
thanks to the identity at the point p,
Voo(uyp, ex, ex) = u(Vy Try v, p1).
In order to see this last fact, we observe the equalities
u(Vg Trg v, 1) = g(uyVy Trg v, 1)
= 9(Vy Try v,u,u)
— (d Tr, v)(up)
— (4 0)-v(ep )
= Vyu(u,u, ex, ex),

at the point p. We obtain the required variation formula. O

In a similar way we compute the first variation formula for the operator
diV;2 acting on 1-forms o
9) divé2 wi=g 'V —a-V,f.

We notice the elementary identity divj2 o = div® a;. With these notations hold
the following lemma.
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LEMMA 2. The first variation of the operator valued map
(9,Q) — div)’ : C*(X,Ty) — C*(X,R),
in arbitrary directions (v, V') is given by the formula
[(Dyg,q divy) (v, V)]o = —<Vgoc‘*, v, g+ 200 (V;QU; +V,V5).

*
9’9

We include the proof for readers convenience.

Proof. Let o be a 1-form and let & # be two smooth vector fields.

ferentiating the identity
E(o-n) =Vye-n+o-Vyen,
with respect to the variable g we obtain
ZV!,oc(f, n)=—o- ng(@ n)
= —o- (Vgevy -+ Vg v, - &) + Vyo(oy, & m).
We notice indeed the equalities
o [(Vgov) n), &l =g(a), (V0] 1), - &)

= g(vg,«;l’; n,&)

= Vyu(ay,&,m).
We deduce

2(97 ' Vy0) = 2 - Vovg +oy,. Tryv
=a-(2V,u, +V, Tr, v).

g

209

Dif-

We can compute now the first variation of the definition (9). We observe the

identities
2[(Dy.q divi)(v, V)]a = 2039~ )V, + 20~V
— 20 [(DyaVafor) (v, V)
= —2V,o(ex, v ex) + o (2V v, + V, Try v)

— o (Vg(Trg v —2V43) =20, -V, f).

We infer the required variation formula.

O

We can compute now a first variation formula for the double divergence

operator ding V,2. We observe first the trivial identity
[Dy,a(divy Vor) (v, V)]v = [(Dg.q divy) (v, V)]V, 20
+div{[(Dg.aVe") (v, V)lo},
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and we explicit the last term;
2 divy{[(Dy, V") (v, V)]o}
= e1.[2Vyv(ex, v ex, er) + Vyv(e, v e, ex) — 20(V 20, + Ve, er)]
—2Vyo(ek, v ek, Vo f) = Voo (Vo f v e, ex) +20(V v, + Vg, Vo f).
Developing further we obtain
2 divy{[(Dy, V") (v, )]0}
=29(Vy,e VeV - vgeks€1) +29(Vg e, 0y - Vg oV ek, €1)
V5 o o(vier,er) + (Vo) - Voovser, e
=2V qu(en Vv, + V) — 2U(Vg,e,(V*9v;’ + V3), e
= 29(Vg,e,05 - vgei, Vo f ) = Vo (Vo vger, ex) + 20(V vy + Vo, Ve f)
= 29(17 ek, Vg Vg e gel) + 2g(Vg7g,vgek, Vg,ekv;‘el)
— Ag v(vgek; ex) + g(Vg e v ek, Vg o0 k)
+2V 20 - (V20 + Va) = 29(Vy,e(V 20, + V4), v er)
29000 Ve, - Vol ).
If we set
Vv, (En) = Vg (1. 9),
then the last expression writes as
2divy{[(Dy.aVi) (v, V)]o}
= 29051, Ve, V905 (er,e6)) + 29(Vi; (€1, ), Vo (er, ex)
g(A;)v “vgex,ex) + [V vq|q
+2V;ﬂv . (V;‘“vg + V5) —2{Vy(V *Qv +73), v;‘>g
—2g(v ex, V/g;;(vgfa ex))-

We infer the formula

. . 1
div[(D Vi) (v V)loy = = A
—(V,° V0 v;,vg>g+<V v, Vg, Dy

+ Vou- (Vyu, + Vg Vg)
= Vy(Vy2o, + VaV3), 0,0
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We obtain in conclusion the variation identity
s e * 1
(10)  [Dyadiv: Vio)(o. VYo = - 7 ARle];

— (V305,035 + Vgus, Vet D,
+2V, 20 (V20 +VyVg)

—<V4(2V, v, + Vg V3), 0,0

4. The second variation of Perelman’s map H

LemmA 3. The Hessian form VgDH(g,Q) of Perelman’s map (g,Q) €
M x V1 — Hy o, with respect to the pseudo-Riemannian structure G at the point
(9,Q) € M x 1 in arbitrary directions (v, V) is given by the expression

1 1 .
2V6DH(g,Q)(v, V10, V) = — 5<% 0.0y, — AT [4 ol + (Vgﬂ

1 w2 1
+§|v|g+(VQ) _EGg’Q(U, Viv, V)

— 2|Vl + Y, Vg2
+<Vy(2V,20, +3V,V35), 0,0,
+ <V 2y, Vitu, + 2V, V),
+ V4 (div® Viour + (v, hga),).
Proof. We consider a smooth curve (g,,Q),.x C A4 x Vi with (go,Q0) =
(9,Q) and with arbitrary speed (g, Qo) = (v, V). We show in [6], section 6 that

the G-covariant derivative Vg of its speed, in the speed direction, is given by the
expressions

(0,0,) = VG(gtaQI)(gt7Qf)7
0r =G, + 4,(Q; = 4;),
®f = QI +Z ng‘tz - 2(Qt )2 - Gg,,Q,(gpQI;gth)]Ql-

Then

2

CA o d
VGDH(gth)(gth;gtaQt) = EH(QHQI) - Dg,.Q,H(ehG)t)-

Using the first variation formula (1.5), section 1 in [6] for the map H we obtain
the equalities
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ZVGDH(QH Ql)(gta Qt; g.za Qt)

d
T di

— (A —2D)O; +div (Vo 0, + dOF) + <0:, 1,

(AL = 20Q) — divy (Vg g, + d€)) — <y ey

Using the identity (10) we obtain
2VGDH (g1, 1) (g, s 61, )
d
2(A% — Q -0
( gi )<d[ )
+ 20V 14,5y, — 2V G; + VeV, Q0
+divy Ve (0, — §,)
4A;?'|g,\§, + V0 V007460 — Vadis Vadi

- 2V;,ngt : (V*Q’gz + ngQ*) + <Vg,(2V;rgtgz + VJIQ*) g, >g,

+ Trg |:<0t - Egt)ht -9 (ht - gtht ):| :
Rearranging the previous expression, we obtain

2V6DH(g:, ) (g, 3 1, )

d

_ Q, * Q,

_2(Ag[ - )<dQ ®) 4AJ, |gt|J,
+ <Vg1er*v gl>g, - 2|ijﬂlgt + Vg/Qz*‘j,
+divyy V™ (0, — g,)
+ AV Vg G567 g, — Vadi - Vad) D,
=+ 2<V91(V;tntgt* =+ VQIQ;()7g';F>g,
+ Trg {(@ E%)hr -9 (ht — 9 ht) .

Using the expression of 0,, we develop the term
divgy Vol (0, — §,) = div® V2 [Q7g; — (47)°]

For this purpose we remind a few elementary divergence type identities. For any
smooth, function u, vector field ¢ and endomorphism section A of Ty, the
following identities hold
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V2 (ud) = —A-Vau+uV 24,
div®(ué) = (Vyu, £y, + u div? &,
Vied? = —Try(Vyd - A) + AV2 A.

Furthermore if 4 is g-symmetric then also the formulas hold

(11) div(4 - &) = =V 4,80y + <4, V),
(12) div? Try(Vyd - A) = —(V2V,A4, 4>, + (VyA,V,4),.

For readers convenience we show (I11) and (12) in the appendix. Using the
previous formulas we obtain the equalities

div® Vo [Q7g; — ()7 = div®[—4;V, Q' + @V, ;]
+ div[Tr,, (V7 - ¢7) — 9: Vo2 g]]
(Vg dQ} 4,5y, + 20V 47 Ve D,
+Q div? vV, gr
— V3V 87,9004 + Vo Vadi g,
Ve gr 12 = <47 Ve Vel di s,
= Vg, (Vo g7 + Ve 2,47y,
VG Vgl + 2V, Q0
+ Q) div? vV, g;
VeV G5. 050+ VoG VoGt g,

Plunging this identity in the last expression of the Hessian of the map H we
obtain

2VGDH(gt7Qt)(gtagt;gl7gt)
d N * * ” 2
2 -0 (G0 -0 )+ ;Ao
+ <VgtdQ*agt>g, - 2|V;zﬂtg[ =+ Vgrgl*ﬁ,

+ <Vgt( ;zQ’gI + VQIQ*) g:>g,
+ (Vg g, ,V*“’g, +2V,, 07, + Q) div Vg gr

+ Q:<gt7ht>g, <$q, gt LV;?’gf+Vg,Q:gt7g't>g”

thanks to the variation formula (1.4), section 1 in [6] for the map h. Rearrang-
ing the previous expression, we infer
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ZVGDH(gta Qt)(gt7 Qt; gt? Qt)

d . 1
_ Q, * * Q1. 12
- 2(Ag, - I) <dth - ®I > + ZA% |gt|g[
— 2|V + V, Q5
+ <Vgr (2VZ’tht* + 3VFJIQI*)’g'I*>!}t
+ Vg7 Vol g+ 2V R0,
Q* di Q ¥, - : 1 Q - -
+ f( v vy, 9, + <4 t>g,) 7§<‘Zg[ gt7gf>gt'
Then the conclusion follows from the expression of ©,. O

In [6], section 7, we show that the space G-orthogonal to the tangent to the
orbit of a point (g,Q) € .# x 1, under the action of the identity component of
the diffeomorphism group, is

Fg‘Q = {(D, V) € T.//lx“t/{ |V;QU; + Vg VS = 0}
COROLLARY 1. The Hessian form VgDH(g,Q) of Perelman’s map (g,Q) €

M X V1 — Hy o, with respect to the pseudo-Riemannian structure G at the point
(9,Q) € M x ¥\ in arbitrary directions (v, V) e€F, q, is given by the expression

2VeDH (g,Q)(v, V0, V)

1
=-3 UL +2V,V,2),0),
1

1 1
—5(AF 2D |5l + (V)* = 5 Gyalv, Viv, V)

—+ V5<U,/’lg’g>g.

5. Application of the weighted Bochner identity

We observe that the formal adjoint of the 07, , operator with respect to the
hermitian product

(13) <'7'>w,Q = JX <'a'>wQa
is the operator
G5 = I (e o)
With this notation, we define the anti-holomorphic Q-Hodge-Witten Laplacian
operator acting on Ty-valued g-forms as

TR D 1 e =
AT = g IO+ S O,

Tx.; Tx,s
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with the usual convention oo -0 = 0, and the functorial convention on the scalar
product in the subsection 7.1 of the appendix in [5]. We will omit the symbol
Q in the Hodge-Witten Laplacian operator, when Q = Cst dV,. We define the
vector space

<%?§21(Tx,1) := Ker A%;J NCHX, Ty _, ® Tx.J).

It has been shown in [6], lemma 14, section 14, that for any smooth J-anti-linear
endomorphism section 4 of the tangent bundle hold the fundamental Bochner
type formula

(14) L4 =2A7] A+[Ric*(g), ] + Vyf TV, 4.
We observe that for bi-degree reasons we have the equalities
072 A=V2A
=V, A+ AV, f
= 5;‘;_1A + AV, f.

Using the last equality we obtain the expression
01y, 075 A = 01, 0 A+ Vg J AV, f + A0 V,f.
We observe indeed
ZETX.J(AV\‘/f) =Vy(AVyf) +IVy1.(AV,f)

=VydVyf + AV, [+ Ny g AV [+ JAV 1V, f
=2V AV f + A(V2f = IV 1.V, f)
=2V, AV, [ + 2405, V,f.

Still for bi-degree reasons, the identities hold

P 1. -
56 "QérXJA :*VTS;‘”@TXJA

Tx,; 2
= V207, ,A
= V;éT“A + Vyfor, ,A.
Thus
1,03 1. = _
EGT“&TX_JA = EVTX,géT“A +V,f0r, ,4
1o, 3 0,1 0,1 ~
=507, 010, A+ Vo f TV g A =V AV ]

Combining the identities obtained so far we deduce the expression
(15) AT A= AL AV AV A+ A0, VoS
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Plugging this in the fundamental identity (14) we obtain the equalities
£24 =2A7: 7 A+ [Ric"(g), A] — 2403, V,f
— Vo /(Y =Yy 4
=2A7 A+ [Ric™(g), 4] — 2409, V,f
— (JVyaf)JIV, A.
Thus, if 4 € ?GOQI(T x.s), then the stability identity holds
(16) (LEA, Ay = =2V [, A%+ IV [V A, JAD,.

6. Variations of w-compatible complex structures

Let (X,J,g,®) be a Fano manifold such that w = Ric;(Q), with Q € ¥ and
let (J;), C 7%, be a smooth curve such that Jo =J. We differentiate the def-
inition ¢, := —wJ,. We obtain ¢ =g, 'g,=—JJ;, and § :=g,'§, = —JJ.
On the other hand, deriving twice the condition J2 = —I, we obtain
—(J,jl)}”o =J? and thus (g,*)};o = (g‘,*)z. The latter gives

d
570, 1 vk < g\ 2 . %
(9, )J, =9 — (gz)z :%gt‘

Let N, be the Nijenhuis tensor of an arbitrary almost complex structure J.
Then the general formula

d _ . . .
ZENJ’ = aTX_JI (J[J[) +J[J1N‘]t — (JtJ[)_‘N‘[’7

(see the proof of lemma 7, section 5 in [5]), implies d7, ,¢; =0, in our case.
Thus time deriving the identity

d_ ko __
EaTX,J,gt = 07

we obtain the property
A d . . 1,0 - x
(17) aTX.J, %gt* = gt*_'vg,’,J,gt :
Indeed we prove the variation formula
d - -k . % 1,0 .x
(EaTX,J,>gI = _gt_'Vg,ﬂ,J[gr'

For this purpose we expand the derivative of ETX_JI acting on a smooth endo-
morphism section 4 of Ty. We obtain
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2| (G )] o =2 AN A

— Al j Vo, A(E, 1) + TV g A(TE, )]

= Alt[vg,A(éa ’7) + jtvg;A(Jtéa ’7)}
+ AL Vg, A n) + TV, AU, n)].
Using the variation formula

V‘]rA(f”/]) = V‘]r(£7A’7) - Avgl(£7’7)7
and the fact that the bilinear form V,, is symmetric we deduce the formula

d -
2|:(E6TX.J,>A:| (é’ 77)
= Alt[qu(évAn) + jIV‘L],A(Jtéan)]

+ Alt[Jth,(Jté, An) — JrAVy, (Ji&,m) + JrVy,A(jtf7 ’7)]

We remind now (see the proof of lemma 1 in [7]), that time deriving the Kéhler
condition V,J, =0, we obtain the identity

Vélr (7/7 é) + Jtvyz (Jﬂ’], é:) + Jtvy,jt(é7 77) = 07

Using this in the previous formula with 4 =g, = —J,J; we obtain

2| (G )it | (e

= Alt[~J,V,J, (g1, &) — §: TV, Ji(n, &)
+ ALV, g, (Ji&n) + TV, ) (Ji&,m)]

= Alt[Vy,4; (g;1,8) + Vg4 (Ji&n) + TiVy,6; (Ji&, )]
— 4,07, ,9:(Em)

= AV 67 (97, &) — V)04 (47, m)]
= =2[g;V, % 471(E ),

and thus the required formula. The latter can also be obtained deriving the
Maurer-Cartan equation, which writes in the Kéhler case (see the appendix) as

= 1,0
Oty 1 + 1V ity = 0,
with g, the Caley transform of J; with respect to J.

We remind now (see [6], identity (14.7), section 14), that for any smooth
family (g,,Q,), C %,, hold the identity

Q,—Jp s _ Q- T
Tx.q 9t (ATX gt gt )‘//
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with J; := —w~'g,. The latter rewrites as
(18) (T)TX,J,V;rQrg'z = (aTX /,Vl)z gt)

LemMa 4. For any smooth family (g,,Q;), C %,, with (g,Q) = (go, ) and
(do» ) qu q» We have the symmetry property
T

o d e
(19) aTX.J[Vthr $| , gt - ( OTy. J; ng dl\ . gt) + [ag"x ,Vq gngO]
1= = g

Proof. Let A be a smooth g-symmetric endomorphism section of Ty. Dif-
ferentiating in the variables (g,Q) the trivial identity V %4 = g‘lV;‘Q(gA), we
obtain )

[(Dy.Vi) (v, V)4 = —0;Vi2 A + g~ [(Dyg.aVi) (v, V)](g4)
+ V2 (v, 4).
We observe now the identities

* * 1
MQ(U7U) = 2g Try(vyvg ’ Ug) +_d|U|§

=20V 20, — 29V, (v ) += d\ |
Then using the variation formula (5) we infer the fundamental identity
* * 1 2 * * * *
(20) 2[(D!I,QV0.)(U7 V)]Ug = EVG|U|g - ZUg : (Vggvg + V.‘i VQ)
The variation formula for the d7, , -operator acting on vector fields in lemma 1

of [7] writes as

d
20

Using this, the variation formula (20) and the assumption on the initial speed of
the curve (g,,Q,), we infer

(BTX.J,é) = fﬁvyxgz* [ TX Ji é gt] [BTX_./,f7g.[*]'

d A *Qp -k *Q) ok -k
2@ (OTX.J,V.‘]:‘QrgI) =V,290V49o
- [ag‘XJV;Qgg7gg] + [éTX JV*Qg-gag.S]
1’ .2 A * ~*
JrEaT)(.JVy|g()|g + 2aTX nggd s

Using this equality, the elementary identity

d .
EAT; [AT>gz}
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for arbitrary endomorphism section 4 of Ty and time deriving the identity
(18), we obtain the required conclusion. (Notice that the endomorphism section

O%XJV;‘QQO is g-symmetric thanks to the assumption V 2g; = —V QO) O

COROLLARY 2. Let (J;), C 4, be a smooth curve such that Jy € A, Q(TX 7)
then
Ve (JonVy 5o) = [V (JomV, 5o, -

Proof. The identity (17) implies

A * d - % Q, Jd * 1,0 -«
aTX.ngﬂ E‘z 0 gt ATX g dt|, 0 gt V ! (goﬁvq jg())

Plunging this in the equality (19) and using the fact that the Laplacian term is
g-symmetric (see [6], identity (14.7), section 14), we infer the required conclusion.
Ul

LemMa 5. Let (X,J,g,w) be a Fano manifold such that o = Ric;(Q), with
Qe and let (J;), C 4, be a smooth curve such that Jy=J and V*QJO =0.
Then there exists unique (Y, A1) € A? " (—B,}fgogl(T x.7) such that

a9 VEAR ) oV i) = 3r Ve + 4.
=0

Proof. The identity (17) implies

0| i g7 + V(A ) (Jomv, o) | = 0.
=0

Moreover the endomorphism

a9V AR vy )
=0

Q,—J\~lygsaj_gl0;j
= i 90 ARV ),
is g-symmetric thanks to corollary 2, lemma 13 in [6] and identity (14.7) in
section 14 of [6]. By corollary 3 in section 14 of [6], we infer the required
conclusion. Notice that (i}, A1) is uniquely determined by Jo and Jj. O

7. Proof of theorem 1

For any smooth family (91, ), C Sy, with (go, Qo) = (g,2), we consider the
smooth curve ¢+ y,:= H, 0Q;/Qe CH(X,R),. Then (g,,%), = (J;,w), is a
family of Kéihler-Ricci solitons if and only 1f v, =0. We assume this identity
and we notice that 0 =7, = D, oH (g, Qo). We write

go = —JJo = 0r, ,V, 10+ 24,
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with (0,4) € A? JLG)J@(’)'A(TX, 7). The properties of the first variation of H

imply 6 e O According to the isomorphism 7 in remark 1, we pick the
unique u € Aq RL such that 0 —iu e Ag J and we consider the one parameter sub-
group of w- symplectomorphlsms (W), = idy, given by 2%, = —(0w 'du) o ¥,.

Then (¥;J;,w), is still a family of Kahler Ricci solitons and

d

1,
Wi, = Ji J
d ‘/‘ 0 o 2 (U ldu

= JETX_JV%J(Q — iu) +2JA4
= 2JA.

Thus we can assume, without loss of generality in the statement of the theorem 1,
that the family of Kéhler-Ricci solitons (J;, @), satisfies Jy € Jf (T Y.J)- Usmg
this assumption, we explicit the second variation of the map (9,Q) — Hy q.
The fact that g; = 24, implies Qo = 0, thanks to the equations defining the space
TgJ o- Thus

d? . . -
2W| ﬂqu; = 2VGDH(g, Q)(gOa Oa g()a 0) + 2DQ¢QE(67 ‘:‘)?
=0
with

c_d

é{} o $|1 0 gt ’

. _d Lo

=0 = EL , |g()| g Q(g070 9070)

Using the fact that (g, Q) is a soliton and the first and second variation formulas
for Perelman’s functions H (see [8], the identity (1.5) in section 1 of [6] and
corollary 1), and # (see the end of the proof of lemma 7 in section 7 of [6]), we
infer

d? . . -
Zﬁ‘ ﬂg,.ﬂt = VGD(zH - W)(gv Q)(QO) 07 90, 0) + 2Dg‘QH(é; -5)

= _2<°Z¢JQA’A>§/ - (Ag? - 2I)|A|§ - ZJX |A‘§Q
2J [A|2FQ +2(AS — D)E, — div® Vo¢;
LAk : g <
= 2J JA|2FQ — 2( L4, 4, + AL| Al
X

d d
2(A8 —1)— *0 .
+2(4, )dfl,:oQ — div® v, dt|, Ogt
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Using lemma 5 and the weighted complex Bochner formula (13.9) in section 13 of
[6], we obtain

* d .k A*9,Q A T 1 AQ AT
(21) Vi 9= TR Vo = 3Ves (AR, ~ 2w,
t=0

and thus
d 1 1
_ A4vQ o “ X Q - pQ
div Vg d . g, 2Ag Ry + ng‘JIl/,,
Ry :=Re[(A}, — 21y,
I :=Im[(A}, — 2D)y].

(Here we use the notation z = Re z+ i Im z, for any z € C). Differentiating the
*Qy

tangential identity 2dde,* = —d[V,"g;~w], we obtain,

d . d o .
2dd— QF =-d|= (V, g .
s 0 =—dlg (ol
Using the variation formula (20), and the identity (21) we obtain
d 1 d
a V%5 = 2V (g2 + Vel g%
d[|,:0( g gf) 4 g|g()|g+ g dt‘,:(] 9,
1 -
= Vg|A|§ "‘EVQ,J(A;?J - 2Dy,
and thus
d 1 2 2
— Q'=——R,— |4 Al Q.
We obtain in conclusion the variation formula
d? 2 Q
2% . Hyo =2 ; \A\qFQ — 74,4,

— (A9 —2D)| 4] - 2JX 420

1, .0 1
=5 (A =Ry + 5B Iy

= =2V [V A, JAY, + 4V2f, A%, + 2J A|2FQ
X

1
— (AP —2D)| 47 - 2L 420 —5 P Re,

thanks to identity (16) and a computation in the proof of lemma 25 in section 19
of [6]. We denote respectively by 7; and 7, the projection to the first and second
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factor of the decomposition (4). Then the identity

dz

0 = TEZj}O Hg,,Q,,

= 7[2 —_—
dr?|_,

is equivalent to the identity
@) | VA, = 20V 4,045, — (A = 212 =0,

Q

g.7s With w1, up, real valued. We observe now the

for any u=u; +iup e A
equalities

J (A —20)| 420 = —J B us|4);92
X X
= | wB?,|4’Q
JX 2 g,J| |g

= | wva e
=2 L{ w{JV,fVyA4, 45,Q.
We conclude that the identity (22) is equivalent to
2 JX Vo f,A4%,Q = JX IV [TV A, il %y 4,9,

which shows the required conclusion.

8. Appendix

8.1. Proof of the identities (11) and (12)
By definition of the Q-divergence operator and using the symmetry of 4 we
infer

div® (4 &) = g(Vy o (4 &) ex) = g(A -V, f)
g(Vg,BkA : é + A - Vg,eké>ek) - g(f)A : V!}f)
g(‘fa Vg,ekA c ek — A- ng) + g(vg,ekéa Aek)7

and thus the identity (11). We expand now the term

div® Tr, (VA4 - A) = div?(V, ., A - Aey)
= 9(Vg,e,(Vg,e, A - Aex),e1) — g(Vyg o A - Aeg, Vo f)
=9g(Vg,eVged-Aei + Vg A-VyeoA-ex, e
—g(Aex,Vg,o A -V, f).
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Expanding further we infer
div® Tr,(VyA - A) = g(Aer,Vy.o Vg o A-e) + (Vg oA - e, Vg o A-e)
—g(Aex, Vg e A-Vyf)
= g(deg, Vg o Vod(er,ex) = VyA(Vyf )
+ (VgAY A,
and thus the identity (12).
8.2. The Maurer-Cartan equation in the Kihler case

We observe that for any vector spaces V' and E, we can define a contraction
operation

APV Q V)X (AV*®E)— AT 'V QE
(e, ) = a1 B,
by the expression
(@)@ = Y aB&) &)
|T|=deg «
This map restricts to
=0 8O (Ty") x 674 — g1t

We notice indeed the identity a—f =C; A (o), where a=o; ®(F, with
(l)p Cc C™(U, T )1((}) a local frame. (We use from now on the Einstein conven-
tion for sums). Obviously, the contraction operation 1, generalizes the one used
in the previous sections.

Lemma 6 (Expression of the exterior Lie product). Let (X,J,w) be a Kihler
manifold and let o, € C® (X,A(J)"TA*, ®c T)I(OJ) Then hold the identity

Proof. 1In the case |o| = |f] =0, the identity follows from an elementary
computation in geodesic holomorphic coordinates. In order to show the general
case, let ({), C O(U, T )1((}) be a local frame. We consider the local expressions

a=og ®Ck, f=P,®. Then
[, B] = [ox, B1] @ (Cx A7)
= (“Kﬁﬁ(}}gﬂL - ﬂLﬁa(}}gOCK) ® (CxrE)).
The identity ET}‘(} { = 0 implies 0;{; =0. We infer

AW w o x
0 1,00 = 0 1,0 UK /\C
Ty, Ty, £
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and a similar local expression for f. Thus using the identity

a1y =g Ao ),

with y arbitrary, we deduce
“ﬁa%(lgﬁ = (“K_‘a;}gﬁL) ® (Cx A LT,
prdgioe= B0z 00k) ® (Cr k)
= (=)(B 010 ax) @ (G A L),
and thus the required conclusion. O

We deduce that over a Kéhler manifold the Maurer-Cartan equation
= 1

6T)1(,v306 + 5 [0,0] =0,
writes as
(23) 5T1,00+0_\5$1.00= 0.

We show below that we can rewrite the Maurer-Cartan equation in equivalent
real terms as

(24) Oyt + pVy g =0,
or in more explicit terms
I+ )7V = (I + ) J 2V
In order to show (24) we expand, for any u,ve Ty, the term
(Gﬁﬁ‘;’;,gﬁ)(u, v) = 6;}29(914, v) + 6%_30(% 0v)
= V;;?H(Gu, v) — V;:SQ(U, Ou)
+ V7 90(u, 00) =V, 50(0v, u).
Expanding further we obtain
2(0—@%{.0}0)(% v) = V40(0u,v) — iV,0(J0u, v)
— V,0(v, 0u) + iV,0(Jv, Ou)
+ V,0(u, 0v) — iV,0(Ju, Ov)
— V,0(0v,u) +iV,0(J0v, u).

Using the fact that ¢ takes values in T )1((} we obtain
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2(%6;}39)(14, v) = 2V,0(0u,v) — V,0(v, Ou) + iV,60(Jv, Ou)

— 2V, 0(0v,u) + V,0(u, Ov) — iV ,0(Ju, Ov).

Replacing on the right hand side of this equality the identity 20 = u — iJu and
adding the conjugate of both sides we infer

S(Hﬁa‘}’)l{_gﬁ)(u, v) + 8((9_\86;)1(:3(9)(1,{, v)

= 4V u(uu,v) — 4JV u(J pu, v)
=2V (v, ) + 2JV g0, Juur)
+ 2V u(Jv, Juut) + 2JV gu(Jv, uu)
+ 2V pu(u, po) — 2JV yu(u, Jpur)
— 2V u(Ju, Juv) — 2JV gu(Ju, pv)
— 4V u(po, u) + 4JVyu(Juv, u).

Using the anti J-linearity of V, su we deduce
8(0ﬁ6(;jlo 0)(74, U) + 8(9“8;310 9)(7/[, U)
X,J X, J

= 4Vyu(pu, v) — 4V u(J g, v)
— A4V u(uv, u) + 4V gu(J po, u)
= 8V, Ju( e, v) — 8V Y pw, )
= 8(uV, 1) (u, v).
The latter combined with
ET)n(,.gO(u, v) + ST;(}O(u, v) = 07, ,u(u,v),
and (23) implies the required identity (24).
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