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Abstract

For a nonzero integer d, a celebrated Siegel Theorem says that the number NðdÞ of
integral solutions of Mordell equation y2 þ x3 ¼ d is finite. We find a lower bound for

NðdÞ, showing that the number of solutions of Mordell equation increases dramati-

cally. We also prove that for any positive integer n, there is an integer square multiply

represented by Mordell equations, i.e., k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2n þ x3
n .

1. Introduction

Given an integer d, if the Diophantine equation d ¼ f ðx1; x2; . . . ; xnÞ has
integral (resp. rational) solutions then d is said to have integral (resp. rational)
representation of the form f . We are interested on the integral representation of
the form y2 þ x3. Equivalently, we study the integral solutions of the so-called
Mordell equation y2 þ x3 ¼ d. A well known result of Siegel [5, Theorem
12.11.2] says that the number of solutions of Mordell equation is finite.

Today, computer packages find all the integral solutions of equations
y2 þ x3 ¼ d provided d lies within reasonable bounds. An important, simple,
natural question still remains unsolved is: What is the best theoretical bound (in
terms of d ) for the size of the largest integer x solving y2 þ x3 ¼ d in integers?

The truth is that the best known bound is far from what seems likely to be
true. What seems likely to be true is the subject of the following conjecture
made by Hall [7].

Conjecture 1 (Hall). Given e > 0, there is a constant c ¼ cðeÞ such that, for
any nonzero d A Z, any integral solution of y2 þ x3 ¼ d satisfies

logjxj < ð2þ eÞ logjdj þ c:

Bennett [1] found an upper bound using cubic forms.
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Proposition 2. If d is a nonzero integer, then the equation

y2 þ x3 ¼ d

has at most 10h3ð�108dÞ solutions in integers x and y, where h3ð�108dÞ is the
class number of binary cubic forms of discriminant d.

Define

NðdÞ ¼afðx; yÞ A Z� Z : y2 þ x3 ¼ dg:
Silverman [12, Exercise 9.3] shows that NðdÞ can be arbitrarily large. More
precisely, using height function and by a demonstration not so easy, he shows

that there is an absolute constant c > 0 such that NðdÞ > cðlogjdjÞ1=3. In the
next main result, using binary forms, we find a lower bound for NðdÞ showing
that the number of solutions of Mordell equation increases dramatically.

Theorem 3. Consider y2 þ x3 ¼ d. Then there is an absolute constant c > 0
such that

NðdÞ > cðlogjdjÞ11=13

for infinitely many integers d.

To prove this result we need to show that some integer squares are multiply
represented by Mordell equations.

Theorem 4. Given any positive integer n, there is an integer k such that k2

has multiple integral representations in Mordell equations.

k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2n þ x3
n :

The following corollary immediately follows.

Corollary 5. For any positive integer n, the Diophantine equations

k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2n þ x3
n

have infinitely many integral solutions.

Corollary 5 can also be proved by elliptic curve method.

2. Preliminaries

The so-called super-Fermat equation is the equation axp þ byq þ gzr ¼ 0 for
given nonzero integers a, b, g and integral exponents p, q and r, all greater than
or equal to 2. The two cases z2 G y2 ¼ xr with gcdðy; zÞ ¼ 1, called Dihedral
cases, are studied in details in [5, Section 14.2]. A particular case is the
following.
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Proposition 6. The parametric solutions of the equation k2 ¼ y2 þ x3 are:

ðk; y; xÞ ¼ ðsðs2 þ 3t2Þ; tðt2 þ 3s2Þ; ðs� tÞðsþ tÞÞ; s2 t mod 2; or

ðk; y; xÞ ¼ ðGð2s3 þ t3Þ; 2s3 � t3; 2tsÞ; where 2jt:

In each case, s and t are coprime.

The problem of representing integral or rational numbers by sums of squares
is completely understood [4, Section 5.4.4]. However, the same problem for cubes
is complicated and far from being understood [4, Proposition 6.4.29] (originally
proved in [8, Theorem 235]).

Proposition 7. Up to permutation of the variables, the equation

u3 þ v3 ¼ w3 þ z3ð1Þ
in Q has the trivial parametrization v ¼ �u, z ¼ �w, and the parametrization

u ¼ �dðða� 3bÞða2 þ 3b2Þ þ 1Þ;

v ¼ dððaþ 3bÞða2 þ 3b2Þ þ 1Þ;

w ¼ dðða2 þ 3b2Þ2 þ ðaþ 3bÞÞ;

z ¼ �dðða2 þ 3b2Þ2 þ ða� 3bÞÞ;

with a, b, and d in Q and d0 0.

Remark 1. Clearly, taking (1) in Z makes the parameters a, b, and d to be
also in Z, and the equation (1) has infinitely many integral solutions.

An unsystematic question arisen from the Fermat’s last theorem is about
equal sums of like powers [9, 10] which study the equation

Xm

i¼1

uk
i ¼

Xn

j¼1

vkj ; m; k > 0:

A special case is to solve the Diophantine equations ur
1 þ vr1 ¼ ur

2 þ vr2, rb 3,
the common form of the equation (1). More general question in this circum-
stance is that if the equations

ur
1 þ vr1 ¼ ur

2 þ vr2 ¼ � � � ¼ ur
n þ vrn

is soluble for given r, n bothb 2. The case r ¼ 2 is straightforward. For r ¼ 3
the answer is also a‰rmative [8, Theorem 412].

Theorem 8. Whatever n, there are numbers which are representable as sums
of positive cubes in at least n di¤erent ways, i.e.

u31 þ v31 ¼ u32 þ v32 ¼ � � � ¼ u3n þ v3n ; ui; vi A Q:ð2Þ
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Strategy of the proof. In the first step, in [8, Section 13.7], it is proved that
the equation

u31 þ v31 ¼ u32 þ v32 ;

has solutions. Then, in the second step, the proof is professionally continued
by induction on n. We will apply this strategy in the proof of Proposition 11.

r

Let Fðx; yÞ A Z½x; y� be a binary form of degree rb 3 with nonzero discrim-
inant. For any nonzero integer d, the equation

Fðx; yÞ ¼ dð3Þ

is known as Thue equation. The next result [5, Theorem 12.11.1] says that Thue
equation has finite solutions.

Theorem 9. Let F be an irreducible, homogeneous, binary integral form of
degree rb 3, and let d be a nonzero integer. The the equation

Fðx; yÞ ¼ d; with x; y A Z;

has only finitely many solutions, and all of them can be e¤ectively determined.

Define

NF ðd; rÞ ¼afðx; yÞ A Z� Z : Fðx; yÞ ¼ dg;

where Fðx; yÞ ¼ d is Thue equation. Theorem 9 shows that NF ðd; rÞ is finite.
There is an extensive literature dealing with the problem of estimating upper
bounds for NF ðd; rÞ, see e.g. [2, 14, 17].

By contrast there are only a few works which treat the problem of estimating
the lower bounds for NF ðd; rÞ [3, 11, 15]. The estimates in these references are
obtained by viewing (3), when it has a rational point, as defining an elliptic curve
E and then by constructing, from rational points on E, integers d 0 for which
Fðx; yÞ ¼ d 0 has many solutions in integers x and y. The solutions ðx; yÞ, so
constructed, have very large common factors. Silverman formalized this approach
by proving the following result [16].

Theorem 10. Let F be a cubic binary form with non-zero discriminant. Let
d0 be an integer such that the curve E with homogeneous equation

E : Fðx; yÞ ¼ d0z
3

has a point defined over Q. Using that point as origin, we give E the structure of
an elliptic curve. Let r denote the rank of the Mordell-Weil group of rational
points of E. There exists a positive number c, depending on F , such that there are
infinitely many positive integers d for which

NF ðd; 3Þb cðlog dÞr=ðrþ2Þ:
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3. Proof of the main results

We prove the main theorem 4 in the general case nb 2 by parametrization
method.

Proof of Theorem 4. We need the next result.

Proposition 11. For an even integer l let

l ¼ 2k ¼ u31 þ v31 ¼ u32 þ v32 ¼ � � � ¼ u3n þ v3n ; ui; vi A Z:ð4Þ

Then there are pairs of integers ðxi; yiÞ, for 1a ia n, such that

k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2n þ x3
n :ð5Þ

Proof. Put ui ¼ si þ ti and vi ¼ si � ti. This parametrization turns (4) to

k ¼ s1ðs21 þ 3t21Þ ¼ s2ðs22 þ 3t22Þ ¼ � � � ¼ snðs2n þ 3t2nÞ; ti; si A Z:

Appealing to Proposition 6 one sees that for any i with 1a ia n,

ðk; yi; xiÞ ¼ ðsiðs2i þ 3t2i Þ; tiðt2i þ 3s2i Þ; ðsi � tiÞðsi þ tiÞÞ
is a solution for k2 ¼ y2i þ x3

i . This completes the proof. r

We continue the proof of Theorem 4. By Proposition 7 and Remark 1 the
equation

u3 þ v3 ¼ w3 þ x3

has infinitely many integral solutions. It follows that for infinitely many ‘‘suitable
choices’’ of the parameters a, b, and d in Proposition 7, we may have infinitely
many integral solutions for

l ¼ 2k ¼ u31 þ v31 ¼ u32 þ v32 :

By the second step of the quoted strategy of the proof of Theorem 8, such a
solution induces a solution for the equations

l ¼ 2k ¼ u31 þ v31 ¼ u32 þ v32 ¼ � � � ¼ u3n þ v3n ; ui; vi A Z:

Now by Proposition 11 the result follows. r

Proof of Theorem 3. It su‰ces to prove the result for integer squares. Let
l ¼ 2k be any even integer. Put FðX ;YÞ ¼ X 3 þ Y 3. Then, by Theorem 9, the
number q ¼ NF ðl; 3Þ of solutions of the equation FðX ;YÞ ¼ l is finite. Suppose
that the solutions are ui, vi, 1a ia q.

l ¼ 2k ¼ u31 þ v31 ¼ u32 þ v32 ¼ � � � ¼ u3q þ v3q :ð6Þ
By Proposition 11, it follows that k2 has the following representations.

k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2q þ x3
q :ð7Þ
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This shows that each solution of (6) gives a solution for (7). Hence

Nðk2ÞbNF ðl; 3Þ ¼ NF ð2k; 3Þ:ð8Þ
On the other hand, Elkies and Rogers [6] constructs an elliptic curve FðX ;YÞ ¼
X 3 þ Y 3 ¼ m of rank r ¼ 11. Now apply Theorem 10 for d0 ¼ m, z ¼ 1 to
claim the existence of a positive number c1, depending on F , such that there are
infinitely many positive integers k (in practice 2k) for which

NF ð2k; 3Þb c1ðlog 2kÞ11=13ð9Þ
The relations (8) and (9) together gives

Nðk2Þ > c1ðlog 2kÞ11=13 > c1ðlog kÞ11=13 ¼ c1

211=13
ðlog k2Þ11=13:

The result now follows if we put d ¼ k2 and c ¼ c1

211=13
. r

4. Closing comment

We showed that the Diophantine equation

k2 ¼ y21 þ x3
1 ¼ y22 þ x3

2 ¼ � � � ¼ y2n þ x3
n

has infinitely many integral solution. These equations correspond to the equa-
tions

2k ¼ u31 þ v31 ¼ u32 þ v32 ¼ � � � ¼ u3q þ v3q :

A natural question posed is: Among the solutions, is there any smallest one? To
explain the problem exactly, following [13] we recall the definition of taxicab and
cabtaxi number.

Definition. The taxicab (resp. cabtaxi) number is the smallest positive
number expressible as the sum of two positive (resp. nonzero) cubes in two
di¤erent ways. More precisely, taxicab(n) (resp. cabtaxi(n)) is the smallest
positive number expressible as the sum of two positive (resp. nonzero) cubes
in n di¤erent ways. Note that taxicab(2) (resp. cabtaxi(2)) is nothing but the
taxicab (resp. cabtaxi) number.

For example,

taxicabð2Þ ¼ 1729 ¼ 13 þ 123 ¼ 93 þ 103;

cabtaxið2Þ ¼ 91 ¼ 33 þ 43 ¼ 63 þ ð�5Þ3:

Till 2011, taxicab(n) for 2a na 6 and cabtaxi(n), for 2a na 10 had been
calculated and an upper bound for taxicab(n) for 7a na 22 and cabtaxi(n), for
11a na 42 had been found. For more details see ‘‘New Upper Bounds for
Taxicab and Cabtaxi Numbers’’ in http://www.christianboyer.com/taxicab/.
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Problem 1. Given a positive integer n, find the smallest positive integer
m such that the Diophantine equation m ¼ y21 þ x3

1 ¼ y22 þ x3
2 ¼ � � � ¼ y2n þ x3

n

has positive integral solutions.
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